organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phen­yl)-N-[3-(1H-imidazol-1-yl)prop­yl]quinazolin-4-amine

aDepartamento de Química, Universidad Católica del Norte, Antofagasta, Chile, bSchool of Pharmaceutical Sciences, University of Geneva, Quai Ernest-Ansermet 30, CH-1211, Geneva 4, Switzerland, and cLaboratoire de Cristallographie, University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva 4, Switzerland
*Correspondence e-mail: vkestern@ucn.cl

(Received 8 June 2012; accepted 20 June 2012; online 30 June 2012)

In the title compound, C20H18BrN5, the bromo­phenyl-substituted quinazoline unit is essentially planar [maximum deviation = 0.098 (3) Å] and makes a dihedral angle of 56.04 (14)° with the imidazole ring. In the crystal, mol­ecules are associated by pairs of N—H⋯N hydrogen bonds to form inversion dimers. All the quinazoline planar systems are oriented almost perpendicular to the [110] direction, making ππ inter­actions possible between adjacent dimers [centroid–centroid distances = 3.7674 (16) and 3.7612 (17) Å]. There are also a number of C—H⋯π inter­actions present. The crystal is a nonmerohedral twin, with a minor twin fraction of 0.47.

Related literature

For general background on the biological properties of imidazo quinazolines, see: Aguilar et al. (2002[Aguilar, L., Gimenez, M. J., García-Rey, C. & Martin, J. E. (2002). Antimicrob. Chemother. 50 (Suppl. C), 93-100.]); Rohini et al. (2009[Rohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & Ravinder, V. (2009). Eur. J. Med. Chem. 44 3330-3339.]). For imidazo quinazoline structures, see: Asproni et al. (2011[Asproni, B., Murineddu, G., Pau, A., Pinna, G. A., Langgård, M., Christoffersen, C. T., Nielsen, J. & Kehler, J. (2011). Bioorg. Med. Chem. 19, 642-649.]); Connolly et al. (2005[Connolly, D. J., Cusack, D. O., Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153-10202.]). For synthetic details, see: Okano et al. (2009[Okano, M., Mito, J., Maruyama, Y., Masuda, H., Niwa, T., Nakagawa, S., Nakamura, Y. & Matsuura, A. (2009). Bioorg. Med. Chem. 17, 119-132.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18BrN5

  • Mr = 408.30

  • Triclinic, [P \overline 1]

  • a = 8.8557 (7) Å

  • b = 9.5113 (6) Å

  • c = 11.3730 (7) Å

  • α = 99.682 (5)°

  • β = 101.432 (6)°

  • γ = 97.211 (6)°

  • V = 912.96 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.17 mm−1

  • T = 180 K

  • 0.4 × 0.2 × 0.07 mm

Data collection
  • Agilent SuperNova, Dual, Cu, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.343, Tmax = 1.000

  • 6845 measured reflections

  • 6845 independent reflections

  • 6259 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.216

  • S = 1.12

  • 6845 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.87 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N2,N5,C1–C3 ring; Cg3 is the centroid of the C11–C16 ring; Cg4 is the centroid of the C19–C24 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯N2i 0.86 2.14 2.949 (4) 156
C1—H1⋯Cg4ii 0.93 2.84 3.605 (3) 140
C4—H4⋯Cg3iii 0.93 2.78 3.509 (4) 136
C14—H14⋯Cg1iv 0.93 2.88 3.527 (3) 128
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) x-1, y, z; (iii) -x+2, -y+2, -z+2; (iv) x+1, y, z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Imidazo quinazolines (Connolly et al., 2005; Asproni et al., 2011) are heterocyclic compounds that exhibit a wide range of biological activities such as, antibacterial, antifungal, and antitumor (Rohini et al., 2009). The importance of this type of structure is linked to the fact that new drugs are permanently required owing to the fact that microorganisms are mutating continuously (Aguilar et al., 2002).

In the title compound, Fig. 1, the bromophenyl substituted quinazoline unit is essentially planar, with a maximum deviation 0.098 (3)Å for atom C20, and makes a dihedral angle of 56.04 (14) ° with the imidazole ring.

In the crystal, the molecules are associated via N-H···N hydrogen bonds, involving the imidazole function (N2) and the NH group to form inversion dimers (Table 1 and Fig. 2). All the planar quinazoline systems are oriented almost perpendicular to direction [110] making π···π interactions possible between adjacent dimers [Fig 3; Cg2···Cg4i 3.7674 (16) Å; Cg3···Cg4i 3.7612 (17) Å; symmetry code (i) -x+2, -y+1, -z+2; Cg2, Cg3 and Cg4 are the centroids of rings (N25,C10,C11,C16,N17,C18), (C11-C16) and (C19-C20), respectively]. There are also a number of C-H···π interactions present (Table 1).

Related literature top

For general background on the biological properties of imidazo quinazolines, see: Aguilar et al. (2002); Rohini et al. (2009). For imidazo quinazolines structures, see: Asproni et al. (2011); Connolly et al. (2005). For synthetic details, see: Okano et al. (2009).

Experimental top

Both the starting reagent, 4-chloro-2-(4-bromophenyl)quinazoline, and the title compound were synthesized as described by (Okano et al., 2009). To a stirred solution of 0.4 g of 4-chloro-2-(4-bromophenyl)quinazoline (1,3 mmol) in 6 ml of N,N-dimethylformamide, a mixture of 0.4 ml of Et3N (2.6 mmol) and 0.2 ml of 1-(3-aminopropyl)-imidazole (1.6 mmol) were added. The reaction mixture was stirred at room temperature for 4 h. After completion of the reaction 30 ml of cold water were added giving a white precipitate of the title compound that was purified in acetone [Yield 95%]. Recrystallization in acetone at room temperature afforded colourless plate-like crystals suitable for X-ray diffraction analysis (M.p. 438-440 K).

Refinement top

The crystal is a non-merohedral twin, with a minor twin fraction of 0.47. Two components rotated by 180 ° around an axis close to the a axis were used to produce an HKLF5 file that was used in the refinement. The H atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, with Uiso(H) = 1.2Ueq(parent N or C atom).

Structure description top

Imidazo quinazolines (Connolly et al., 2005; Asproni et al., 2011) are heterocyclic compounds that exhibit a wide range of biological activities such as, antibacterial, antifungal, and antitumor (Rohini et al., 2009). The importance of this type of structure is linked to the fact that new drugs are permanently required owing to the fact that microorganisms are mutating continuously (Aguilar et al., 2002).

In the title compound, Fig. 1, the bromophenyl substituted quinazoline unit is essentially planar, with a maximum deviation 0.098 (3)Å for atom C20, and makes a dihedral angle of 56.04 (14) ° with the imidazole ring.

In the crystal, the molecules are associated via N-H···N hydrogen bonds, involving the imidazole function (N2) and the NH group to form inversion dimers (Table 1 and Fig. 2). All the planar quinazoline systems are oriented almost perpendicular to direction [110] making π···π interactions possible between adjacent dimers [Fig 3; Cg2···Cg4i 3.7674 (16) Å; Cg3···Cg4i 3.7612 (17) Å; symmetry code (i) -x+2, -y+1, -z+2; Cg2, Cg3 and Cg4 are the centroids of rings (N25,C10,C11,C16,N17,C18), (C11-C16) and (C19-C20), respectively]. There are also a number of C-H···π interactions present (Table 1).

For general background on the biological properties of imidazo quinazolines, see: Aguilar et al. (2002); Rohini et al. (2009). For imidazo quinazolines structures, see: Asproni et al. (2011); Connolly et al. (2005). For synthetic details, see: Okano et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view perpendicular to (110) of the crystal packing of the title compound, showing the N-H···N hydrogen bonded (blue dashed lines; Table 1) inversion dimers and the overlap of the inversion related bromophenyl substituted quinazoline units.
[Figure 3] Fig. 3. A view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as blue dashed lines (see Table 1 for details).
(I) top
Crystal data top
C20H18BrN5Z = 2
Mr = 408.30F(000) = 416
Triclinic, P1Dx = 1.485 Mg m3
Hall symbol: -P 1Melting point = 438–440 K
a = 8.8557 (7) ÅCu Kα radiation, λ = 1.5418 Å
b = 9.5113 (6) ÅCell parameters from 4656 reflections
c = 11.3730 (7) Åθ = 4.0–72.6°
α = 99.682 (5)°µ = 3.17 mm1
β = 101.432 (6)°T = 180 K
γ = 97.211 (6)°Plate, colourless
V = 912.96 (11) Å30.4 × 0.2 × 0.07 mm
Data collection top
Agilent SuperNova, Dual, Cu, Atlas
diffractometer
6845 independent reflections
Radiation source: SuperNova (Cu) X-ray Source6259 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.000
Detector resolution: 10.4679 pixels mm-1θmax = 73.4°, θmin = 4.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.343, Tmax = 1.000l = 1414
6845 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.1707P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
6845 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
C20H18BrN5γ = 97.211 (6)°
Mr = 408.30V = 912.96 (11) Å3
Triclinic, P1Z = 2
a = 8.8557 (7) ÅCu Kα radiation
b = 9.5113 (6) ŵ = 3.17 mm1
c = 11.3730 (7) ÅT = 180 K
α = 99.682 (5)°0.4 × 0.2 × 0.07 mm
β = 101.432 (6)°
Data collection top
Agilent SuperNova, Dual, Cu, Atlas
diffractometer
6845 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
6259 reflections with I > 2σ(I)
Tmin = 0.343, Tmax = 1.000Rint = 0.000
6845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.12Δρmax = 0.94 e Å3
6845 reflectionsΔρmin = 0.87 e Å3
236 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. The crystal is twinned. Two components rotated by 180 degrees around an axis close to the a axis were used to produce an hklf5 file that was used in the refinement. The twin fraction is 0.47.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br261.29926 (4)0.38228 (3)0.53762 (3)0.0344 (2)
N20.3265 (3)0.9940 (3)0.7534 (3)0.0332 (8)
N50.5204 (3)0.8708 (2)0.7429 (2)0.0226 (6)
N90.8641 (3)0.8764 (3)1.0859 (2)0.0249 (7)
N171.2170 (3)0.6321 (2)1.1230 (2)0.0219 (6)
N251.0223 (2)0.7362 (2)1.0039 (2)0.0208 (6)
C10.3882 (3)0.8826 (3)0.7826 (3)0.0271 (8)
C30.4247 (4)1.0562 (3)0.6895 (3)0.0363 (10)
C40.5446 (4)0.9818 (3)0.6823 (3)0.0320 (9)
C60.6173 (3)0.7581 (3)0.7585 (3)0.0281 (8)
C70.6775 (3)0.7528 (3)0.8922 (3)0.0244 (8)
C80.7867 (3)0.8907 (3)0.9637 (3)0.0243 (8)
C100.9798 (3)0.7984 (3)1.1023 (2)0.0211 (7)
C111.0576 (3)0.7841 (3)1.2228 (2)0.0202 (7)
C121.0225 (3)0.8494 (3)1.3326 (3)0.0272 (8)
C131.1050 (4)0.8314 (3)1.4436 (3)0.0300 (8)
C141.2239 (3)0.7465 (3)1.4478 (3)0.0276 (8)
C151.2587 (3)0.6803 (3)1.3418 (3)0.0256 (8)
C161.1774 (3)0.6981 (3)1.2261 (3)0.0210 (7)
C181.1381 (3)0.6553 (3)1.0193 (2)0.0201 (7)
C191.1755 (3)0.5861 (3)0.9036 (2)0.0198 (7)
C201.0851 (3)0.5960 (3)0.7895 (3)0.0243 (7)
C211.1213 (3)0.5346 (3)0.6819 (3)0.0259 (8)
C221.2489 (3)0.4630 (3)0.6873 (3)0.0240 (8)
C231.3403 (3)0.4505 (3)0.7974 (3)0.0258 (8)
C241.3025 (3)0.5117 (3)0.9049 (3)0.0231 (7)
H10.345400.819100.825900.0320*
H30.410701.137600.656000.0440*
H40.626301.001800.644200.0380*
H6A0.705500.775700.721100.0340*
H6B0.556400.664900.716300.0340*
H7A0.732600.671300.896800.0290*
H7B0.589300.737400.930000.0290*
H8A0.865200.914900.918600.0290*
H8B0.727200.969500.970800.0290*
H90.835000.918901.148500.0300*
H120.943100.905001.330100.0330*
H131.081900.875501.515900.0360*
H141.279600.735001.523000.0330*
H151.336600.623101.346000.0310*
H201.000000.644500.786600.0290*
H211.060900.541100.606700.0310*
H231.425300.401900.799300.0310*
H241.362700.503300.979500.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br260.0438 (3)0.0463 (3)0.0199 (2)0.0198 (2)0.0142 (2)0.0076 (2)
N20.0312 (12)0.0421 (14)0.0294 (13)0.0157 (11)0.0077 (11)0.0076 (12)
N50.0226 (10)0.0276 (11)0.0187 (11)0.0058 (8)0.0035 (9)0.0079 (9)
N90.0255 (11)0.0311 (12)0.0193 (11)0.0132 (9)0.0041 (9)0.0035 (9)
N170.0201 (10)0.0284 (11)0.0188 (11)0.0081 (8)0.0040 (8)0.0066 (9)
N250.0192 (9)0.0281 (11)0.0164 (11)0.0075 (8)0.0041 (8)0.0049 (9)
C10.0240 (12)0.0355 (14)0.0251 (14)0.0070 (11)0.0086 (11)0.0102 (12)
C30.0420 (17)0.0329 (15)0.0386 (19)0.0120 (12)0.0108 (14)0.0131 (14)
C40.0318 (14)0.0332 (15)0.0347 (17)0.0042 (11)0.0114 (12)0.0131 (13)
C60.0297 (13)0.0333 (14)0.0211 (14)0.0133 (11)0.0043 (11)0.0009 (11)
C70.0221 (12)0.0281 (13)0.0257 (14)0.0093 (10)0.0046 (10)0.0101 (11)
C80.0269 (13)0.0260 (13)0.0219 (14)0.0088 (10)0.0031 (11)0.0092 (11)
C100.0186 (11)0.0244 (12)0.0202 (13)0.0044 (9)0.0034 (10)0.0049 (10)
C110.0190 (11)0.0244 (12)0.0168 (13)0.0024 (9)0.0039 (9)0.0038 (10)
C120.0254 (12)0.0342 (15)0.0213 (14)0.0093 (11)0.0052 (11)0.0008 (12)
C130.0322 (14)0.0384 (15)0.0175 (14)0.0070 (12)0.0060 (11)0.0014 (12)
C140.0289 (13)0.0334 (14)0.0180 (13)0.0033 (11)0.0001 (11)0.0055 (11)
C150.0231 (12)0.0328 (14)0.0224 (14)0.0071 (10)0.0031 (10)0.0102 (12)
C160.0197 (11)0.0243 (12)0.0195 (13)0.0024 (9)0.0050 (10)0.0063 (10)
C180.0187 (11)0.0244 (12)0.0185 (13)0.0036 (9)0.0053 (10)0.0063 (10)
C190.0183 (11)0.0250 (12)0.0177 (13)0.0045 (9)0.0054 (9)0.0066 (10)
C200.0199 (11)0.0351 (14)0.0190 (13)0.0092 (10)0.0023 (10)0.0072 (11)
C210.0253 (12)0.0358 (14)0.0172 (13)0.0085 (11)0.0024 (10)0.0072 (11)
C220.0283 (13)0.0289 (13)0.0163 (13)0.0051 (10)0.0097 (10)0.0029 (11)
C230.0264 (12)0.0311 (13)0.0241 (14)0.0127 (10)0.0095 (11)0.0068 (11)
C240.0217 (12)0.0308 (13)0.0197 (13)0.0081 (10)0.0041 (10)0.0108 (11)
Geometric parameters (Å, º) top
Br26—C221.906 (3)C19—C241.401 (4)
N2—C11.313 (4)C19—C201.408 (4)
N2—C31.379 (4)C20—C211.380 (4)
N5—C11.346 (4)C21—C221.387 (4)
N5—C41.372 (4)C22—C231.382 (4)
N5—C61.467 (4)C23—C241.385 (4)
N9—C81.459 (4)C1—H10.9300
N9—C101.340 (4)C3—H30.9300
N17—C161.365 (4)C4—H40.9300
N17—C181.314 (3)C6—H6A0.9700
N25—C101.321 (3)C6—H6B0.9700
N25—C181.359 (3)C7—H7A0.9700
N9—H90.8600C7—H7B0.9700
C3—C41.356 (5)C8—H8A0.9700
C6—C71.520 (5)C8—H8B0.9700
C7—C81.526 (4)C12—H120.9300
C10—C111.443 (3)C13—H130.9300
C11—C161.417 (4)C14—H140.9300
C11—C121.408 (4)C15—H150.9300
C12—C131.377 (5)C20—H200.9300
C13—C141.403 (4)C21—H210.9300
C14—C151.373 (4)C23—H230.9300
C15—C161.417 (5)C24—H240.9300
C18—C191.487 (3)
C1—N2—C3104.7 (3)C22—C23—C24118.6 (3)
C1—N5—C4106.9 (2)C19—C24—C23121.4 (3)
C1—N5—C6126.4 (2)N2—C1—H1124.00
C4—N5—C6126.7 (3)N5—C1—H1124.00
C8—N9—C10121.2 (2)N2—C3—H3125.00
C16—N17—C18115.5 (2)C4—C3—H3125.00
C10—N25—C18118.1 (2)N5—C4—H4127.00
C8—N9—H9119.00C3—C4—H4127.00
C10—N9—H9119.00N5—C6—H6A109.00
N2—C1—N5112.3 (3)N5—C6—H6B109.00
N2—C3—C4110.4 (3)C7—C6—H6A109.00
N5—C4—C3105.7 (3)C7—C6—H6B109.00
N5—C6—C7112.6 (2)H6A—C6—H6B108.00
C6—C7—C8112.8 (2)C6—C7—H7A109.00
N9—C8—C7112.5 (2)C6—C7—H7B109.00
N9—C10—N25117.6 (2)C8—C7—H7A109.00
N9—C10—C11121.7 (2)C8—C7—H7B109.00
N25—C10—C11120.8 (2)H7A—C7—H7B108.00
C10—C11—C12124.6 (3)N9—C8—H8A109.00
C12—C11—C16120.0 (2)N9—C8—H8B109.00
C10—C11—C16115.4 (2)C7—C8—H8A109.00
C11—C12—C13120.4 (3)C7—C8—H8B109.00
C12—C13—C14120.0 (3)H8A—C8—H8B108.00
C13—C14—C15120.6 (3)C11—C12—H12120.00
C14—C15—C16120.8 (3)C13—C12—H12120.00
N17—C16—C11122.8 (3)C12—C13—H13120.00
C11—C16—C15118.2 (3)C14—C13—H13120.00
N17—C16—C15119.0 (3)C13—C14—H14120.00
N17—C18—C19118.2 (2)C15—C14—H14120.00
N25—C18—C19114.5 (2)C14—C15—H15120.00
N17—C18—N25127.4 (2)C16—C15—H15120.00
C20—C19—C24118.3 (2)C19—C20—H20120.00
C18—C19—C20120.6 (2)C21—C20—H20120.00
C18—C19—C24121.2 (2)C20—C21—H21120.00
C19—C20—C21120.8 (3)C22—C21—H21120.00
C20—C21—C22119.1 (3)C22—C23—H23121.00
Br26—C22—C23119.7 (2)C24—C23—H23121.00
Br26—C22—C21118.4 (2)C19—C24—H24119.00
C21—C22—C23121.9 (3)C23—C24—H24119.00
C3—N2—C1—N50.8 (4)C10—C11—C12—C13178.9 (3)
C1—N2—C3—C40.5 (4)C16—C11—C12—C130.6 (4)
C4—N5—C1—N20.8 (4)C10—C11—C16—N170.4 (4)
C6—N5—C1—N2179.2 (3)C10—C11—C16—C15179.8 (3)
C1—N5—C4—C30.4 (3)C12—C11—C16—N17180.0 (3)
C6—N5—C4—C3178.8 (3)C12—C11—C16—C150.2 (4)
C1—N5—C6—C758.8 (4)C11—C12—C13—C140.6 (5)
C4—N5—C6—C7123.2 (3)C12—C13—C14—C150.3 (5)
C10—N9—C8—C773.6 (3)C13—C14—C15—C161.1 (4)
C8—N9—C10—N250.7 (4)C14—C15—C16—N17179.1 (3)
C8—N9—C10—C11179.7 (3)C14—C15—C16—C111.0 (4)
C18—N17—C16—C111.1 (4)N17—C18—C19—C20174.0 (3)
C18—N17—C16—C15179.0 (3)N17—C18—C19—C247.1 (4)
C16—N17—C18—N250.4 (4)N25—C18—C19—C205.5 (4)
C16—N17—C18—C19179.9 (2)N25—C18—C19—C24173.4 (3)
C18—N25—C10—N9179.2 (3)C18—C19—C20—C21178.6 (3)
C18—N25—C10—C111.8 (4)C24—C19—C20—C210.3 (4)
C10—N25—C18—N171.1 (4)C18—C19—C24—C23178.2 (3)
C10—N25—C18—C19178.4 (2)C20—C19—C24—C230.7 (4)
N2—C3—C4—N50.1 (4)C19—C20—C21—C220.3 (4)
N5—C6—C7—C863.8 (3)C20—C21—C22—Br26178.8 (2)
C6—C7—C8—N9170.6 (2)C20—C21—C22—C230.5 (4)
N9—C10—C11—C120.6 (5)Br26—C22—C23—C24179.2 (2)
N9—C10—C11—C16179.9 (3)C21—C22—C23—C240.1 (4)
N25—C10—C11—C12178.4 (3)C22—C23—C24—C190.5 (4)
N25—C10—C11—C161.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2,N5,C1–C3 ring; Cg3 is the centroid of the C11–C16 ring; Cg4 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···N2i0.862.142.949 (4)156
C1—H1···Cg4ii0.932.843.605 (3)140
C4—H4···Cg3iii0.932.783.509 (4)136
C14—H14···Cg1iv0.932.883.527 (3)128
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+2, z+2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H18BrN5
Mr408.30
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)8.8557 (7), 9.5113 (6), 11.3730 (7)
α, β, γ (°)99.682 (5), 101.432 (6), 97.211 (6)
V3)912.96 (11)
Z2
Radiation typeCu Kα
µ (mm1)3.17
Crystal size (mm)0.4 × 0.2 × 0.07
Data collection
DiffractometerAgilent SuperNova, Dual, Cu, Atlas
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.343, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6845, 6845, 6259
Rint0.000
(sin θ/λ)max1)0.622
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.216, 1.12
No. of reflections6845
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.87

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N2,N5,C1–C3 ring; Cg3 is the centroid of the C11–C16 ring; Cg4 is the centroid of the C19–C24 ring.
D—H···AD—HH···AD···AD—H···A
N9—H9···N2i0.862.142.949 (4)156
C1—H1···Cg4ii0.932.843.605 (3)140
C4—H4···Cg3iii0.932.783.509 (4)136
C14—H14···Cg1iv0.932.883.527 (3)128
Symmetry codes: (i) x+1, y+2, z+2; (ii) x1, y, z; (iii) x+2, y+2, z+2; (iv) x+1, y, z+1.
 

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAguilar, L., Gimenez, M. J., García-Rey, C. & Martin, J. E. (2002). Antimicrob. Chemother. 50 (Suppl. C), 93–100.  Google Scholar
First citationAsproni, B., Murineddu, G., Pau, A., Pinna, G. A., Langgård, M., Christoffersen, C. T., Nielsen, J. & Kehler, J. (2011). Bioorg. Med. Chem. 19, 642–649.  Web of Science CrossRef CAS PubMed Google Scholar
First citationConnolly, D. J., Cusack, D. O., Sullivan, T. P. & Guiry, P. J. (2005). Tetrahedron, 61, 10153–10202.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkano, M., Mito, J., Maruyama, Y., Masuda, H., Niwa, T., Nakagawa, S., Nakamura, Y. & Matsuura, A. (2009). Bioorg. Med. Chem. 17, 119–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRohini, R., Shanker, K., Reddy, P. M., Ho, Y.-P. & Ravinder, V. (2009). Eur. J. Med. Chem. 44 3330–3339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds