metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua{4,4′,6,6′-tetra­chloro-2,2′-[(2,2-di­methylpropane-1,3-diyl)bis­(nitrilomethanylyl­idene)]diphenolato}zinc

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 7 June 2012; online 16 June 2012)

The asymmetric unit of the title compound, [Zn(C19H16Cl4N2O2)(H2O)], comprises two crystallographically independent mol­ecules. The geometry around the ZnII atoms is distorted trigonal–bipyramidal, supported by the N2O2 donor atoms of the tetradentate Schiff base and a coordinating water mol­ecule. The dihedral angles between the benzene rings in the two mol­ecules are 34.10 (15) Å and 30.61 (15) Å. In the crystal, neighbouring independent mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming dimers with R22(6) ring motifs, and by O—H⋯Cl hydrogen bonds. There are short Cl⋯Cl [3.4728 (16), 3.4863 (16), and 3.388 (1) Å] contacts present, and mol­ecules are also linked by C—H⋯O and ππ [centroid–centroid distance = 3.671 (2) Å] inter­actions.

Related literature

For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Blower et al. (1998[Blower, P. J. (1998). Transition Met. Chem., 23, 109-112.]). For a related structure, see: Zhong-Lu et al. (2006[Zhong-Lu, Y., Xiao, H., Jia, W. & Jing-Yun, C. (2006). Jiegou Huaxue (Chin. J. Struct. Chem.) 25, 1043-1047.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-452.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C19H16Cl4N2O2)(H2O)]

  • Mr = 529.52

  • Monoclinic, P 21 /n

  • a = 11.2812 (7) Å

  • b = 22.5897 (15) Å

  • c = 17.6777 (12) Å

  • β = 107.159 (3)°

  • V = 4304.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 291 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.594, Tmax = 0.754

  • 40205 measured reflections

  • 10321 independent reflections

  • 6266 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.094

  • S = 1.00

  • 10321 reflections

  • 525 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯Cl5i 0.89 2.76 3.472 (2) 139
O1W—H1W1⋯O3i 0.89 2.05 2.825 (3) 145
O1W—H2W1⋯Cl8i 0.89 2.62 3.235 (2) 127
O1W—H2W1⋯O4i 0.89 1.86 2.681 (3) 153
O2W—H1W2⋯Cl4ii 0.88 2.51 3.226 (2) 139
O2W—H1W2⋯O2ii 0.88 2.04 2.807 (3) 144
O2W—H2W2⋯Cl1ii 0.89 2.62 3.340 (2) 139
O2W—H2W2⋯O1ii 0.89 2.01 2.749 (3) 140
C8—H8A⋯O4iii 0.97 2.56 3.310 (4) 134
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998).

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those found for a related structure (Zhong-Lu et al. 2006). The geometry around the ZnII atom is a distorted trigonal-bipyramide which is supported by the N2O2 donor atoms of the coordinated Schiff base and a coordinated water molecule. The dihedral angles between the benzene rings are 34.10 (15) Å [C1-C6/C14-C19] and 30.61 (15) Å [C20-C25/C33-C38].

In the crystal, neighbouring independent molecules are linked by pairs of O—H···O hydrogen bonds forming dimers with R22(6) ring motifs (Bernstein et al., 1995), and by O-H···Cl hydrogen bonds (Table 1 and Fig. 2). Short Cl···Cl [Cl2···Cl6iv = 3.4728 (16)Å, (iv) x-1/2, -y+3/2, z+1/2; Cl4···Cl7v = 3.4863 (16)Å, (v) -x+1/2, y-1/2, -z+3/2; Cl6···Cl8vi = 3.388 (1)Å, (vi) -x+5/2, y-1/2, -z+3/2] contacts are present in the crystal structure (Fig. 3); they are shorter than the sum of the van der Waals radii of Cl atoms [3.50 Å; Bondi, 1964]. The crystal structure is further stabilized C—H···O (Table 1) and π···π interactions [Cg1···Cg2i = 3.671 (2)Å, (i) x-1, y, z; Cg1 and Cg2 are the centroids of the C14–C19 and C20–C25 benzene rings, respectively].

Related literature top

For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For a related structure, see: Zhong-Lu et al. (2006). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).

Experimental top

The title compound was synthesized by adding 3,5-dichloro-salicylaldehyde-2,2-dimethyl-1,3- propanediamine (2 mmol) to a solution of Zn(OAc)2. 2H2O (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Light-green single crystals of the title compound, suitable for X-ray structure determination, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H atoms of the water molecules were located in a difference Fourier map and were constrained to ride on the parent O atoms, with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

Schiff base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Blower et al., (1998).

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules. The bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to those found for a related structure (Zhong-Lu et al. 2006). The geometry around the ZnII atom is a distorted trigonal-bipyramide which is supported by the N2O2 donor atoms of the coordinated Schiff base and a coordinated water molecule. The dihedral angles between the benzene rings are 34.10 (15) Å [C1-C6/C14-C19] and 30.61 (15) Å [C20-C25/C33-C38].

In the crystal, neighbouring independent molecules are linked by pairs of O—H···O hydrogen bonds forming dimers with R22(6) ring motifs (Bernstein et al., 1995), and by O-H···Cl hydrogen bonds (Table 1 and Fig. 2). Short Cl···Cl [Cl2···Cl6iv = 3.4728 (16)Å, (iv) x-1/2, -y+3/2, z+1/2; Cl4···Cl7v = 3.4863 (16)Å, (v) -x+1/2, y-1/2, -z+3/2; Cl6···Cl8vi = 3.388 (1)Å, (vi) -x+5/2, y-1/2, -z+3/2] contacts are present in the crystal structure (Fig. 3); they are shorter than the sum of the van der Waals radii of Cl atoms [3.50 Å; Bondi, 1964]. The crystal structure is further stabilized C—H···O (Table 1) and π···π interactions [Cg1···Cg2i = 3.671 (2)Å, (i) x-1, y, z; Cg1 and Cg2 are the centroids of the C14–C19 and C20–C25 benzene rings, respectively].

For applications of Schiff base ligands in coordination chemistry, see: Granovski et al. (1993); Blower et al. (1998). For a related structure, see: Zhong-Lu et al. (2006). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For van der Waals radii, see: Bondi (1964).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom numbering. The C-bound H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a-axis, showing linking of individual dimers formed via O—H···O hydrogen bonds (dashed lines). The hydrogen atoms not involved in these interactions have been omitted for clarity.
[Figure 3] Fig. 3. The packing diagram of the title compound viewed down the c-axis, showing the Cl···Cl interactions (dashed lines). The hydrogen atoms have been omitted for clarity.
Aqua{4,4',6,6'-tetrachloro-2,2'-[(2,2-dimethylpropane-1,3- diyl)bis(nitrilomethanylylidene)]diphenolato}zinc top
Crystal data top
[Zn(C19H16Cl4N2O2)(H2O)]F(000) = 2144
Mr = 529.52Dx = 1.634 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3535 reflections
a = 11.2812 (7) Åθ = 2.5–27.5°
b = 22.5897 (15) ŵ = 1.66 mm1
c = 17.6777 (12) ÅT = 291 K
β = 107.159 (3)°Block, light-green
V = 4304.4 (5) Å30.35 × 0.20 × 0.18 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10321 independent reflections
Radiation source: fine-focus sealed tube6266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.594, Tmax = 0.754k = 2729
40205 measured reflectionsl = 1323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0289P)2 + 2.1802P]
where P = (Fo2 + 2Fc2)/3
10321 reflections(Δ/σ)max = 0.001
525 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Zn(C19H16Cl4N2O2)(H2O)]V = 4304.4 (5) Å3
Mr = 529.52Z = 8
Monoclinic, P21/nMo Kα radiation
a = 11.2812 (7) ŵ = 1.66 mm1
b = 22.5897 (15) ÅT = 291 K
c = 17.6777 (12) Å0.35 × 0.20 × 0.18 mm
β = 107.159 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
10321 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6266 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.754Rint = 0.053
40205 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.00Δρmax = 0.54 e Å3
10321 reflectionsΔρmin = 0.55 e Å3
525 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1705 (3)0.87606 (14)0.92060 (17)0.0355 (7)
C20.0832 (3)0.92301 (15)0.90671 (18)0.0437 (8)
C30.1138 (3)0.97980 (16)0.93028 (19)0.0537 (10)
H30.05321.00910.91920.064*
C40.2353 (4)0.99363 (14)0.97075 (19)0.0506 (9)
C50.3224 (3)0.95054 (15)0.98837 (19)0.0480 (9)
H50.40340.96011.01700.058*
C60.2935 (3)0.89209 (14)0.96451 (17)0.0372 (8)
C70.3924 (3)0.84976 (15)0.99221 (17)0.0391 (8)
H70.46610.86431.02630.047*
C80.4941 (3)0.75817 (14)1.02127 (18)0.0415 (8)
H8A0.46120.72801.04850.050*
H8B0.54960.78281.06130.050*
C90.5697 (3)0.72769 (14)0.97352 (18)0.0382 (8)
C100.6560 (3)0.77180 (17)0.9508 (2)0.0583 (10)
H10A0.71350.78750.99800.087*
H10B0.60780.80350.92070.087*
H10C0.70080.75210.91960.087*
C110.6452 (3)0.67965 (16)1.0274 (2)0.0540 (10)
H11A0.68910.69671.07770.081*
H11B0.70340.66281.00340.081*
H11C0.59040.64931.03520.081*
C120.4866 (3)0.69988 (15)0.89747 (18)0.0406 (8)
H12A0.47260.72850.85480.049*
H12B0.52890.66610.88350.049*
C130.3407 (3)0.62610 (15)0.90478 (18)0.0404 (8)
H130.40120.59920.90130.048*
C140.2239 (3)0.60225 (14)0.90957 (17)0.0373 (8)
C150.2108 (3)0.54062 (15)0.90541 (18)0.0446 (8)
H150.27600.51740.90020.054*
C160.1047 (3)0.51410 (14)0.90886 (19)0.0454 (9)
C170.0072 (3)0.54684 (15)0.91738 (18)0.0446 (8)
H170.06520.52850.92010.053*
C180.0189 (3)0.60743 (14)0.92176 (17)0.0366 (7)
C190.1247 (3)0.63827 (14)0.91680 (16)0.0336 (7)
C201.0088 (3)0.61283 (14)0.70433 (17)0.0372 (8)
C211.1082 (3)0.57707 (16)0.69715 (19)0.0466 (9)
C221.1025 (4)0.51679 (16)0.6906 (2)0.0546 (10)
H221.16990.49540.68510.065*
C230.9963 (4)0.48839 (15)0.6923 (2)0.0570 (11)
C240.8978 (3)0.51962 (16)0.70139 (19)0.0526 (10)
H240.82700.49950.70360.063*
C250.9019 (3)0.58158 (14)0.70739 (18)0.0417 (8)
C260.7934 (3)0.61027 (16)0.71670 (18)0.0446 (9)
H260.72990.58590.72190.054*
C270.6590 (3)0.68856 (16)0.72515 (19)0.0454 (9)
H27A0.67540.72130.76240.055*
H27B0.61740.65770.74590.055*
C280.5728 (3)0.70994 (16)0.6448 (2)0.0475 (9)
C290.4962 (4)0.65769 (18)0.6003 (2)0.0755 (13)
H29A0.44350.64300.62990.113*
H29B0.55100.62680.59420.113*
H29C0.44620.67060.54910.113*
C300.4885 (4)0.7576 (2)0.6605 (2)0.0791 (14)
H30A0.43220.77060.61120.119*
H30B0.53770.79050.68650.119*
H30C0.44230.74200.69370.119*
C310.6459 (3)0.73261 (15)0.59062 (18)0.0421 (8)
H31A0.67700.69890.56830.051*
H31B0.58990.75420.54720.051*
C320.7426 (3)0.82606 (15)0.61298 (17)0.0375 (8)
H320.66620.83940.58110.045*
C330.8389 (3)0.86968 (13)0.63842 (17)0.0356 (7)
C340.8040 (3)0.92845 (15)0.6206 (2)0.0477 (9)
H34A0.72130.93740.59530.057*
C350.8887 (3)0.97289 (15)0.6396 (2)0.0542 (10)
C361.0125 (3)0.96035 (15)0.6740 (2)0.0476 (9)
H361.07070.99080.68610.057*
C371.0490 (3)0.90312 (14)0.69004 (18)0.0378 (8)
C380.9654 (3)0.85496 (14)0.67545 (16)0.0318 (7)
Cl10.06983 (8)0.90631 (4)0.85779 (6)0.0657 (3)
Cl20.27402 (11)1.06605 (4)1.00096 (6)0.0797 (4)
Cl30.08933 (11)0.43764 (4)0.90066 (6)0.0712 (3)
Cl40.10329 (8)0.64954 (4)0.93279 (5)0.0506 (2)
Cl51.24528 (9)0.61189 (5)0.69905 (6)0.0663 (3)
Cl60.98712 (11)0.41141 (4)0.68558 (7)0.0866 (4)
Cl70.84276 (11)1.04590 (5)0.61807 (9)0.0951 (4)
Cl81.20501 (7)0.88856 (4)0.73122 (5)0.0536 (2)
N10.3909 (2)0.79496 (12)0.97557 (14)0.0346 (6)
N20.3672 (2)0.68069 (12)0.90498 (14)0.0354 (6)
N30.7758 (2)0.66583 (12)0.71855 (14)0.0378 (6)
N40.7508 (2)0.77119 (12)0.62946 (14)0.0347 (6)
O10.13710 (18)0.82302 (9)0.89589 (12)0.0412 (5)
O20.12543 (18)0.69585 (9)0.91997 (12)0.0376 (5)
O31.02176 (19)0.67011 (9)0.70831 (12)0.0410 (5)
O41.00460 (17)0.80174 (9)0.69400 (12)0.0370 (5)
O1W0.21606 (18)0.74985 (9)0.77822 (11)0.0392 (5)
H1W10.18320.71470.76220.059*
H2W10.16020.77750.75580.059*
O2W0.92427 (18)0.76063 (9)0.82454 (11)0.0394 (5)
H1W20.95940.73130.85630.059*
H2W20.96720.79420.83520.059*
Zn10.24468 (3)0.751893 (16)0.89909 (2)0.03454 (10)
Zn20.90046 (3)0.732396 (16)0.71064 (2)0.03484 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (18)0.036 (2)0.0333 (16)0.0063 (15)0.0103 (14)0.0003 (14)
C20.0412 (19)0.044 (2)0.0424 (19)0.0104 (16)0.0074 (15)0.0026 (15)
C30.065 (3)0.043 (2)0.049 (2)0.0189 (19)0.0093 (19)0.0014 (17)
C40.073 (3)0.030 (2)0.043 (2)0.0067 (19)0.0067 (18)0.0041 (15)
C50.053 (2)0.046 (2)0.043 (2)0.0013 (18)0.0105 (17)0.0055 (16)
C60.0409 (18)0.0335 (19)0.0378 (17)0.0029 (15)0.0126 (14)0.0043 (14)
C70.0312 (17)0.044 (2)0.0388 (18)0.0023 (15)0.0052 (14)0.0047 (15)
C80.0326 (17)0.047 (2)0.0402 (18)0.0097 (15)0.0033 (14)0.0001 (15)
C90.0288 (16)0.040 (2)0.0440 (18)0.0043 (15)0.0084 (14)0.0035 (15)
C100.045 (2)0.058 (3)0.072 (3)0.0053 (19)0.018 (2)0.005 (2)
C110.040 (2)0.061 (3)0.059 (2)0.0173 (18)0.0116 (18)0.0098 (18)
C120.0349 (18)0.044 (2)0.0471 (19)0.0047 (15)0.0181 (15)0.0007 (15)
C130.0391 (19)0.040 (2)0.0436 (19)0.0139 (16)0.0147 (15)0.0021 (15)
C140.0411 (19)0.037 (2)0.0355 (17)0.0069 (15)0.0133 (14)0.0013 (14)
C150.056 (2)0.039 (2)0.0437 (19)0.0082 (18)0.0229 (17)0.0009 (15)
C160.066 (2)0.031 (2)0.043 (2)0.0006 (18)0.0229 (18)0.0007 (15)
C170.050 (2)0.044 (2)0.0422 (19)0.0065 (18)0.0185 (17)0.0040 (16)
C180.0389 (18)0.037 (2)0.0357 (17)0.0004 (15)0.0140 (14)0.0037 (14)
C190.0384 (18)0.035 (2)0.0268 (15)0.0007 (15)0.0079 (13)0.0023 (13)
C200.0426 (19)0.033 (2)0.0313 (16)0.0001 (16)0.0034 (14)0.0013 (13)
C210.051 (2)0.046 (2)0.0382 (19)0.0040 (18)0.0054 (16)0.0027 (15)
C220.056 (2)0.043 (2)0.051 (2)0.0109 (19)0.0056 (18)0.0063 (17)
C230.071 (3)0.031 (2)0.050 (2)0.005 (2)0.0106 (19)0.0007 (16)
C240.055 (2)0.040 (2)0.051 (2)0.0087 (19)0.0022 (18)0.0010 (17)
C250.045 (2)0.032 (2)0.0402 (18)0.0013 (16)0.0014 (15)0.0018 (14)
C260.043 (2)0.047 (2)0.0417 (19)0.0123 (17)0.0088 (16)0.0069 (16)
C270.0412 (19)0.052 (2)0.048 (2)0.0075 (17)0.0199 (16)0.0026 (16)
C280.0308 (18)0.059 (2)0.051 (2)0.0081 (17)0.0102 (16)0.0018 (17)
C290.053 (2)0.090 (3)0.076 (3)0.040 (2)0.007 (2)0.003 (2)
C300.052 (3)0.103 (4)0.084 (3)0.020 (3)0.024 (2)0.016 (3)
C310.0327 (17)0.049 (2)0.0382 (17)0.0117 (15)0.0002 (14)0.0036 (15)
C320.0287 (17)0.045 (2)0.0330 (17)0.0011 (15)0.0004 (13)0.0071 (14)
C330.0343 (17)0.0305 (19)0.0387 (17)0.0021 (14)0.0055 (14)0.0041 (14)
C340.041 (2)0.040 (2)0.059 (2)0.0050 (17)0.0104 (17)0.0098 (17)
C350.053 (2)0.030 (2)0.080 (3)0.0038 (18)0.021 (2)0.0100 (18)
C360.048 (2)0.033 (2)0.065 (2)0.0106 (17)0.0201 (18)0.0017 (17)
C370.0333 (17)0.035 (2)0.0446 (19)0.0057 (15)0.0107 (14)0.0025 (14)
C380.0348 (17)0.0320 (19)0.0283 (15)0.0028 (14)0.0088 (13)0.0024 (13)
Cl10.0421 (5)0.0607 (7)0.0841 (7)0.0169 (5)0.0028 (5)0.0093 (5)
Cl20.1053 (9)0.0366 (6)0.0784 (7)0.0052 (6)0.0020 (6)0.0121 (5)
Cl30.1106 (9)0.0335 (6)0.0812 (7)0.0052 (5)0.0462 (7)0.0003 (5)
Cl40.0425 (5)0.0487 (6)0.0673 (6)0.0013 (4)0.0263 (4)0.0076 (4)
Cl50.0520 (6)0.0665 (7)0.0836 (7)0.0029 (5)0.0250 (5)0.0117 (5)
Cl60.0946 (8)0.0346 (6)0.0963 (8)0.0055 (5)0.0249 (6)0.0073 (5)
Cl70.0756 (8)0.0339 (6)0.1689 (13)0.0078 (5)0.0255 (8)0.0200 (7)
Cl80.0348 (4)0.0470 (6)0.0724 (6)0.0119 (4)0.0056 (4)0.0018 (4)
N10.0289 (14)0.0362 (17)0.0358 (14)0.0042 (12)0.0052 (11)0.0002 (12)
N20.0303 (14)0.0371 (17)0.0380 (14)0.0051 (12)0.0089 (11)0.0009 (12)
N30.0364 (15)0.0377 (18)0.0385 (15)0.0051 (13)0.0098 (12)0.0044 (12)
N40.0294 (14)0.0387 (17)0.0319 (13)0.0072 (12)0.0027 (11)0.0028 (12)
O10.0320 (12)0.0340 (13)0.0526 (13)0.0054 (10)0.0047 (10)0.0073 (10)
O20.0340 (12)0.0317 (13)0.0494 (13)0.0011 (10)0.0156 (10)0.0016 (10)
O30.0379 (12)0.0333 (14)0.0517 (13)0.0013 (10)0.0130 (11)0.0013 (10)
O40.0297 (11)0.0312 (13)0.0458 (12)0.0035 (10)0.0046 (9)0.0051 (10)
O1W0.0358 (12)0.0373 (13)0.0398 (12)0.0032 (10)0.0040 (9)0.0017 (10)
O2W0.0373 (12)0.0363 (13)0.0410 (12)0.0021 (10)0.0056 (10)0.0001 (10)
Zn10.02780 (18)0.0338 (2)0.0398 (2)0.00256 (16)0.00654 (15)0.00178 (16)
Zn20.03034 (19)0.0328 (2)0.0374 (2)0.00331 (16)0.00381 (15)0.00323 (16)
Geometric parameters (Å, º) top
C1—O11.293 (3)C23—C241.366 (5)
C1—C21.418 (4)C23—Cl61.744 (4)
C1—C61.422 (4)C24—C251.403 (5)
C2—C31.361 (5)C24—H240.9300
C2—Cl11.729 (3)C25—C261.437 (5)
C3—C41.382 (5)C26—N31.273 (4)
C3—H30.9300C26—H260.9300
C4—C51.353 (5)C27—N31.450 (4)
C4—Cl21.736 (3)C27—C281.544 (4)
C5—C61.395 (4)C27—H27A0.9700
C5—H50.9300C27—H27B0.9700
C6—C71.442 (4)C28—C301.515 (5)
C7—N11.271 (4)C28—C311.525 (5)
C7—H70.9300C28—C291.535 (5)
C8—N11.464 (3)C29—H29A0.9600
C8—C91.530 (4)C29—H29B0.9600
C8—H8A0.9700C29—H29C0.9600
C8—H8B0.9700C30—H30A0.9600
C9—C101.526 (4)C30—H30B0.9600
C9—C111.527 (4)C30—H30C0.9600
C9—C121.529 (4)C31—N41.467 (4)
C10—H10A0.9600C31—H31A0.9700
C10—H10B0.9600C31—H31B0.9700
C10—H10C0.9600C32—N41.270 (4)
C11—H11A0.9600C32—C331.437 (4)
C11—H11B0.9600C32—H320.9300
C11—H11C0.9600C33—C341.394 (4)
C12—N21.457 (4)C33—C381.423 (4)
C12—H12A0.9700C34—C351.358 (5)
C12—H12B0.9700C34—H34A0.9300
C13—N21.269 (4)C35—C361.379 (5)
C13—C141.449 (4)C35—Cl71.737 (3)
C13—H130.9300C36—C371.361 (4)
C14—C151.400 (4)C36—H360.9300
C14—C191.419 (4)C37—C381.413 (4)
C15—C161.356 (5)C37—Cl81.726 (3)
C15—H150.9300C38—O41.290 (3)
C16—C171.369 (5)N1—Zn12.044 (2)
C16—Cl31.738 (3)N2—Zn12.103 (2)
C17—C181.375 (4)N3—Zn22.092 (3)
C17—H170.9300N4—Zn22.061 (2)
C18—C191.407 (4)O1—Zn12.004 (2)
C18—Cl41.733 (3)O2—Zn11.960 (2)
C19—O21.302 (3)O3—Zn21.972 (2)
C20—O31.302 (3)O4—Zn22.031 (2)
C20—C251.412 (4)O1W—Zn12.0651 (19)
C20—C211.417 (4)O1W—H1W10.8866
C21—C221.367 (5)O1W—H2W10.8928
C21—Cl51.727 (4)O2W—Zn22.053 (2)
C22—C231.367 (5)O2W—H1W20.8843
C22—H220.9300O2W—H2W20.8903
O1—C1—C2121.1 (3)N3—C27—C28112.2 (3)
O1—C1—C6124.1 (3)N3—C27—H27A109.2
C2—C1—C6114.8 (3)C28—C27—H27A109.2
C3—C2—C1123.5 (3)N3—C27—H27B109.2
C3—C2—Cl1118.9 (3)C28—C27—H27B109.2
C1—C2—Cl1117.6 (3)H27A—C27—H27B107.9
C2—C3—C4119.6 (3)C30—C28—C31111.2 (3)
C2—C3—H3120.2C30—C28—C29110.6 (3)
C4—C3—H3120.2C31—C28—C29105.3 (3)
C5—C4—C3119.9 (3)C30—C28—C27108.2 (3)
C5—C4—Cl2120.5 (3)C31—C28—C27111.8 (3)
C3—C4—Cl2119.5 (3)C29—C28—C27109.7 (3)
C4—C5—C6121.5 (3)C28—C29—H29A109.5
C4—C5—H5119.3C28—C29—H29B109.5
C6—C5—H5119.3H29A—C29—H29B109.5
C5—C6—C1120.6 (3)C28—C29—H29C109.5
C5—C6—C7115.8 (3)H29A—C29—H29C109.5
C1—C6—C7123.3 (3)H29B—C29—H29C109.5
N1—C7—C6127.6 (3)C28—C30—H30A109.5
N1—C7—H7116.2C28—C30—H30B109.5
C6—C7—H7116.2H30A—C30—H30B109.5
N1—C8—C9115.7 (2)C28—C30—H30C109.5
N1—C8—H8A108.4H30A—C30—H30C109.5
C9—C8—H8A108.4H30B—C30—H30C109.5
N1—C8—H8B108.4N4—C31—C28114.6 (3)
C9—C8—H8B108.4N4—C31—H31A108.6
H8A—C8—H8B107.4C28—C31—H31A108.6
C10—C9—C11110.3 (3)N4—C31—H31B108.6
C10—C9—C12108.1 (3)C28—C31—H31B108.6
C11—C9—C12110.0 (3)H31A—C31—H31B107.6
C10—C9—C8110.7 (3)N4—C32—C33126.9 (3)
C11—C9—C8105.9 (3)N4—C32—H32116.6
C12—C9—C8111.9 (2)C33—C32—H32116.6
C9—C10—H10A109.5C34—C33—C38120.3 (3)
C9—C10—H10B109.5C34—C33—C32116.4 (3)
H10A—C10—H10B109.5C38—C33—C32123.2 (3)
C9—C10—H10C109.5C35—C34—C33121.1 (3)
H10A—C10—H10C109.5C35—C34—H34A119.4
H10B—C10—H10C109.5C33—C34—H34A119.4
C9—C11—H11A109.5C34—C35—C36120.3 (3)
C9—C11—H11B109.5C34—C35—Cl7120.3 (3)
H11A—C11—H11B109.5C36—C35—Cl7119.3 (3)
C9—C11—H11C109.5C37—C36—C35119.5 (3)
H11A—C11—H11C109.5C37—C36—H36120.3
H11B—C11—H11C109.5C35—C36—H36120.3
N2—C12—C9112.7 (3)C36—C37—C38123.3 (3)
N2—C12—H12A109.1C36—C37—Cl8118.5 (2)
C9—C12—H12A109.1C38—C37—Cl8118.2 (2)
N2—C12—H12B109.1O4—C38—C37120.7 (3)
C9—C12—H12B109.1O4—C38—C33123.9 (3)
H12A—C12—H12B107.8C37—C38—C33115.4 (3)
N2—C13—C14125.4 (3)C7—N1—C8118.1 (3)
N2—C13—H13117.3C7—N1—Zn1124.7 (2)
C14—C13—H13117.3C8—N1—Zn1116.7 (2)
C15—C14—C19120.0 (3)C13—N2—C12120.8 (3)
C15—C14—C13116.8 (3)C13—N2—Zn1126.3 (2)
C19—C14—C13123.1 (3)C12—N2—Zn1112.3 (2)
C16—C15—C14121.2 (3)C26—N3—C27120.3 (3)
C16—C15—H15119.4C26—N3—Zn2126.4 (2)
C14—C15—H15119.4C27—N3—Zn2113.3 (2)
C15—C16—C17120.9 (3)C32—N4—C31118.6 (3)
C15—C16—Cl3120.2 (3)C32—N4—Zn2124.3 (2)
C17—C16—Cl3118.9 (3)C31—N4—Zn2117.1 (2)
C16—C17—C18118.5 (3)C1—O1—Zn1128.29 (19)
C16—C17—H17120.8C19—O2—Zn1129.3 (2)
C18—C17—H17120.8C20—O3—Zn2130.0 (2)
C17—C18—C19123.9 (3)C38—O4—Zn2125.89 (19)
C17—C18—Cl4119.1 (3)Zn1—O1W—H1W1105.9
C19—C18—Cl4116.9 (2)Zn1—O1W—H2W1108.6
O2—C19—C18119.1 (3)H1W1—O1W—H2W1108.1
O2—C19—C14125.6 (3)Zn2—O2W—H1W2107.1
C18—C19—C14115.3 (3)Zn2—O2W—H2W2112.3
O3—C20—C25125.3 (3)H1W2—O2W—H2W2113.0
O3—C20—C21119.5 (3)O2—Zn1—O194.56 (9)
C25—C20—C21115.2 (3)O2—Zn1—N1130.35 (9)
C22—C21—C20123.9 (3)O1—Zn1—N190.04 (9)
C22—C21—Cl5118.3 (3)O2—Zn1—O1W105.90 (8)
C20—C21—Cl5117.8 (3)O1—Zn1—O1W94.60 (8)
C21—C22—C23119.0 (4)N1—Zn1—O1W122.98 (9)
C21—C22—H22120.5O2—Zn1—N288.53 (9)
C23—C22—H22120.5O1—Zn1—N2176.45 (9)
C24—C23—C22120.6 (3)N1—Zn1—N286.62 (10)
C24—C23—Cl6119.3 (3)O1W—Zn1—N286.21 (9)
C22—C23—Cl6120.1 (3)O3—Zn2—O496.47 (9)
C23—C24—C25120.9 (4)O3—Zn2—O2W110.58 (8)
C23—C24—H24119.5O4—Zn2—O2W89.35 (8)
C25—C24—H24119.5O3—Zn2—N4136.04 (9)
C24—C25—C20120.4 (3)O4—Zn2—N487.78 (9)
C24—C25—C26116.6 (3)O2W—Zn2—N4113.21 (9)
C20—C25—C26123.0 (3)O3—Zn2—N388.45 (10)
N3—C26—C25126.4 (3)O4—Zn2—N3173.38 (9)
N3—C26—H26116.8O2W—Zn2—N393.08 (9)
C25—C26—H26116.8N4—Zn2—N385.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl5i0.892.763.472 (2)139
O1W—H1W1···O3i0.892.052.825 (3)145
O1W—H2W1···Cl8i0.892.623.235 (2)127
O1W—H2W1···O4i0.891.862.681 (3)153
O2W—H1W2···Cl4ii0.882.513.226 (2)139
O2W—H1W2···O2ii0.882.042.807 (3)144
O2W—H2W2···Cl1ii0.892.623.340 (2)139
O2W—H2W2···O1ii0.892.012.749 (3)140
C8—H8A···O4iii0.972.563.310 (4)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C19H16Cl4N2O2)(H2O)]
Mr529.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)11.2812 (7), 22.5897 (15), 17.6777 (12)
β (°) 107.159 (3)
V3)4304.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.66
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.594, 0.754
No. of measured, independent and
observed [I > 2σ(I)] reflections
40205, 10321, 6266
Rint0.053
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.094, 1.00
No. of reflections10321
No. of parameters525
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.55

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl5i0.892.763.472 (2)139
O1W—H1W1···O3i0.892.052.825 (3)145
O1W—H2W1···Cl8i0.892.623.235 (2)127
O1W—H2W1···O4i0.891.862.681 (3)153
O2W—H1W2···Cl4ii0.882.513.226 (2)139
O2W—H1W2···O2ii0.882.042.807 (3)144
O2W—H2W2···Cl1ii0.892.623.340 (2)139
O2W—H2W2···O1ii0.892.012.749 (3)140
C8—H8A···O4iii0.972.563.310 (4)134
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x1/2, y+3/2, z+1/2.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen Germany.

Acknowledgements

HK and SA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlower, P. J. (1998). Transition Met. Chem., 23, 109–112.  CrossRef CAS Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441-452.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhong-Lu, Y., Xiao, H., Jia, W. & Jing-Yun, C. (2006). Jiegou Huaxue (Chin. J. Struct. Chem.) 25, 1043–1047.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds