organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-4-(2-Hy­dr­oxy­anilino)pent-3-en-2-one

aLaboratoire d'Electrochimie, d'Ingenierie Moléculaire et de Catalyse Redox, Departement de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas, Sétif, Algeria, and bInstitut de Chimie de Strasbourg, UMR 7177 CNRS-UdS, Service de Radiocristallographie, 1 rue Blaise Pascal, 67008 Strasbourg Cedex, France
*Correspondence e-mail: s_marouani20012002@yahoo.fr

(Received 8 June 2012; accepted 19 June 2012; online 23 June 2012)

In the title compound, C11H13NO2, the dihedral angle between the planes defined by the 2-hy­droxy­phenyl­amino group and the pent-3-en-2-one mean plane [maximum deviations = 0.0275 (19) and 0.054 (2) Å, respectively] is 31.01 (10)°. There are intra­molecular bifurcated N—H⋯(O,O) hydrogen bonds involving the amine NH group and the adjacent carbonyl and hy­droxy O atoms. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming chains propagating along [100].

Related literature

For transition metal complexes of Schiff bases, see: Salavati-Niasari (2006[Salavati-Niasari, M. (2006). Microporous Mesoporous Mater. 95, 248-256.]); Xiong et al. (2007[Xiong, D., Fu, Z., Zhong, S., Jiang, X. & Yin, D. (2007). Catal. Lett. 113, 155-159.]); Basu et al. (2010[Basu, S., Gupta, G., Das, B. & Rao, K. M. (2010). J. Organomet. Chem. 695, 2098-2104.]). For the biological activity of Schiff bases, see: Jarrahpour et al. (2007[Jarrahpour, A., Khalilil, D., Clercq, E. D., Salmi, C. & Michel, J. (2007). Molecules, 12, 1720-1730.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For the use of Schiff bases as inter­midiates in many industrial processes, see: Salavati-Niasari & Nezamoddin Mirsattari (2007[Salavati-Niasari, M. & Nezamoddin Mirsattari, S. (2007). J. Mol. Catal. A Chem. 268, 50-58.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Ahamad et al. (2010[Ahamad, I., Gupta, C., Prasad, R. & Quraishi, A. (2010). J. Appl. Electrochem. 40, 2171-2183.]); Da Silva et al. (2010[Da Silva, A. B. D., Elia, E. & Gunha Ponciano Gomes, J. A. D. (2010). Corros. Sci. 52, 788-793.]); Soltani et al. (2010[Soltani, N., Behpour, M., Ghoreishi, S. M. & Naeini, H. (2010). Corros. Sci. 52, 1351-1361.]). For the tautomeric properties and conformations of the title compound, see: Kabak et al. (1998[Kabak, M., Elmali, A. & Elerman, Y. (1998). J. Mol. Struct. 470, 295-300.]). For the photoconductivity of the title compound, see: Parekh et al. (2007[Parekh, B. B., Purohit, D. H., Sagayaraj, P., Joshi, H. S. & Josh, M. J. (2007). Cryst. Res. Technol. 42, 407-415.]), and for its thermochromic properties, see: Moustakali-Mavridis et al. (1978[Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.]); Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]). For hydrogen bonding and graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13NO2

  • Mr = 191.22

  • Orthorhombic, P 21 21 21

  • a = 8.7826 (4) Å

  • b = 10.3999 (5) Å

  • c = 11.1827 (3) Å

  • V = 1021.41 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7005 measured reflections

  • 1359 independent reflections

  • 1260 reflections with I > 2σ(I)

  • Rint = 0.105

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.07

  • 1359 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.96 (3) 2.28 (3) 2.633 (2) 100.9 (18)
N1—H1N⋯O2 0.96 (3) 1.85 (3) 2.641 (2) 139 (2)
O1—H1⋯O2i 0.93 (3) 1.72 (3) 2.637 (2) 172 (3)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonuis BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Schiff bases have played an important role in the development of coordination chemistry. They have a great capacity for complexation of transition metal (Salavati-Niasari, 2006; Xiong et al., 2007; Basu et al., 2010). A literature survey revealed that this kind of compound possesses diverse biological activities such as antimicrobial (Jarrahpour et al., 2007; El-Masry et al., 2000) and antifungal (Singh & Dash, 1988). They also serve as intermediates in many industrial processes (Salavati-Niasari & Nezamoddin Mirsattari, 2007; Katsuki, 1995) and are used as corrosion inhibitors (Ahamad et al., 2010; Da Silva et al., 2010; Soltani et al., 2010). In order to expand this field of research the title compound, a novel Schiff base derived from a non-aromatic aldehyde, has been synthesized and its crystal structure is reported herein.

The tautomeric properties and conformations of the title compound were investigated by (Kabak et al., 1998). The enol tautomer form of the crystal of the title compound is established by the present crystal structure analysis. The positive photoconductivity of this compound has been studied by (Parekh et al., 2007). The crystal exhibits positive photoconductivity and poor NLO responses, and it is photochromic not thermochromic in the solid state (Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987).

The molecular structure of the title molecule is shown in Fig. 1. It was prepared by the condensation of acetylacetone and 2-aminophenol and crystallized in the chiral space group P212121.

The molecule is not planar and the dihedral angle between the two planes defined by O1,C1-C6,N1 and O2,C7-C11 is equal to 31.01 (10) °. The small value of bond N1—C7 (1.346 (2) A°) in comparison to bond N1—C6 (1.416 (3) A°) results in a significant change in the bond angle C7—N1—C6 of 130.76 (17)°. The difference in the C—N bond distances is assumed to be due to the presence of the carbonyl group located at the C10 position. Shortening of the C7—N1 bond length and the large value of the C7—N1—C6 bond angle leads to the existence of an N1—H1···O2 intramolecular hydrogen bond (Table 1) with an S(6) ring motif (Bernstein et al., 1995). The second intramolecular N1-H1···O1 hydrogen bond gives an S(5) ring motif.

In the crystal, molecules are linked via O-H···O hydrogen bonds to form chains propagating along [100] - see Table 1 and Fig. 2.

Related literature top

For transition metal complexes of Schiff bases, see: Salavati-Niasari (2006); Xiong et al. (2007); Basu et al. (2010). For the biological activity of Schiff bases, see: Jarrahpour et al. (2007); El-Masry et al. (2000); Singh & Dash (1988). For the use of Schiff bases as intermidiates in many industrial processes, see: Salavati-Niasari & Nezamoddin Mirsattari (2007); Katsuki (1995); Ahamad et al. (2010); Da Silva et al. (2010); Soltani et al. (2010). For the tautomeric properties and conformations of the title compound, see: Kabak et al. (1998). For the photoconductivity of the title compound, see: Parekh et al. (2007), and for its thermochromic properties, see: Moustakali-Mavridis et al. (1978); Hadjoudis et al. (1987). For hydrogen bonding and graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a ethanol solution (5 ml) of (0.109 g, 1 mmol) of 2-aminophenol was slowly added a ethanol solution (5 ml) of acetylacetone (0.1 g, 1 mmol). The mixture was refluxed with constant stirring under a nitrogen atmosphere for 5 h. The mixture was removed and allowed to cool to rt and the solvent to evaporate slowly. After 20 days yellow crystals of the title compound were obtained. They were washed with ethanol then with diethyl ether.

Refinement top

The OH and NH H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined using a riding model: C—H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C) where k = 1.5 for methyl H atoms and = 1.2 for other H atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, the Friedel pairs were merged and Δf " set to zero.

Structure description top

Schiff bases have played an important role in the development of coordination chemistry. They have a great capacity for complexation of transition metal (Salavati-Niasari, 2006; Xiong et al., 2007; Basu et al., 2010). A literature survey revealed that this kind of compound possesses diverse biological activities such as antimicrobial (Jarrahpour et al., 2007; El-Masry et al., 2000) and antifungal (Singh & Dash, 1988). They also serve as intermediates in many industrial processes (Salavati-Niasari & Nezamoddin Mirsattari, 2007; Katsuki, 1995) and are used as corrosion inhibitors (Ahamad et al., 2010; Da Silva et al., 2010; Soltani et al., 2010). In order to expand this field of research the title compound, a novel Schiff base derived from a non-aromatic aldehyde, has been synthesized and its crystal structure is reported herein.

The tautomeric properties and conformations of the title compound were investigated by (Kabak et al., 1998). The enol tautomer form of the crystal of the title compound is established by the present crystal structure analysis. The positive photoconductivity of this compound has been studied by (Parekh et al., 2007). The crystal exhibits positive photoconductivity and poor NLO responses, and it is photochromic not thermochromic in the solid state (Moustakali-Mavridis et al., 1978; Hadjoudis et al., 1987).

The molecular structure of the title molecule is shown in Fig. 1. It was prepared by the condensation of acetylacetone and 2-aminophenol and crystallized in the chiral space group P212121.

The molecule is not planar and the dihedral angle between the two planes defined by O1,C1-C6,N1 and O2,C7-C11 is equal to 31.01 (10) °. The small value of bond N1—C7 (1.346 (2) A°) in comparison to bond N1—C6 (1.416 (3) A°) results in a significant change in the bond angle C7—N1—C6 of 130.76 (17)°. The difference in the C—N bond distances is assumed to be due to the presence of the carbonyl group located at the C10 position. Shortening of the C7—N1 bond length and the large value of the C7—N1—C6 bond angle leads to the existence of an N1—H1···O2 intramolecular hydrogen bond (Table 1) with an S(6) ring motif (Bernstein et al., 1995). The second intramolecular N1-H1···O1 hydrogen bond gives an S(5) ring motif.

In the crystal, molecules are linked via O-H···O hydrogen bonds to form chains propagating along [100] - see Table 1 and Fig. 2.

For transition metal complexes of Schiff bases, see: Salavati-Niasari (2006); Xiong et al. (2007); Basu et al. (2010). For the biological activity of Schiff bases, see: Jarrahpour et al. (2007); El-Masry et al. (2000); Singh & Dash (1988). For the use of Schiff bases as intermidiates in many industrial processes, see: Salavati-Niasari & Nezamoddin Mirsattari (2007); Katsuki (1995); Ahamad et al. (2010); Da Silva et al. (2010); Soltani et al. (2010). For the tautomeric properties and conformations of the title compound, see: Kabak et al. (1998). For the photoconductivity of the title compound, see: Parekh et al. (2007), and for its thermochromic properties, see: Moustakali-Mavridis et al. (1978); Hadjoudis et al. (1987). For hydrogen bonding and graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular bifurcated N-H···O/O hydrogen bond are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. The N-H···O and O-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details).
(Z)-4-(2-Hydroxyanilino)pent-3-en-2-one top
Crystal data top
C11H13NO2F(000) = 408
Mr = 191.22Dx = 1.244 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4219 reflections
a = 8.7826 (4) Åθ = 1.0–27.5°
b = 10.3999 (5) ŵ = 0.09 mm1
c = 11.1827 (3) ÅT = 173 K
V = 1021.41 (7) Å3Prism, yellow
Z = 40.50 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1260 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.105
Graphite monochromatorθmax = 27.5°, θmin = 2.7°
phi and ω scansh = 1011
7005 measured reflectionsk = 1213
1359 independent reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0792P)2 + 0.0946P]
where P = (Fo2 + 2Fc2)/3
1359 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H13NO2V = 1021.41 (7) Å3
Mr = 191.22Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.7826 (4) ŵ = 0.09 mm1
b = 10.3999 (5) ÅT = 173 K
c = 11.1827 (3) Å0.50 × 0.30 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
1260 reflections with I > 2σ(I)
7005 measured reflectionsRint = 0.105
1359 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.22 e Å3
1359 reflectionsΔρmin = 0.29 e Å3
137 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58388 (17)0.70724 (15)0.03852 (14)0.0320 (4)
O20.95582 (17)0.68677 (15)0.15060 (12)0.0331 (4)
N10.69854 (19)0.57884 (17)0.22040 (14)0.0248 (4)
C10.4942 (2)0.61181 (19)0.08258 (17)0.0257 (5)
C20.3527 (2)0.5805 (2)0.03503 (19)0.0322 (6)
C30.2679 (3)0.4816 (2)0.0850 (2)0.0387 (7)
C40.3242 (3)0.4126 (2)0.1812 (2)0.0402 (7)
C50.4665 (3)0.4415 (2)0.2282 (2)0.0349 (6)
C60.5510 (2)0.54332 (18)0.18138 (17)0.0256 (5)
C70.7611 (2)0.57778 (19)0.33025 (16)0.0253 (5)
C80.6698 (3)0.5315 (3)0.43570 (18)0.0392 (7)
C90.9069 (2)0.6227 (2)0.34810 (17)0.0276 (5)
C100.9993 (2)0.6778 (2)0.25800 (17)0.0275 (5)
C111.1530 (3)0.7300 (3)0.2911 (2)0.0400 (7)
H10.542 (3)0.738 (3)0.032 (3)0.044 (7)*
H1N0.762 (3)0.619 (3)0.162 (2)0.033 (6)*
H20.314000.626900.031600.0390*
H30.170700.461100.053100.0460*
H40.265300.345200.215100.0480*
H50.506300.391900.292400.0420*
H8A0.565700.564700.429900.0590*
H8B0.716800.562400.509800.0590*
H8C0.667600.437300.436000.0590*
H90.948400.616200.426300.0330*
H11A1.232000.682900.247300.0600*
H11B1.169200.719600.377300.0600*
H11C1.158100.821400.270300.0600*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (8)0.0336 (8)0.0281 (7)0.0051 (7)0.0054 (6)0.0101 (6)
O20.0357 (7)0.0395 (8)0.0241 (7)0.0059 (7)0.0004 (6)0.0062 (6)
N10.0271 (8)0.0257 (8)0.0217 (7)0.0021 (7)0.0009 (6)0.0040 (6)
C10.0274 (9)0.0234 (9)0.0263 (9)0.0023 (8)0.0021 (8)0.0009 (7)
C20.0305 (10)0.0324 (10)0.0336 (10)0.0031 (10)0.0033 (8)0.0031 (9)
C30.0308 (10)0.0342 (11)0.0511 (13)0.0023 (10)0.0051 (10)0.0075 (10)
C40.0403 (12)0.0300 (11)0.0503 (14)0.0086 (11)0.0004 (10)0.0027 (10)
C50.0407 (12)0.0263 (10)0.0377 (11)0.0044 (10)0.0006 (9)0.0057 (8)
C60.0271 (9)0.0236 (9)0.0261 (9)0.0004 (8)0.0002 (7)0.0003 (7)
C70.0319 (9)0.0236 (8)0.0205 (9)0.0043 (8)0.0006 (7)0.0043 (7)
C80.0406 (12)0.0513 (13)0.0258 (10)0.0059 (12)0.0040 (9)0.0093 (10)
C90.0324 (10)0.0281 (10)0.0223 (8)0.0029 (9)0.0028 (8)0.0042 (7)
C100.0304 (9)0.0250 (9)0.0272 (9)0.0023 (9)0.0004 (7)0.0007 (7)
C110.0374 (11)0.0434 (13)0.0393 (11)0.0088 (12)0.0011 (10)0.0005 (10)
Geometric parameters (Å, º) top
O1—C11.359 (2)C9—C101.415 (3)
O2—C101.264 (2)C10—C111.501 (3)
O1—H10.93 (3)C2—H20.9500
N1—C61.416 (2)C3—H30.9500
N1—C71.346 (2)C4—H40.9500
N1—H1N0.96 (3)C5—H50.9500
C1—C21.390 (3)C8—H8A0.9800
C1—C61.406 (3)C8—H8B0.9800
C2—C31.387 (3)C8—H8C0.9800
C3—C41.385 (3)C9—H90.9500
C4—C51.389 (4)C11—H11A0.9800
C5—C61.395 (3)C11—H11B0.9800
C7—C81.505 (3)C11—H11C0.9800
C7—C91.378 (3)
C1—O1—H1109.3 (18)C3—C2—H2120.00
C6—N1—C7130.74 (16)C2—C3—H3120.00
C6—N1—H1N115.9 (15)C4—C3—H3120.00
C7—N1—H1N112.9 (15)C3—C4—H4120.00
O1—C1—C2123.38 (18)C5—C4—H4120.00
O1—C1—C6116.69 (16)C4—C5—H5120.00
C2—C1—C6119.93 (18)C6—C5—H5120.00
C1—C2—C3120.0 (2)C7—C8—H8A109.00
C2—C3—C4120.4 (2)C7—C8—H8B109.00
C3—C4—C5120.2 (2)C7—C8—H8C109.00
C4—C5—C6120.1 (2)H8A—C8—H8B109.00
N1—C6—C1115.76 (16)H8A—C8—H8C110.00
N1—C6—C5124.68 (18)H8B—C8—H8C109.00
C1—C6—C5119.39 (18)C7—C9—H9118.00
C8—C7—C9119.35 (17)C10—C9—H9118.00
N1—C7—C8120.02 (17)C10—C11—H11A109.00
N1—C7—C9120.60 (17)C10—C11—H11B109.00
C7—C9—C10124.56 (17)C10—C11—H11C109.00
O2—C10—C9122.23 (17)H11A—C11—H11B109.00
O2—C10—C11118.64 (18)H11A—C11—H11C110.00
C9—C10—C11119.12 (17)H11B—C11—H11C110.00
C1—C2—H2120.00
C6—N1—C7—C9177.06 (19)C1—C2—C3—C40.8 (3)
C7—N1—C6—C1148.6 (2)C2—C3—C4—C50.3 (3)
C7—N1—C6—C536.2 (3)C3—C4—C5—C62.3 (3)
C6—N1—C7—C80.8 (3)C4—C5—C6—N1178.26 (19)
C6—C1—C2—C30.1 (3)C4—C5—C6—C13.2 (3)
O1—C1—C6—N12.5 (3)N1—C7—C9—C103.0 (3)
O1—C1—C6—C5177.92 (18)C8—C7—C9—C10174.9 (2)
O1—C1—C2—C3179.93 (18)C7—C9—C10—O22.2 (3)
C2—C1—C6—N1177.60 (17)C7—C9—C10—C11176.5 (2)
C2—C1—C6—C52.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.96 (3)2.28 (3)2.633 (2)100.9 (18)
N1—H1N···O20.96 (3)1.85 (3)2.641 (2)139 (2)
O1—H1···O2i0.93 (3)1.72 (3)2.637 (2)172 (3)
Symmetry code: (i) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC11H13NO2
Mr191.22
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.7826 (4), 10.3999 (5), 11.1827 (3)
V3)1021.41 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.30 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7005, 1359, 1260
Rint0.105
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.07
No. of reflections1359
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.96 (3)2.28 (3)2.633 (2)100.9 (18)
N1—H1N···O20.96 (3)1.85 (3)2.641 (2)139 (2)
O1—H1···O2i0.93 (3)1.72 (3)2.637 (2)172 (3)
Symmetry code: (i) x1/2, y+3/2, z.
 

Acknowledgements

The authors would like to thank Professor J. P. Gisselbrecht, Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Strasbourg University, France, for his valuable contributions.

References

First citationAhamad, I., Gupta, C., Prasad, R. & Quraishi, A. (2010). J. Appl. Electrochem. 40, 2171–2183.  Web of Science CrossRef CAS Google Scholar
First citationBasu, S., Gupta, G., Das, B. & Rao, K. M. (2010). J. Organomet. Chem. 695, 2098–2104.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDa Silva, A. B. D., Elia, E. & Gunha Ponciano Gomes, J. A. D. (2010). Corros. Sci. 52, 788–793.  CrossRef Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationJarrahpour, A., Khalilil, D., Clercq, E. D., Salmi, C. & Michel, J. (2007). Molecules, 12, 1720–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKabak, M., Elmali, A. & Elerman, Y. (1998). J. Mol. Struct. 470, 295–300.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationMoustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonuis BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParekh, B. B., Purohit, D. H., Sagayaraj, P., Joshi, H. S. & Josh, M. J. (2007). Cryst. Res. Technol. 42, 407–415.  Web of Science CrossRef CAS Google Scholar
First citationSalavati-Niasari, M. (2006). Microporous Mesoporous Mater. 95, 248–256.  CAS Google Scholar
First citationSalavati-Niasari, M. & Nezamoddin Mirsattari, S. (2007). J. Mol. Catal. A Chem. 268, 50–58.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSoltani, N., Behpour, M., Ghoreishi, S. M. & Naeini, H. (2010). Corros. Sci. 52, 1351–1361.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, D., Fu, Z., Zhong, S., Jiang, X. & Yin, D. (2007). Catal. Lett. 113, 155–159.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds