organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­bromo-2-[(E)-(4-{[(E)-3,5-di­bromo-2-hy­dr­oxy­benzyl­­idene]amino}­butyl)­imino­meth­yl]phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 10 June 2012; accepted 25 June 2012; online 30 June 2012)

The asymmetric unit of the title compound, C18H16Br4N2O2, comprises half the molecule, which is located adjacent to an inversion centre at the mid-point of the central C—C bond of the butane-1,4-diamine segment. There are two intra­molecular O—H⋯N hydrogen bonds making S(6) ring motifs. In the crystal, mol­ecules are linked by pairs of weak C—H⋯Br inter­actions into chains along [101], which include R22(8) ring motifs. These chains are further linked by C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For standard bond lengths, see: Allen et al., (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related Schiff base ligands, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16Br4N2O2

  • Mr = 611.97

  • Orthorhombic, P b c n

  • a = 15.9537 (12) Å

  • b = 12.8784 (10) Å

  • c = 9.5566 (6) Å

  • V = 1963.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.21 mm−1

  • T = 291 K

  • 0.35 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.161, Tmax = 0.439

  • 15023 measured reflections

  • 2164 independent reflections

  • 1381 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.074

  • S = 0.99

  • 2164 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.72 1.92 2.574 (4) 151
C6—H6⋯O1i 0.93 2.56 3.469 (5) 165
C4—H3⋯Br2ii 0.93 2.96 3.849 (4) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])'; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structures of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesized and analysed the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potential tetradentate Schiff base ligand. The molecule is located about an inversion centre which is situated at the centre of the central C9-C9A bond of the 1,4-butane-diamine segment. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Table 1 and Fig. 1; Bernstein et al., 1995).

In the crystal, molecules are linked by pairs of weak C—H···Br interactions to form chains along direction [101] which include R22(8) ring motifs (Table 1 and Fig. 2). These chains are further linked by C—H···O interactions (Table 1) to form a three-dimensional network.

Related literature top

For standard bond lengths, see: Allen et al., (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dibromosalicylaldehyde (2 mmol) to a solution of butylenediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow needle-like crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol on slow evaporation of the solvents at room temperature over several days.

Refinement top

The OH H atom was located in a difference Fourier map and constrained to ride on the parent O atom with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93 and 0.97 Å for CH and CH2 H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Structure description top

In continuation of our work on the crystal structures of Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we synthesized and analysed the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises half of a potential tetradentate Schiff base ligand. The molecule is located about an inversion centre which is situated at the centre of the central C9-C9A bond of the 1,4-butane-diamine segment. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O—H···N hydrogen bonds make S(6) ring motifs (Table 1 and Fig. 1; Bernstein et al., 1995).

In the crystal, molecules are linked by pairs of weak C—H···Br interactions to form chains along direction [101] which include R22(8) ring motifs (Table 1 and Fig. 2). These chains are further linked by C—H···O interactions (Table 1) to form a three-dimensional network.

For standard bond lengths, see: Allen et al., (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related Schiff base ligands, see: Kargar et al. (2011); Kia et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005)'; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A = -x, -y, -z].
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis, showing linking of molecules through C—H···O and weak C—H···Br interactions (dashed lines; see Table 1 for details). Only the H atoms involved in hydrogen bonding are shown.
4,6-Dibromo-2-[(E)-(4-{[(E)-3,5-dibromo-2- hydroxybenzylidene]amino}butyl)iminomethyl]phenol top
Crystal data top
C18H16Br4N2O2F(000) = 1176
Mr = 611.97Dx = 2.070 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2045 reflections
a = 15.9537 (12) Åθ = 3.3–27.5°
b = 12.8784 (10) ŵ = 8.21 mm1
c = 9.5566 (6) ÅT = 291 K
V = 1963.5 (2) Å3Needle, yellow
Z = 40.35 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2164 independent reflections
Radiation source: fine-focus sealed tube1381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 27.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2020
Tmin = 0.161, Tmax = 0.439k = 1616
15023 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.1226P]
where P = (Fo2 + 2Fc2)/3
2164 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C18H16Br4N2O2V = 1963.5 (2) Å3
Mr = 611.97Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 15.9537 (12) ŵ = 8.21 mm1
b = 12.8784 (10) ÅT = 291 K
c = 9.5566 (6) Å0.35 × 0.14 × 0.12 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2164 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1381 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.439Rint = 0.069
15023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.074H-atom parameters constrained
S = 0.99Δρmax = 0.74 e Å3
2164 reflectionsΔρmin = 0.57 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.13066 (3)0.24496 (3)0.17601 (5)0.0577 (2)
Br20.05752 (3)0.17551 (3)0.07666 (5)0.0549 (2)
O10.25622 (17)0.15166 (19)0.3764 (3)0.0456 (9)
N10.3337 (2)0.0051 (2)0.5060 (3)0.0374 (11)
C10.2230 (2)0.0284 (3)0.3459 (4)0.0320 (11)
C20.2109 (2)0.0776 (3)0.3154 (4)0.0324 (11)
C30.1493 (2)0.1035 (3)0.2181 (4)0.0359 (11)
C40.1036 (2)0.0293 (3)0.1493 (4)0.0373 (12)
C50.1186 (2)0.0745 (3)0.1788 (4)0.0373 (12)
C60.1761 (2)0.1035 (3)0.2756 (4)0.0349 (11)
C70.2860 (2)0.0599 (3)0.4468 (4)0.0360 (12)
C80.3979 (2)0.0338 (3)0.6028 (4)0.0433 (14)
C90.4818 (3)0.0488 (3)0.5281 (5)0.0537 (17)
H10.281800.126800.428300.0680*
H30.063200.048200.084000.0450*
H60.184400.173500.295200.0420*
H70.291500.130000.468600.0430*
H8A0.404900.015100.679200.0520*
H8B0.379700.099500.642100.0520*
H9A0.474000.097300.451500.0650*
H9B0.521400.079600.593100.0650*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0699 (3)0.0317 (2)0.0716 (3)0.0021 (2)0.0215 (3)0.0097 (2)
Br20.0590 (3)0.0417 (2)0.0641 (3)0.0064 (2)0.0152 (2)0.0100 (2)
O10.0460 (17)0.0348 (14)0.0561 (18)0.0052 (13)0.0166 (14)0.0036 (13)
N10.0298 (17)0.0403 (18)0.042 (2)0.0008 (16)0.0012 (16)0.0022 (15)
C10.027 (2)0.0309 (19)0.038 (2)0.0025 (17)0.0029 (19)0.0002 (17)
C20.029 (2)0.0313 (19)0.037 (2)0.0010 (17)0.0004 (18)0.0008 (17)
C30.037 (2)0.0267 (18)0.044 (2)0.0035 (18)0.0021 (19)0.0057 (17)
C40.035 (2)0.038 (2)0.039 (2)0.0024 (19)0.0080 (19)0.0016 (18)
C50.033 (2)0.034 (2)0.045 (2)0.0023 (18)0.0035 (19)0.0043 (18)
C60.038 (2)0.0258 (18)0.041 (2)0.0018 (17)0.005 (2)0.0003 (17)
C70.037 (2)0.034 (2)0.037 (2)0.0042 (18)0.003 (2)0.0058 (18)
C80.038 (2)0.053 (3)0.039 (2)0.003 (2)0.006 (2)0.006 (2)
C90.043 (3)0.049 (3)0.069 (3)0.003 (2)0.013 (3)0.011 (2)
Geometric parameters (Å, º) top
Br1—C31.889 (4)C4—C51.387 (5)
Br2—C51.896 (4)C5—C61.355 (5)
O1—C21.331 (5)C8—C91.529 (6)
O1—H10.7200C9—C9i1.485 (6)
N1—C71.265 (5)C4—H30.9300
N1—C81.468 (5)C6—H60.9300
C1—C21.409 (5)C7—H70.9300
C1—C61.395 (5)C8—H8A0.9700
C1—C71.451 (5)C8—H8B0.9700
C2—C31.393 (5)C9—H9A0.9700
C3—C41.370 (5)C9—H9B0.9700
C2—O1—H1107.00C8—C9—C9i113.8 (3)
C7—N1—C8118.4 (3)C3—C4—H3121.00
C2—C1—C6119.9 (3)C5—C4—H3121.00
C2—C1—C7120.2 (3)C1—C6—H6120.00
C6—C1—C7119.9 (3)C5—C6—H6120.00
O1—C2—C3120.3 (3)N1—C7—H7119.00
C1—C2—C3117.8 (3)C1—C7—H7119.00
O1—C2—C1121.9 (3)N1—C8—H8A109.00
Br1—C3—C2118.9 (3)N1—C8—H8B109.00
C2—C3—C4121.9 (4)C9—C8—H8A109.00
Br1—C3—C4119.1 (3)C9—C8—H8B109.00
C3—C4—C5118.9 (3)H8A—C8—H8B108.00
Br2—C5—C6120.7 (3)C8—C9—H9A109.00
C4—C5—C6121.4 (3)C8—C9—H9B109.00
Br2—C5—C4117.9 (3)H9A—C9—H9B108.00
C1—C6—C5120.0 (4)C9i—C9—H9A109.00
N1—C7—C1121.9 (3)C9i—C9—H9B109.00
N1—C8—C9111.1 (3)
C8—N1—C7—C1177.7 (3)O1—C2—C3—C4177.5 (3)
C7—N1—C8—C994.4 (4)C1—C2—C3—Br1179.4 (3)
C6—C1—C2—O1177.7 (3)C1—C2—C3—C42.5 (5)
C6—C1—C2—C32.3 (5)Br1—C3—C4—C5178.9 (3)
C7—C1—C2—O10.3 (5)C2—C3—C4—C50.8 (5)
C7—C1—C2—C3179.7 (3)C3—C4—C5—Br2177.6 (3)
C2—C1—C6—C50.4 (5)C3—C4—C5—C61.2 (5)
C7—C1—C6—C5178.4 (3)Br2—C5—C6—C1177.4 (3)
C2—C1—C7—N12.7 (5)C4—C5—C6—C11.4 (5)
C6—C1—C7—N1175.2 (3)N1—C8—C9—C9i62.9 (5)
O1—C2—C3—Br10.6 (5)C8—C9—C9i—C8i180.0 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.721.922.574 (4)151
C6—H6···O1ii0.932.563.469 (5)165
C4—H3···Br2iii0.932.963.849 (4)161
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x, y, z.

Experimental details

Crystal data
Chemical formulaC18H16Br4N2O2
Mr611.97
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)291
a, b, c (Å)15.9537 (12), 12.8784 (10), 9.5566 (6)
V3)1963.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)8.21
Crystal size (mm)0.35 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.161, 0.439
No. of measured, independent and
observed [I > 2σ(I)] reflections
15023, 2164, 1381
Rint0.069
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.074, 0.99
No. of reflections2164
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.57

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005)', SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.721.922.574 (4)151
C6—H6···O1i0.932.563.469 (5)165
C4—H3···Br2ii0.932.963.849 (4)161
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan for the Rr

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds