organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Amino-N′-(2-hy­dr­oxy-5-methyl­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 9 June 2012; accepted 20 June 2012; online 23 June 2012)

The asymmetric unit of the title compound, C15H15N3O2, comprises two crystallographically independent mol­ecules (A and B), each having an E conformation around the C=N bond. In each mol­ecule, there is an intra­molecular O—H⋯N hydrogen bond making an S(6) ring motif. The dihedral angles between the substituted phenyl rings are 17.49 (9) and 10.03 (9)°. In the crystal, N—H⋯O hydrogen bonds link neighbouring independent mol­ecules into infinite chains, of the type –ABAB–, along the a axis, enclosing R21(7) ring motifs. The chains are linked by N—H⋯O hydrogen bonds and C—H⋯O inter­actions, leading to the formation of a three-dimensional network.

Related literature

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]). For 4-amino­benzohydrazide-derived Schiff base structures, see: Xu (2012[Xu, S.-Q. (2012). Acta Cryst. E68, o1320.]); Shi & Li (2012[Shi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546-o1547.]); Bakir & Green (2002[Bakir, M. & Green, O. (2002). Acta Cryst. C58, o263-o265.]); Kargar et al. (2012a[Kargar, H., Kia, R. & Tahir, M. N. (2012a). Acta Cryst. E68, o2118-o2119.],b[Kargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, o2120.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3O2

  • Mr = 269.30

  • Triclinic, [P \overline 1]

  • a = 10.2717 (8) Å

  • b = 11.5668 (10) Å

  • c = 11.9152 (9) Å

  • α = 94.544 (3)°

  • β = 100.583 (3)°

  • γ = 95.880 (3)°

  • V = 1377.28 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 K

  • 0.30 × 0.25 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.979

  • 21355 measured reflections

  • 6081 independent reflections

  • 3917 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.05

  • 6081 reflections

  • 365 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N3 0.82 1.89 2.6079 (19) 145
O4—H4⋯N6 0.82 1.86 2.5826 (17) 146
N2—H1N2⋯O4i 0.94 2.01 2.9342 (18) 169
N5—H1N5⋯O1ii 0.95 1.93 2.8615 (17) 167
N1—H1A⋯O3iii 0.86 2.42 3.149 (2) 142
C12—H12A⋯O3iv 0.93 2.51 3.400 (2) 160
C17—H17A⋯O1ii 0.93 2.53 3.320 (2) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002; Kargar et al. (2012a,b). In order to explore the structure of new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules (A and B) both with an E conformation around the CN bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002; Kargar et al. (2012a,b). In each molecule there is an intramolecular O—H···N hydrogen bond making an S(6) ring motif. The dihedral angles between the substituted phenyl rings (C1-C6/C9-C14 in molecule A and C16-C21/C24-C29 in molecule B) are 17.49 (9) and 10.03 (9)°, respectively.

In the crystal, N—H···O hydrogen bonds (Table 1 and Fig. 2) link neighbouring independent molecules into infinite chains, of the type -A-B-A-B-, along the a axis, enclosing R12(7) ring motifs (Bernstein et al., 1995). The chains are linked by N-H···O hydrogen bonds and C—H···O interactions leading to the formation of a three-dimensional network (Table 1).

Related literature top

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002); Kargar et al. (2012a,b). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 1 mmol of methyl 4-aminobenzoate to a solution of 5-methylsalicylaldehyde (1 mmol) in methanol (30 ml). The mixture was refluxed with stirring for 30 min and after cooling to room temperature a light-yellow precipitate was filtered and washed with diethylether and dried in air. Yellow prismatic crystals of the title compound, suitable for X-ray structure analysis, were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The N-bound H-atoms were located in a difference Fourier map and were constrained to ride on their parent N atoms with Uiso(H) = 1.2Ueq(N). The OH and C-bound H atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93 and 0.96 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for OH and CH3 H atoms and = 1.2 for other H atoms.

Structure description top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and magnetism, and supramolecular architectures (Karthikeyan et al., 2006; Kucukguzel et al., 2006). Structures of Schiff bases derived from substituted 4-aminobenzohydrazide have been reported earlier (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002; Kargar et al. (2012a,b). In order to explore the structure of new Schiff base derivatives, the title compound was prepared and characterized crystallographically.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules (A and B) both with an E conformation around the CN bond. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Xu, 2012; Shi & Li, 2012; Bakir & Green, 2002; Kargar et al. (2012a,b). In each molecule there is an intramolecular O—H···N hydrogen bond making an S(6) ring motif. The dihedral angles between the substituted phenyl rings (C1-C6/C9-C14 in molecule A and C16-C21/C24-C29 in molecule B) are 17.49 (9) and 10.03 (9)°, respectively.

In the crystal, N—H···O hydrogen bonds (Table 1 and Fig. 2) link neighbouring independent molecules into infinite chains, of the type -A-B-A-B-, along the a axis, enclosing R12(7) ring motifs (Bernstein et al., 1995). The chains are linked by N-H···O hydrogen bonds and C—H···O interactions leading to the formation of a three-dimensional network (Table 1).

For the coordination chemistry of Schiff base and hydrazone derivatives, see: Kucukguzel et al. (2006); Karthikeyan et al. (2006). For 4-aminobenzohydrazide-derived Schiff base structures, see: Xu (2012); Shi & Li (2012); Bakir & Green (2002); Kargar et al. (2012a,b). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the two independent molecules of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The intramolecular O-H···N hydrogen bonds are shown as dashed lines (see Table 1 for details).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The N—H···O hydrogen bonds and the C—H···O interactions are shown as dashed lines (see Table 1 for details; Only the H atoms involved in these interactions are shown).
(E)-4-Amino-N'-(2-hydroxy-5-methylbenzylidene)benzohydrazide top
Crystal data top
C15H15N3O2Z = 4
Mr = 269.30F(000) = 568
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2717 (8) ÅCell parameters from 1125 reflections
b = 11.5668 (10) Åθ = 2.5–27.4°
c = 11.9152 (9) ŵ = 0.09 mm1
α = 94.544 (3)°T = 291 K
β = 100.583 (3)°Prism, yellow
γ = 95.880 (3)°0.30 × 0.25 × 0.24 mm
V = 1377.28 (19) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6081 independent reflections
Radiation source: fine-focus sealed tube3917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.974, Tmax = 0.979k = 1414
21355 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.2031P]
where P = (Fo2 + 2Fc2)/3
6081 reflections(Δ/σ)max < 0.001
365 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H15N3O2γ = 95.880 (3)°
Mr = 269.30V = 1377.28 (19) Å3
Triclinic, P1Z = 4
a = 10.2717 (8) ÅMo Kα radiation
b = 11.5668 (10) ŵ = 0.09 mm1
c = 11.9152 (9) ÅT = 291 K
α = 94.544 (3)°0.30 × 0.25 × 0.24 mm
β = 100.583 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6081 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3917 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.979Rint = 0.028
21355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
6081 reflectionsΔρmin = 0.17 e Å3
365 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.41397 (14)0.93883 (14)0.73216 (13)0.0416 (4)
C20.34820 (17)0.95319 (16)0.62200 (14)0.0525 (4)
H2A0.28190.89530.58350.063*
C30.37828 (18)1.04928 (17)0.56949 (15)0.0580 (5)
H3A0.33321.05580.49550.070*
C40.47549 (17)1.13830 (16)0.62444 (14)0.0505 (4)
C50.54375 (16)1.12428 (15)0.73354 (14)0.0507 (4)
H5A0.61071.18190.77140.061*
C60.51343 (15)1.02622 (15)0.78609 (14)0.0467 (4)
H6A0.56041.01830.85910.056*
C70.36676 (14)0.83795 (14)0.78761 (13)0.0426 (4)
C80.48321 (16)0.68945 (14)1.02368 (14)0.0456 (4)
H8A0.56910.72811.04670.055*
C90.43816 (16)0.59517 (14)1.08529 (14)0.0446 (4)
C100.31463 (17)0.52710 (15)1.04709 (15)0.0515 (4)
C110.2798 (2)0.43601 (16)1.10815 (19)0.0650 (5)
H11A0.19920.38891.08220.078*
C120.3624 (2)0.41382 (16)1.20672 (18)0.0648 (5)
H12A0.33530.35321.24730.078*
C130.4847 (2)0.47943 (16)1.24696 (15)0.0584 (5)
C140.51992 (18)0.56874 (15)1.18424 (15)0.0525 (4)
H14A0.60230.61341.20930.063*
C150.5763 (3)0.4523 (2)1.35265 (18)0.0848 (7)
H15A0.64840.41491.33080.127*
H15B0.52760.40111.39420.127*
H15C0.61150.52341.40050.127*
C160.06408 (16)0.30308 (14)0.48957 (14)0.0469 (4)
C170.05809 (17)0.34582 (17)0.48283 (16)0.0572 (5)
H17A0.11260.34650.41140.069*
C180.1001 (2)0.38722 (18)0.57992 (17)0.0681 (5)
H18A0.18290.41450.57330.082*
C190.0209 (2)0.38872 (19)0.68691 (17)0.0691 (5)
C200.1007 (2)0.3453 (2)0.69390 (17)0.0709 (6)
H20A0.15510.34460.76540.085*
C210.14190 (18)0.30375 (17)0.59809 (15)0.0590 (5)
H21A0.22410.27510.60530.071*
C220.11833 (16)0.26239 (15)0.38986 (14)0.0466 (4)
C230.00670 (15)0.18859 (14)0.09605 (14)0.0458 (4)
H23A0.09490.20240.09290.055*
C240.03676 (15)0.14797 (14)0.00741 (13)0.0433 (4)
C250.16631 (15)0.12065 (14)0.00588 (14)0.0454 (4)
C260.20213 (17)0.07912 (16)0.10588 (16)0.0576 (5)
H26A0.28850.06100.10460.069*
C270.11136 (18)0.06414 (16)0.20780 (16)0.0597 (5)
H27A0.13760.03640.27460.072*
C280.01883 (18)0.08963 (16)0.21308 (15)0.0557 (5)
C290.05284 (16)0.13124 (15)0.11215 (14)0.0495 (4)
H29A0.13940.14900.11390.059*
C300.1168 (2)0.0702 (2)0.32422 (16)0.0785 (6)
H30A0.15780.14010.33770.118*
H30B0.18410.00730.32080.118*
H30C0.07150.05090.38560.118*
N10.50273 (18)1.23589 (15)0.57157 (14)0.0716 (5)
H1A0.45961.24250.50380.086*
H1B0.56301.29070.60600.086*
N20.45092 (13)0.80883 (12)0.88017 (11)0.0473 (3)
H1N20.54230.83490.89620.057*
N30.40512 (13)0.71958 (12)0.93778 (12)0.0474 (3)
N40.0612 (2)0.4296 (2)0.78470 (17)0.1166 (8)
H4A0.13760.45510.78010.140*
H4B0.01010.42970.85060.140*
N50.03008 (13)0.24063 (13)0.28828 (11)0.0509 (4)
H1N50.06340.23990.28480.061*
N60.07587 (12)0.20552 (12)0.19168 (11)0.0464 (3)
O10.25527 (10)0.78344 (11)0.75600 (10)0.0585 (3)
O20.22764 (12)0.54605 (12)0.95216 (12)0.0704 (4)
H20.25910.60170.92310.106*
O30.23698 (11)0.24990 (12)0.39557 (10)0.0596 (3)
O40.25969 (10)0.13154 (11)0.09292 (10)0.0552 (3)
H40.22660.15460.14690.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0320 (8)0.0510 (10)0.0423 (9)0.0098 (7)0.0070 (7)0.0025 (7)
C20.0493 (10)0.0606 (11)0.0427 (10)0.0039 (8)0.0005 (8)0.0006 (8)
C30.0627 (11)0.0695 (13)0.0394 (10)0.0108 (9)0.0012 (8)0.0074 (9)
C40.0528 (10)0.0540 (11)0.0490 (10)0.0141 (8)0.0146 (8)0.0099 (8)
C50.0425 (9)0.0509 (10)0.0554 (11)0.0041 (7)0.0035 (8)0.0024 (8)
C60.0385 (8)0.0546 (10)0.0448 (9)0.0091 (7)0.0001 (7)0.0065 (8)
C70.0316 (8)0.0521 (10)0.0436 (9)0.0071 (7)0.0065 (7)0.0001 (7)
C80.0412 (9)0.0468 (9)0.0474 (9)0.0015 (7)0.0095 (7)0.0034 (7)
C90.0476 (9)0.0415 (9)0.0466 (9)0.0020 (7)0.0176 (8)0.0011 (7)
C100.0489 (10)0.0495 (10)0.0574 (11)0.0009 (8)0.0183 (9)0.0002 (8)
C110.0615 (12)0.0503 (11)0.0861 (15)0.0065 (9)0.0314 (11)0.0020 (10)
C120.0815 (14)0.0470 (11)0.0766 (14)0.0047 (10)0.0428 (12)0.0118 (10)
C130.0804 (13)0.0466 (10)0.0548 (11)0.0138 (9)0.0259 (10)0.0076 (8)
C140.0581 (10)0.0463 (10)0.0529 (10)0.0014 (8)0.0132 (8)0.0041 (8)
C150.122 (2)0.0713 (14)0.0660 (14)0.0185 (13)0.0191 (13)0.0254 (11)
C160.0413 (9)0.0496 (10)0.0476 (10)0.0005 (7)0.0056 (7)0.0073 (8)
C170.0481 (10)0.0683 (12)0.0524 (11)0.0077 (9)0.0026 (8)0.0037 (9)
C180.0568 (11)0.0783 (14)0.0694 (13)0.0172 (10)0.0118 (10)0.0016 (11)
C190.0748 (14)0.0764 (14)0.0577 (12)0.0163 (11)0.0172 (11)0.0033 (10)
C200.0685 (13)0.0935 (16)0.0475 (11)0.0181 (11)0.0021 (10)0.0009 (10)
C210.0513 (10)0.0749 (13)0.0485 (11)0.0110 (9)0.0023 (8)0.0044 (9)
C220.0393 (9)0.0522 (10)0.0464 (10)0.0011 (7)0.0042 (7)0.0109 (8)
C230.0337 (8)0.0553 (10)0.0484 (10)0.0044 (7)0.0071 (7)0.0073 (8)
C240.0355 (8)0.0450 (9)0.0474 (9)0.0010 (7)0.0053 (7)0.0064 (7)
C250.0357 (8)0.0454 (9)0.0523 (10)0.0022 (7)0.0055 (7)0.0050 (7)
C260.0436 (9)0.0596 (11)0.0700 (12)0.0034 (8)0.0177 (9)0.0029 (9)
C270.0588 (11)0.0628 (12)0.0567 (11)0.0015 (9)0.0187 (9)0.0044 (9)
C280.0565 (11)0.0569 (11)0.0494 (10)0.0032 (8)0.0057 (8)0.0024 (8)
C290.0377 (8)0.0581 (11)0.0504 (10)0.0030 (7)0.0037 (7)0.0061 (8)
C300.0803 (14)0.0929 (17)0.0531 (12)0.0014 (12)0.0007 (11)0.0035 (11)
N10.0848 (12)0.0661 (11)0.0637 (10)0.0052 (9)0.0104 (9)0.0193 (8)
N20.0338 (7)0.0550 (9)0.0521 (8)0.0008 (6)0.0053 (6)0.0145 (7)
N30.0425 (7)0.0497 (8)0.0504 (8)0.0001 (6)0.0121 (7)0.0066 (7)
N40.1149 (17)0.170 (2)0.0722 (13)0.0597 (17)0.0252 (12)0.0143 (14)
N50.0348 (7)0.0746 (10)0.0412 (8)0.0023 (6)0.0060 (6)0.0026 (7)
N60.0358 (7)0.0556 (9)0.0475 (8)0.0006 (6)0.0083 (6)0.0077 (6)
O10.0343 (6)0.0699 (8)0.0650 (8)0.0040 (5)0.0003 (5)0.0048 (6)
O20.0516 (7)0.0749 (10)0.0781 (9)0.0115 (6)0.0052 (7)0.0092 (7)
O30.0382 (7)0.0875 (9)0.0533 (7)0.0084 (6)0.0064 (5)0.0136 (6)
O40.0332 (6)0.0699 (8)0.0591 (8)0.0054 (5)0.0015 (5)0.0041 (6)
Geometric parameters (Å, º) top
C1—C61.387 (2)C18—C191.378 (3)
C1—C21.392 (2)C18—H18A0.9300
C1—C71.469 (2)C19—N41.372 (3)
C2—C31.354 (2)C19—C201.384 (3)
C2—H2A0.9300C20—C211.359 (3)
C3—C41.389 (2)C20—H20A0.9300
C3—H3A0.9300C21—H21A0.9300
C4—N11.365 (2)C22—O31.2320 (19)
C4—C51.389 (2)C22—N51.361 (2)
C5—C61.374 (2)C23—N61.2773 (19)
C5—H5A0.9300C23—C241.447 (2)
C6—H6A0.9300C23—H23A0.9300
C7—O11.2274 (18)C24—C291.395 (2)
C7—N21.3585 (19)C24—C251.396 (2)
C8—N31.2745 (19)C25—O41.3633 (18)
C8—C91.446 (2)C25—C261.376 (2)
C8—H8A0.9300C26—C271.375 (2)
C9—C141.391 (2)C26—H26A0.9300
C9—C101.401 (2)C27—C281.390 (3)
C10—O21.354 (2)C27—H27A0.9300
C10—C111.381 (3)C28—C291.377 (2)
C11—C121.375 (3)C28—C301.495 (2)
C11—H11A0.9300C29—H29A0.9300
C12—C131.382 (3)C30—H30A0.9600
C12—H12A0.9300C30—H30B0.9600
C13—C141.379 (2)C30—H30C0.9600
C13—C151.503 (3)N1—H1A0.8600
C14—H14A0.9300N1—H1B0.8600
C15—H15A0.9600N2—N31.3746 (18)
C15—H15B0.9600N2—H1N20.9357
C15—H15C0.9600N4—H4A0.8600
C16—C171.386 (2)N4—H4B0.8600
C16—C211.389 (2)N5—N61.3693 (18)
C16—C221.467 (2)N5—H1N50.9526
C17—C181.375 (3)O2—H20.8200
C17—H17A0.9300O4—H40.8200
C6—C1—C2117.47 (15)C19—C18—H18A119.6
C6—C1—C7123.98 (14)N4—C19—C18121.6 (2)
C2—C1—C7118.34 (14)N4—C19—C20120.3 (2)
C3—C2—C1121.66 (16)C18—C19—C20118.12 (18)
C3—C2—H2A119.2C21—C20—C19121.11 (18)
C1—C2—H2A119.2C21—C20—H20A119.4
C2—C3—C4120.99 (16)C19—C20—H20A119.4
C2—C3—H3A119.5C20—C21—C16121.48 (18)
C4—C3—H3A119.5C20—C21—H21A119.3
N1—C4—C3120.40 (16)C16—C21—H21A119.3
N1—C4—C5121.57 (17)O3—C22—N5120.98 (16)
C3—C4—C5118.03 (16)O3—C22—C16122.88 (15)
C6—C5—C4120.71 (16)N5—C22—C16116.13 (14)
C6—C5—H5A119.6N6—C23—C24120.07 (14)
C4—C5—H5A119.6N6—C23—H23A120.0
C5—C6—C1121.12 (15)C24—C23—H23A120.0
C5—C6—H6A119.4C29—C24—C25117.95 (15)
C1—C6—H6A119.4C29—C24—C23120.09 (14)
O1—C7—N2120.24 (15)C25—C24—C23121.93 (14)
O1—C7—C1122.84 (14)O4—C25—C26118.01 (14)
N2—C7—C1116.88 (13)O4—C25—C24122.05 (15)
N3—C8—C9119.98 (15)C26—C25—C24119.92 (15)
N3—C8—H8A120.0C27—C26—C25120.60 (16)
C9—C8—H8A120.0C27—C26—H26A119.7
C14—C9—C10118.37 (15)C25—C26—H26A119.7
C14—C9—C8119.70 (15)C26—C27—C28121.37 (17)
C10—C9—C8121.92 (15)C26—C27—H27A119.3
O2—C10—C11118.23 (16)C28—C27—H27A119.3
O2—C10—C9122.92 (16)C29—C28—C27117.21 (16)
C11—C10—C9118.84 (17)C29—C28—C30122.23 (18)
C12—C11—C10121.07 (18)C27—C28—C30120.55 (18)
C12—C11—H11A119.5C28—C29—C24122.95 (16)
C10—C11—H11A119.5C28—C29—H29A118.5
C11—C12—C13121.56 (18)C24—C29—H29A118.5
C11—C12—H12A119.2C28—C30—H30A109.5
C13—C12—H12A119.2C28—C30—H30B109.5
C14—C13—C12116.99 (18)H30A—C30—H30B109.5
C14—C13—C15121.74 (19)C28—C30—H30C109.5
C12—C13—C15121.25 (18)H30A—C30—H30C109.5
C13—C14—C9123.14 (17)H30B—C30—H30C109.5
C13—C14—H14A118.4C4—N1—H1A120.0
C9—C14—H14A118.4C4—N1—H1B120.0
C13—C15—H15A109.5H1A—N1—H1B120.0
C13—C15—H15B109.5C7—N2—N3117.71 (13)
H15A—C15—H15B109.5C7—N2—H1N2122.5
C13—C15—H15C109.5N3—N2—H1N2118.4
H15A—C15—H15C109.5C8—N3—N2118.76 (13)
H15B—C15—H15C109.5C19—N4—H4A120.0
C17—C16—C21117.31 (16)C19—N4—H4B120.0
C17—C16—C22124.35 (15)H4A—N4—H4B120.0
C21—C16—C22118.28 (15)C22—N5—N6118.69 (13)
C18—C17—C16121.16 (17)C22—N5—H1N5121.4
C18—C17—H17A119.4N6—N5—H1N5119.5
C16—C17—H17A119.4C23—N6—N5118.36 (13)
C17—C18—C19120.81 (18)C10—O2—H2109.5
C17—C18—H18A119.6C25—O4—H4109.5
C6—C1—C2—C30.9 (2)C17—C18—C19—C201.3 (3)
C7—C1—C2—C3174.06 (16)N4—C19—C20—C21179.6 (2)
C1—C2—C3—C40.7 (3)C18—C19—C20—C210.9 (3)
C2—C3—C4—N1178.50 (17)C19—C20—C21—C160.0 (3)
C2—C3—C4—C51.9 (3)C17—C16—C21—C200.4 (3)
N1—C4—C5—C6178.96 (16)C22—C16—C21—C20176.92 (18)
C3—C4—C5—C61.4 (3)C17—C16—C22—O3163.12 (17)
C4—C5—C6—C10.2 (3)C21—C16—C22—O314.1 (3)
C2—C1—C6—C51.3 (2)C17—C16—C22—N515.7 (2)
C7—C1—C6—C5173.31 (15)C21—C16—C22—N5167.10 (15)
C6—C1—C7—O1155.69 (16)N6—C23—C24—C29178.99 (15)
C2—C1—C7—O118.9 (2)N6—C23—C24—C253.2 (2)
C6—C1—C7—N221.9 (2)C29—C24—C25—O4178.41 (14)
C2—C1—C7—N2163.53 (14)C23—C24—C25—O40.5 (2)
N3—C8—C9—C14174.96 (15)C29—C24—C25—C260.3 (2)
N3—C8—C9—C106.4 (2)C23—C24—C25—C26178.13 (16)
C14—C9—C10—O2179.69 (16)O4—C25—C26—C27178.73 (15)
C8—C9—C10—O21.6 (3)C24—C25—C26—C270.0 (3)
C14—C9—C10—C110.8 (2)C25—C26—C27—C280.4 (3)
C8—C9—C10—C11177.92 (16)C26—C27—C28—C290.4 (3)
O2—C10—C11—C12178.53 (17)C26—C27—C28—C30178.63 (17)
C9—C10—C11—C121.9 (3)C27—C28—C29—C240.1 (3)
C10—C11—C12—C131.8 (3)C30—C28—C29—C24178.90 (17)
C11—C12—C13—C140.4 (3)C25—C24—C29—C280.2 (2)
C11—C12—C13—C15178.03 (18)C23—C24—C29—C28178.10 (16)
C12—C13—C14—C90.7 (3)O1—C7—N2—N31.8 (2)
C15—C13—C14—C9179.17 (17)C1—C7—N2—N3175.79 (13)
C10—C9—C14—C130.5 (3)C9—C8—N3—N2179.45 (14)
C8—C9—C14—C13179.26 (16)C7—N2—N3—C8178.80 (14)
C21—C16—C17—C180.0 (3)O3—C22—N5—N60.6 (2)
C22—C16—C17—C18177.14 (17)C16—C22—N5—N6178.23 (14)
C16—C17—C18—C190.8 (3)C24—C23—N6—N5178.08 (14)
C17—C18—C19—N4179.9 (2)C22—N5—N6—C23177.96 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.892.6079 (19)145
O4—H4···N60.821.862.5826 (17)146
N2—H1N2···O4i0.942.012.9342 (18)169
N5—H1N5···O1ii0.951.932.8615 (17)167
N1—H1A···O3iii0.862.423.149 (2)142
C12—H12A···O3iv0.932.513.400 (2)160
C17—H17A···O1ii0.932.533.320 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15N3O2
Mr269.30
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.2717 (8), 11.5668 (10), 11.9152 (9)
α, β, γ (°)94.544 (3), 100.583 (3), 95.880 (3)
V3)1377.28 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.974, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
21355, 6081, 3917
Rint0.028
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.05
No. of reflections6081
No. of parameters365
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N30.821.892.6079 (19)145
O4—H4···N60.821.862.5826 (17)146
N2—H1N2···O4i0.942.012.9342 (18)169
N5—H1N5···O1ii0.951.932.8615 (17)167
N1—H1A···O3iii0.862.423.149 (2)142
C12—H12A···O3iv0.932.513.400 (2)160
C17—H17A···O1ii0.932.533.320 (2)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z+1.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBakir, M. & Green, O. (2002). Acta Cryst. C58, o263–o265.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012a). Acta Cryst. E68, o2118–o2119.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012b). Acta Cryst. E68, o2120.  CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-F. & Li, J.-M. (2012). Acta Cryst. E68, o1546–o1547.  CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-Q. (2012). Acta Cryst. E68, o1320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds