organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­chloro-2-((E)-{4-[(E)-3,5-di­chloro-2-hy­dr­oxy­benzyl­­idene­amino]­butyl­imino}­meth­yl)phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cArdakan Branch, Islamic Azad University, Ardakan, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 10 June 2012; accepted 25 June 2012; online 30 June 2012)

The asymmetric unit of the title compound, C18H16Cl4N2O2, comprises half of a potentially tetra­dentate Schiff base ligand. It is located about a twofold rotation axis that bis­ects the central C—C bond of the butane-1,4-diamine group. There are two intra­molecular O—H⋯N hydrogen bonds making S(6) ring motifs. In the crystal, mol­ecules are linked by pairs of weak C—H⋯Cl inter­actions, forming inversion dimers, which are further connected by C—H⋯O hydrogen bonds into two-dimensional frameworks that lie parallel to (001).

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related Schiff base ligands, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16Cl4N2O2

  • Mr = 434.13

  • Orthorhombic, P b c n

  • a = 15.871 (3) Å

  • b = 12.505 (3) Å

  • c = 9.4133 (18) Å

  • V = 1868.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 291 K

  • 0.35 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 0.915

  • 8772 measured reflections

  • 2057 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.095

  • S = 1.02

  • 2057 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.95 1.71 2.565 (3) 149
C5—H5⋯O1i 0.93 2.48 3.370 (3) 160
C3—H3⋯Cl2ii 0.93 2.83 3.738 (3) 165
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])'; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we report herein on the crystal structure of the title compound. The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. It is located about a two-fold rotation axis that bisects the central C9-C9a bond of the butane-1,4-diamine group. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Fig. 2 and Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by pairs of weak C—H···Cl interactions to form inversion dimers which are further connected by C—H···O hydrogen bonds along the b axis direction, forming two dimensional networks that lie parallel to the ab plane (Table 1 and Fig. 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dichlorosalicylaldehyde (2 mmol) to a solution of butylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow-needle single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The OH H atom was located in a difference Fourier map and was constrained to ride on the parent O atom with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on the crystal structure analyses of Schiff base ligands (Kargar et al., (2011); Kia et al., (2010), we report herein on the crystal structure of the title compound. The asymmetric unit of the title compound, Fig. 1, comprises half of a potentially tetradentate Schiff base ligand. It is located about a two-fold rotation axis that bisects the central C9-C9a bond of the butane-1,4-diamine group. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Fig. 2 and Table 1; Bernstein et al., 1995).

In the crystal, molecules are linked by pairs of weak C—H···Cl interactions to form inversion dimers which are further connected by C—H···O hydrogen bonds along the b axis direction, forming two dimensional networks that lie parallel to the ab plane (Table 1 and Fig. 2).

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005)'; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, -y + 1, -z + 1].
[Figure 2] Fig. 2. The crystal packing of the title compound showing the C—H···O and weak C—H···Cl interactions (dashed lines; see Table 1 for details) forming two dimensional networks. Only the H atoms involved in hydrogen bonding are shown.
4,6-Dichloro-2-((E)-{4-[(E)-3,5-dichloro-2- hydroxybenzylideneamino]butylimino}methyl)phenol top
Crystal data top
C18H16Cl4N2O2F(000) = 888
Mr = 434.13Dx = 1.543 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 851 reflections
a = 15.871 (3) Åθ = 2.8–27.5°
b = 12.505 (3) ŵ = 0.65 mm1
c = 9.4133 (18) ÅT = 291 K
V = 1868.3 (6) Å3Needle, yellow
Z = 40.35 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2057 independent reflections
Radiation source: fine-focus sealed tube1264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2012
Tmin = 0.805, Tmax = 0.915k = 1615
8772 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.896P]
where P = (Fo2 + 2Fc2)/3
2057 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C18H16Cl4N2O2V = 1868.3 (6) Å3
Mr = 434.13Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.871 (3) ŵ = 0.65 mm1
b = 12.505 (3) ÅT = 291 K
c = 9.4133 (18) Å0.35 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2057 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1264 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 0.915Rint = 0.058
8772 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
2057 reflectionsΔρmin = 0.27 e Å3
118 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.37204 (6)0.74164 (6)0.18745 (9)0.0673 (3)
Cl20.44335 (5)0.32968 (6)0.08251 (9)0.0613 (3)
O10.24660 (12)0.65449 (13)0.3845 (2)0.0492 (5)
H10.20620.61890.44130.074*
N10.16734 (13)0.50222 (17)0.5089 (2)0.0383 (5)
C10.29214 (16)0.57913 (19)0.3202 (3)0.0356 (6)
C20.35462 (17)0.60699 (19)0.2224 (3)0.0404 (7)
C30.40082 (17)0.5318 (2)0.1515 (3)0.0428 (7)
H30.44180.55260.08660.051*
C40.38606 (17)0.4244 (2)0.1772 (3)0.0413 (7)
C50.32680 (17)0.3932 (2)0.2738 (3)0.0402 (7)
H50.31810.32090.29100.048*
C60.27940 (16)0.46897 (19)0.3465 (3)0.0344 (6)
C70.21558 (16)0.4352 (2)0.4470 (3)0.0379 (6)
H70.20960.36280.46700.046*
C80.10183 (16)0.4624 (2)0.6055 (3)0.0435 (7)
H8A0.09460.51250.68330.052*
H8B0.11940.39440.64520.052*
C90.01787 (17)0.4483 (2)0.5280 (3)0.0481 (8)
H9A0.02580.39930.44920.058*
H9B0.02250.41630.59260.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0782 (6)0.0361 (4)0.0874 (6)0.0057 (4)0.0253 (5)0.0114 (4)
Cl20.0628 (5)0.0484 (4)0.0727 (6)0.0047 (4)0.0223 (4)0.0103 (4)
O10.0497 (12)0.0349 (10)0.0630 (12)0.0051 (9)0.0161 (11)0.0044 (9)
N10.0308 (12)0.0419 (12)0.0421 (13)0.0032 (11)0.0016 (11)0.0050 (11)
C10.0305 (15)0.0343 (13)0.0420 (15)0.0009 (12)0.0014 (13)0.0019 (12)
C20.0410 (17)0.0321 (13)0.0481 (17)0.0052 (13)0.0009 (14)0.0058 (12)
C30.0362 (16)0.0458 (16)0.0465 (17)0.0041 (13)0.0077 (14)0.0027 (13)
C40.0394 (17)0.0371 (14)0.0475 (16)0.0003 (13)0.0042 (14)0.0056 (13)
C50.0408 (16)0.0324 (13)0.0473 (17)0.0022 (12)0.0036 (14)0.0013 (12)
C60.0309 (15)0.0353 (13)0.0371 (15)0.0014 (12)0.0007 (12)0.0026 (11)
C70.0354 (16)0.0330 (13)0.0453 (16)0.0042 (13)0.0035 (13)0.0041 (12)
C80.0383 (16)0.0475 (16)0.0446 (16)0.0011 (14)0.0032 (15)0.0056 (13)
C90.0408 (18)0.0456 (16)0.0578 (19)0.0038 (14)0.0128 (16)0.0048 (14)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C4—C51.365 (3)
Cl2—C41.739 (3)C5—C61.390 (3)
O1—C11.333 (3)C5—H50.9300
O1—H10.9457C6—C71.449 (3)
N1—C71.276 (3)C7—H70.9300
N1—C81.468 (3)C8—C91.530 (4)
C1—C21.397 (4)C8—H8A0.9700
C1—C61.414 (3)C8—H8B0.9700
C2—C31.366 (4)C9—C9i1.506 (5)
C3—C41.385 (3)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C1—O1—H1106.9C5—C6—C7120.1 (2)
C7—N1—C8119.0 (2)C1—C6—C7119.9 (2)
O1—C1—C2120.5 (2)N1—C7—C6121.8 (2)
O1—C1—C6122.1 (2)N1—C7—H7119.1
C2—C1—C6117.4 (2)C6—C7—H7119.1
C3—C2—C1122.1 (2)N1—C8—C9111.1 (2)
C3—C2—Cl1119.3 (2)N1—C8—H8A109.4
C1—C2—Cl1118.6 (2)C9—C8—H8A109.4
C2—C3—C4119.4 (3)N1—C8—H8B109.4
C2—C3—H3120.3C9—C8—H8B109.4
C4—C3—H3120.3H8A—C8—H8B108.0
C5—C4—C3120.7 (2)C9i—C9—C8113.3 (3)
C5—C4—Cl2120.5 (2)C9i—C9—H9A108.9
C3—C4—Cl2118.9 (2)C8—C9—H9A108.9
C4—C5—C6120.4 (2)C9i—C9—H9B108.9
C4—C5—H5119.8C8—C9—H9B108.9
C6—C5—H5119.8H9A—C9—H9B107.7
C5—C6—C1120.0 (2)
O1—C1—C2—C3178.1 (2)C4—C5—C6—C7178.9 (2)
C6—C1—C2—C31.5 (4)O1—C1—C6—C5178.1 (2)
O1—C1—C2—Cl10.4 (4)C2—C1—C6—C51.5 (4)
C6—C1—C2—Cl1180.0 (2)O1—C1—C6—C70.5 (4)
C1—C2—C3—C40.4 (4)C2—C1—C6—C7179.9 (2)
Cl1—C2—C3—C4178.8 (2)C8—N1—C7—C6177.7 (2)
C2—C3—C4—C50.9 (4)C5—C6—C7—N1175.5 (2)
C2—C3—C4—Cl2178.2 (2)C1—C6—C7—N13.1 (4)
C3—C4—C5—C61.0 (4)C7—N1—C8—C993.8 (3)
Cl2—C4—C5—C6178.2 (2)N1—C8—C9—C9i63.4 (4)
C4—C5—C6—C10.3 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.951.712.565 (3)149
C5—H5···O1ii0.932.483.370 (3)160
C3—H3···Cl2iii0.932.833.738 (3)165
Symmetry codes: (ii) x+1/2, y1/2, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H16Cl4N2O2
Mr434.13
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)15.871 (3), 12.505 (3), 9.4133 (18)
V3)1868.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.35 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.805, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
8772, 2057, 1264
Rint0.058
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.095, 1.02
No. of reflections2057
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005)', SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.951.71002.565 (3)149
C5—H5···O1i0.932.48003.370 (3)160
C3—H3···Cl2ii0.932.833.738 (3)165
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y+1, z.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds