metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­methyl­formamide-κO){4,4′,6,6′-tetra­chloro-2,2-[butane-1,4-di­yl(nitrilo­methanylyl­­idene)]diphenolato-κ4O,N,N′,O′}nickel(II)

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and cDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 14 June 2012; accepted 25 June 2012; online 30 June 2012)

In the title Schiff base complex, [Ni(C18H14Cl4N2O2)(C3H7NO)2], the geometry around the NiII atom is distorted octa­hedral. It is coordinated by the N2O2 donor atoms of the tetra­dentate Schiff base ligand and the O atoms of two dimethyl­formamide mol­ecules, which are cis to one another. The benzene rings are almost normal to each other [dihedral angle = 88.60 (14)°]. The various intra­molecular C—H⋯O hydrogen bonds make S(5) and S(6) ring motifs. In the crystal, mol­ecules are linked by pairs of weak C—H⋯Cl inter­actions, forming inversion dimers.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to Schiff base ligands and their complexes, see: Kargar, Kia, Abbasian et al. (2012[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.]); Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For the crystal structure of the ligand, see: Kargar, Kia, Ardakani et al. (2012[Kargar, H., Kia, R., Ardakani, A. A. S. & Tahir, M. N. (2012). Acta Cryst. E68, o2244-o2245.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H14Cl4N2O2)(C3H7NO)2]

  • Mr = 637.01

  • Monoclinic, P 21 /n

  • a = 9.7392 (11) Å

  • b = 19.165 (2) Å

  • c = 15.0197 (14) Å

  • β = 93.236 (3)°

  • V = 2799.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 291 K

  • 0.36 × 0.28 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.690, Tmax = 0.761

  • 23789 measured reflections

  • 6633 independent reflections

  • 4349 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.02

  • 6633 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O4 0.97 2.58 3.327 (4) 134
C11—H11B⋯O4 0.97 2.40 3.057 (4) 125
C19—H19⋯O1 0.93 2.25 2.865 (4) 123
C8—H8A⋯Cl3i 0.97 2.86 3.753 (3) 153
Symmetry code: (i) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the synthesis and crystal structure analysis of Schiff base ligands and their complexes (Kargar, Kia, Abbasian et al., 2012; Kargar, Kia, Ardakani et al., 2012; Kargar et al., 2011; Kia et al., 2010), we report herein on the synthesize and crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a NiII Schiff base complex. The geometry around NiII is distorted octahedral being coordinated by N2O2 donor atoms of the tetradentate ligand, 6,6'-((butane-1,4-diylbis(azanylylidene))bis(methanylylidene)) bis(2,4-dichlorophenol) [Kargar, Kia, Ardakani et al., 2012] and by two oxygen atoms of dimethylformamide molecules that are cis to one another. The bond lengths (Allen et al., 1987) and angles are within the normal range. The intramolecular C—H···O hydrogen bonds makes S(5) and S(6) ring motif (Table 1; Bernstein et al., 1995). The substituted benzene rings [C1–C6 and C13–C18] are almost normal [88.60 (14)°] to each other.

In the crystal structure molecules are linked by pairs of weak C—H···Cl interactions into individual inversion dimers (Table 1 and Fig. 2).

Related literature top

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands and their complexes, see: Kargar, Kia, Abbasian et al. (2012); Kargar et al. (2011); Kia et al. (2010). For the crystal structure of the ligand, see: Kargar, Kia, Ardakani et al. (2012).

Experimental top

The title compound was synthesized by adding 3,5-dichlorosalicylaldehyde-1,4-butylenediimine (1 mmol) to a solution of NiCl2 .6H2O (1.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Green prismatic single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol on slow evaporation of the solvents at room temperature over several days.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

In continuation of our work on the synthesis and crystal structure analysis of Schiff base ligands and their complexes (Kargar, Kia, Abbasian et al., 2012; Kargar, Kia, Ardakani et al., 2012; Kargar et al., 2011; Kia et al., 2010), we report herein on the synthesize and crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises a NiII Schiff base complex. The geometry around NiII is distorted octahedral being coordinated by N2O2 donor atoms of the tetradentate ligand, 6,6'-((butane-1,4-diylbis(azanylylidene))bis(methanylylidene)) bis(2,4-dichlorophenol) [Kargar, Kia, Ardakani et al., 2012] and by two oxygen atoms of dimethylformamide molecules that are cis to one another. The bond lengths (Allen et al., 1987) and angles are within the normal range. The intramolecular C—H···O hydrogen bonds makes S(5) and S(6) ring motif (Table 1; Bernstein et al., 1995). The substituted benzene rings [C1–C6 and C13–C18] are almost normal [88.60 (14)°] to each other.

In the crystal structure molecules are linked by pairs of weak C—H···Cl interactions into individual inversion dimers (Table 1 and Fig. 2).

For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to Schiff base ligands and their complexes, see: Kargar, Kia, Abbasian et al. (2012); Kargar et al. (2011); Kia et al. (2010). For the crystal structure of the ligand, see: Kargar, Kia, Ardakani et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. Dashed lines show the intramolecular C-H···O interactions (see Table 1 for details).
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing linking of molecules through weak C—H···Cl interactions (dashed lines; see Table 1 for details) into individual inversion dimers. Only the H atoms involved in these interactions are shown .
Bis(dimethylformamide-κO){4,4',6,6'-tetrachloro-2,2-[butane-1,4- diyl(nitrilomethanylylidene)]diphenolato- κ4O,N,N',O'}nickel(II) top
Crystal data top
[Ni(C18H14Cl4N2O2)(C3H7NO)2]F(000) = 1312
Mr = 637.01Dx = 1.512 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3422 reflections
a = 9.7392 (11) Åθ = 2.8–27.5°
b = 19.165 (2) ŵ = 1.11 mm1
c = 15.0197 (14) ÅT = 291 K
β = 93.236 (3)°Prism, green
V = 2799.0 (5) Å30.36 × 0.28 × 0.26 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6633 independent reflections
Radiation source: fine-focus sealed tube4349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 27.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.690, Tmax = 0.761k = 2525
23789 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.7005P]
where P = (Fo2 + 2Fc2)/3
6633 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni(C18H14Cl4N2O2)(C3H7NO)2]V = 2799.0 (5) Å3
Mr = 637.01Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7392 (11) ŵ = 1.11 mm1
b = 19.165 (2) ÅT = 291 K
c = 15.0197 (14) Å0.36 × 0.28 × 0.26 mm
β = 93.236 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6633 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4349 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.761Rint = 0.053
23789 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.02Δρmax = 0.39 e Å3
6633 reflectionsΔρmin = 0.58 e Å3
338 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03675 (3)0.167782 (17)0.39862 (2)0.03835 (12)
Cl10.42524 (9)0.25307 (4)0.57798 (6)0.0652 (2)
Cl20.34269 (10)0.05880 (5)0.83006 (6)0.0714 (3)
Cl30.40497 (8)0.00038 (5)0.36167 (6)0.0626 (2)
Cl40.18116 (14)0.08010 (6)0.04365 (7)0.0929 (4)
O10.1739 (2)0.19835 (9)0.49423 (13)0.0440 (5)
O20.1643 (2)0.09054 (10)0.36689 (14)0.0477 (5)
O30.1363 (2)0.23648 (11)0.31056 (15)0.0545 (5)
O40.0881 (2)0.25534 (10)0.43674 (16)0.0536 (5)
N10.0578 (2)0.10534 (11)0.48708 (16)0.0393 (5)
N20.0946 (2)0.14157 (11)0.29273 (16)0.0413 (5)
N30.3381 (3)0.28212 (13)0.27093 (18)0.0524 (6)
N40.1082 (3)0.34747 (13)0.5284 (2)0.0599 (7)
C10.2073 (3)0.16609 (13)0.56753 (19)0.0375 (6)
C20.3275 (3)0.18564 (14)0.6196 (2)0.0438 (7)
C30.3696 (3)0.15504 (15)0.6988 (2)0.0507 (7)
H30.44880.17000.73070.061*
C40.2906 (3)0.10097 (15)0.7302 (2)0.0477 (7)
C50.1725 (3)0.08039 (14)0.68435 (19)0.0440 (7)
H50.12000.04490.70740.053*
C60.1289 (3)0.11139 (13)0.60378 (19)0.0395 (6)
C70.0006 (3)0.08645 (13)0.5616 (2)0.0425 (7)
H70.04510.05240.59270.051*
C80.1887 (3)0.07074 (15)0.4602 (2)0.0499 (7)
H8A0.21660.04210.50930.060*
H8B0.17410.04000.41030.060*
C90.3051 (3)0.12120 (16)0.4337 (2)0.0539 (8)
H9A0.38810.10520.46010.065*
H9B0.28240.16660.45890.065*
C100.3356 (3)0.12976 (16)0.3339 (2)0.0535 (8)
H10A0.34110.08370.30710.064*
H10B0.42540.15130.32450.064*
C110.2327 (3)0.17269 (15)0.2847 (2)0.0485 (7)
H11A0.26300.17580.22220.058*
H11B0.22900.21960.30900.058*
C120.0633 (3)0.10065 (14)0.22963 (19)0.0416 (6)
H120.12700.09770.18130.050*
C130.0590 (3)0.05857 (14)0.22437 (19)0.0424 (7)
C140.0659 (3)0.01658 (16)0.1478 (2)0.0510 (7)
H140.00420.01890.10320.061*
C150.1742 (4)0.02746 (16)0.1383 (2)0.0556 (8)
C160.2789 (3)0.03246 (15)0.2039 (2)0.0540 (8)
H160.35220.06280.19720.065*
C170.2736 (3)0.00781 (14)0.2790 (2)0.0447 (7)
C180.1638 (3)0.05554 (14)0.2943 (2)0.0411 (6)
C190.2586 (3)0.24959 (15)0.3267 (2)0.0493 (7)
H190.29820.23580.38170.059*
C200.2846 (4)0.30430 (19)0.1833 (2)0.0675 (10)
H20A0.19490.28450.17120.101*
H20B0.34500.28870.13910.101*
H20C0.27830.35430.18180.101*
C210.4789 (4)0.3010 (2)0.2978 (3)0.0774 (11)
H21A0.50210.28280.35630.116*
H21B0.48750.35090.29870.116*
H21C0.54000.28180.25620.116*
C220.0370 (3)0.30254 (15)0.4834 (2)0.0518 (8)
H220.05830.30670.48720.062*
C230.2567 (4)0.3464 (2)0.5240 (3)0.0882 (14)
H23A0.28920.30890.48590.132*
H23B0.29120.38990.50030.132*
H23C0.28850.33960.58270.132*
C240.0397 (5)0.4028 (2)0.5811 (4)0.1100 (18)
H24A0.07360.44740.56060.165*
H24B0.05770.40050.57460.165*
H24C0.05830.39700.64280.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03646 (19)0.03847 (19)0.0406 (2)0.00509 (14)0.00601 (15)0.00000 (15)
Cl10.0587 (5)0.0703 (5)0.0656 (6)0.0261 (4)0.0058 (4)0.0115 (4)
Cl20.0795 (6)0.0831 (6)0.0507 (5)0.0078 (5)0.0038 (4)0.0170 (4)
Cl30.0420 (4)0.0766 (6)0.0693 (6)0.0060 (4)0.0048 (4)0.0036 (4)
Cl40.1229 (9)0.0960 (8)0.0603 (6)0.0309 (7)0.0097 (6)0.0273 (5)
O10.0462 (11)0.0416 (10)0.0439 (12)0.0094 (8)0.0011 (9)0.0038 (9)
O20.0433 (11)0.0566 (12)0.0432 (12)0.0064 (9)0.0019 (9)0.0071 (10)
O30.0435 (12)0.0663 (13)0.0537 (14)0.0126 (10)0.0046 (10)0.0147 (11)
O40.0486 (12)0.0433 (11)0.0691 (15)0.0007 (9)0.0056 (11)0.0119 (10)
N10.0391 (12)0.0368 (11)0.0426 (15)0.0064 (9)0.0079 (10)0.0031 (10)
N20.0363 (12)0.0409 (12)0.0466 (15)0.0010 (9)0.0024 (10)0.0035 (11)
N30.0482 (15)0.0560 (15)0.0540 (17)0.0036 (12)0.0129 (12)0.0131 (12)
N40.0649 (18)0.0504 (15)0.0648 (19)0.0059 (13)0.0066 (15)0.0137 (13)
C10.0394 (14)0.0321 (12)0.0416 (17)0.0031 (11)0.0080 (12)0.0032 (12)
C20.0434 (16)0.0412 (14)0.0471 (19)0.0034 (12)0.0054 (13)0.0020 (13)
C30.0451 (16)0.0573 (18)0.049 (2)0.0048 (14)0.0011 (14)0.0009 (15)
C40.0537 (18)0.0508 (16)0.0386 (18)0.0111 (14)0.0041 (14)0.0046 (13)
C50.0542 (18)0.0398 (14)0.0393 (17)0.0007 (12)0.0138 (14)0.0016 (12)
C60.0453 (15)0.0350 (13)0.0394 (17)0.0007 (11)0.0123 (12)0.0021 (11)
C70.0463 (16)0.0362 (14)0.0468 (19)0.0054 (12)0.0190 (14)0.0010 (12)
C80.0482 (17)0.0455 (16)0.056 (2)0.0161 (13)0.0061 (14)0.0006 (14)
C90.0392 (16)0.0607 (19)0.063 (2)0.0134 (14)0.0131 (14)0.0137 (15)
C100.0354 (15)0.0563 (18)0.069 (2)0.0025 (13)0.0039 (14)0.0054 (16)
C110.0392 (15)0.0496 (16)0.056 (2)0.0017 (12)0.0025 (14)0.0013 (14)
C120.0405 (15)0.0442 (15)0.0398 (17)0.0041 (12)0.0010 (12)0.0014 (12)
C130.0447 (16)0.0435 (15)0.0396 (17)0.0009 (12)0.0069 (13)0.0062 (12)
C140.0596 (19)0.0535 (18)0.0401 (18)0.0003 (14)0.0052 (14)0.0011 (14)
C150.070 (2)0.0538 (18)0.0440 (19)0.0072 (16)0.0124 (17)0.0045 (15)
C160.0560 (19)0.0482 (16)0.060 (2)0.0041 (14)0.0239 (17)0.0032 (15)
C170.0400 (15)0.0465 (15)0.0486 (18)0.0013 (12)0.0109 (13)0.0057 (13)
C180.0384 (14)0.0417 (14)0.0443 (18)0.0061 (11)0.0125 (12)0.0060 (13)
C190.0445 (17)0.0552 (17)0.0483 (19)0.0039 (13)0.0056 (14)0.0167 (14)
C200.075 (2)0.075 (2)0.054 (2)0.0091 (19)0.0167 (19)0.0089 (18)
C210.049 (2)0.090 (3)0.095 (3)0.0093 (19)0.020 (2)0.023 (2)
C220.0494 (18)0.0416 (15)0.065 (2)0.0016 (13)0.0079 (15)0.0036 (15)
C230.070 (3)0.073 (3)0.126 (4)0.011 (2)0.042 (3)0.005 (2)
C240.119 (4)0.080 (3)0.129 (5)0.011 (3)0.007 (3)0.056 (3)
Geometric parameters (Å, º) top
Ni1—O11.993 (2)C8—H8A0.9700
Ni1—O22.0069 (19)C8—H8B0.9700
Ni1—N12.046 (2)C9—C101.520 (5)
Ni1—N22.046 (2)C9—H9A0.9700
Ni1—O32.1370 (19)C9—H9B0.9700
Ni1—O42.1684 (19)C10—C111.520 (4)
Cl1—C21.742 (3)C10—H10A0.9700
Cl2—C41.753 (3)C10—H10B0.9700
Cl3—C171.738 (3)C11—H11A0.9700
Cl4—C151.748 (3)C11—H11B0.9700
O1—C11.288 (3)C12—C131.444 (4)
O2—C181.279 (3)C12—H120.9300
O3—C191.229 (3)C13—C141.408 (4)
O4—C221.232 (4)C13—C181.425 (4)
N1—C71.279 (4)C14—C151.364 (4)
N1—C81.473 (3)C14—H140.9300
N2—C121.280 (4)C15—C161.381 (5)
N2—C111.470 (3)C16—C171.370 (4)
N3—C191.328 (4)C16—H160.9300
N3—C201.451 (4)C17—C181.436 (4)
N3—C211.452 (4)C19—H190.9300
N4—C221.315 (4)C20—H20A0.9600
N4—C231.445 (5)C20—H20B0.9600
N4—C241.462 (5)C20—H20C0.9600
C1—C21.421 (4)C21—H21A0.9600
C1—C61.423 (4)C21—H21B0.9600
C2—C31.368 (4)C21—H21C0.9600
C3—C41.389 (4)C22—H220.9300
C3—H30.9300C23—H23A0.9600
C4—C51.365 (4)C23—H23B0.9600
C5—C61.393 (4)C23—H23C0.9600
C5—H50.9300C24—H24A0.9600
C6—C71.450 (4)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—C91.526 (4)
O1—Ni1—O289.39 (8)C11—C10—C9116.1 (3)
O1—Ni1—N190.68 (9)C11—C10—H10A108.3
O2—Ni1—N191.73 (9)C9—C10—H10A108.3
O1—Ni1—N2174.92 (8)C11—C10—H10B108.3
O2—Ni1—N290.14 (9)C9—C10—H10B108.3
N1—Ni1—N294.39 (9)H10A—C10—H10B107.4
O1—Ni1—O387.48 (8)N2—C11—C10111.5 (2)
O2—Ni1—O389.95 (8)N2—C11—H11A109.3
N1—Ni1—O3177.50 (9)C10—C11—H11A109.3
N2—Ni1—O387.46 (9)N2—C11—H11B109.3
O1—Ni1—O486.86 (8)C10—C11—H11B109.3
O2—Ni1—O4175.86 (8)H11A—C11—H11B108.0
N1—Ni1—O490.08 (8)N2—C12—C13127.9 (3)
N2—Ni1—O493.44 (9)N2—C12—H12116.1
O3—Ni1—O488.13 (8)C13—C12—H12116.1
C1—O1—Ni1126.97 (17)C14—C13—C18120.9 (3)
C18—O2—Ni1128.06 (19)C14—C13—C12116.2 (3)
C19—O3—Ni1118.2 (2)C18—C13—C12122.8 (3)
C22—O4—Ni1120.2 (2)C15—C14—C13120.8 (3)
C7—N1—C8116.6 (2)C15—C14—H14119.6
C7—N1—Ni1122.67 (18)C13—C14—H14119.6
C8—N1—Ni1120.01 (19)C14—C15—C16120.8 (3)
C12—N2—C11116.3 (3)C14—C15—Cl4120.5 (3)
C12—N2—Ni1124.1 (2)C16—C15—Cl4118.6 (2)
C11—N2—Ni1119.52 (19)C17—C16—C15119.2 (3)
C19—N3—C20121.1 (3)C17—C16—H16120.4
C19—N3—C21121.1 (3)C15—C16—H16120.4
C20—N3—C21117.7 (3)C16—C17—C18123.7 (3)
C22—N4—C23121.5 (3)C16—C17—Cl3118.8 (2)
C22—N4—C24121.1 (3)C18—C17—Cl3117.5 (2)
C23—N4—C24117.4 (3)O2—C18—C13125.1 (3)
O1—C1—C2120.3 (2)O2—C18—C17120.3 (3)
O1—C1—C6124.4 (3)C13—C18—C17114.6 (3)
C2—C1—C6115.3 (3)O3—C19—N3124.4 (3)
C3—C2—C1124.2 (3)O3—C19—H19117.8
C3—C2—Cl1119.2 (2)N3—C19—H19117.8
C1—C2—Cl1116.6 (2)N3—C20—H20A109.5
C2—C3—C4118.1 (3)N3—C20—H20B109.5
C2—C3—H3121.0H20A—C20—H20B109.5
C4—C3—H3121.0N3—C20—H20C109.5
C5—C4—C3120.7 (3)H20A—C20—H20C109.5
C5—C4—Cl2119.6 (2)H20B—C20—H20C109.5
C3—C4—Cl2119.7 (3)N3—C21—H21A109.5
C4—C5—C6121.5 (3)N3—C21—H21B109.5
C4—C5—H5119.3H21A—C21—H21B109.5
C6—C5—H5119.3N3—C21—H21C109.5
C5—C6—C1120.2 (3)H21A—C21—H21C109.5
C5—C6—C7116.9 (2)H21B—C21—H21C109.5
C1—C6—C7122.9 (3)O4—C22—N4124.4 (3)
N1—C7—C6128.2 (2)O4—C22—H22117.8
N1—C7—H7115.9N4—C22—H22117.8
C6—C7—H7115.9N4—C23—H23A109.5
N1—C8—C9113.9 (2)N4—C23—H23B109.5
N1—C8—H8A108.8H23A—C23—H23B109.5
C9—C8—H8A108.8N4—C23—H23C109.5
N1—C8—H8B108.8H23A—C23—H23C109.5
C9—C8—H8B108.8H23B—C23—H23C109.5
H8A—C8—H8B107.7N4—C24—H24A109.5
C10—C9—C8115.3 (3)N4—C24—H24B109.5
C10—C9—H9A108.4H24A—C24—H24B109.5
C8—C9—H9A108.4N4—C24—H24C109.5
C10—C9—H9B108.4H24A—C24—H24C109.5
C8—C9—H9B108.4H24B—C24—H24C109.5
H9A—C9—H9B107.5
O2—Ni1—O1—C169.9 (2)C4—C5—C6—C7178.8 (2)
N1—Ni1—O1—C121.8 (2)O1—C1—C6—C5179.0 (2)
O3—Ni1—O1—C1159.9 (2)C2—C1—C6—C50.8 (4)
O4—Ni1—O1—C1111.9 (2)O1—C1—C6—C70.6 (4)
O1—Ni1—O2—C18161.0 (2)C2—C1—C6—C7177.6 (2)
N1—Ni1—O2—C18108.4 (2)C8—N1—C7—C6179.8 (3)
N2—Ni1—O2—C1814.0 (2)Ni1—N1—C7—C69.7 (4)
O3—Ni1—O2—C1873.5 (2)C5—C6—C7—N1177.9 (3)
O1—Ni1—O3—C1927.0 (2)C1—C6—C7—N13.7 (4)
O2—Ni1—O3—C1962.4 (2)C7—N1—C8—C9129.0 (3)
N2—Ni1—O3—C19152.6 (2)Ni1—N1—C8—C960.6 (3)
O4—Ni1—O3—C19113.9 (2)N1—C8—C9—C10101.6 (3)
O1—Ni1—O4—C2215.5 (2)C8—C9—C10—C1174.4 (3)
N1—Ni1—O4—C22106.2 (2)C12—N2—C11—C1093.9 (3)
N2—Ni1—O4—C22159.4 (2)Ni1—N2—C11—C1088.3 (3)
O3—Ni1—O4—C2272.0 (2)C9—C10—C11—N260.4 (4)
O1—Ni1—N1—C718.0 (2)C11—N2—C12—C13173.9 (3)
O2—Ni1—N1—C771.5 (2)Ni1—N2—C12—C138.4 (4)
N2—Ni1—N1—C7161.7 (2)N2—C12—C13—C14178.4 (3)
O4—Ni1—N1—C7104.8 (2)N2—C12—C13—C182.3 (4)
O1—Ni1—N1—C8172.2 (2)C18—C13—C14—C150.8 (4)
O2—Ni1—N1—C898.3 (2)C12—C13—C14—C15177.0 (3)
N2—Ni1—N1—C88.1 (2)C13—C14—C15—C160.6 (5)
O4—Ni1—N1—C885.4 (2)C13—C14—C15—Cl4179.3 (2)
N1—Ni1—N2—C12105.1 (2)C14—C15—C16—C170.4 (5)
O3—Ni1—N2—C1276.6 (2)Cl4—C15—C16—C17179.1 (2)
O4—Ni1—N2—C12164.6 (2)C15—C16—C17—C180.3 (4)
O2—Ni1—N2—C11169.0 (2)C15—C16—C17—Cl3179.3 (2)
N1—Ni1—N2—C1177.3 (2)Ni1—O2—C18—C138.8 (4)
O3—Ni1—N2—C11101.0 (2)Ni1—O2—C18—C17172.30 (18)
O4—Ni1—N2—C1113.1 (2)C14—C13—C18—O2178.4 (3)
Ni1—O1—C1—C2165.65 (18)C12—C13—C18—O22.4 (4)
Ni1—O1—C1—C616.2 (4)C14—C13—C18—C170.6 (4)
O1—C1—C2—C3179.0 (3)C12—C13—C18—C17176.6 (2)
C6—C1—C2—C30.6 (4)C16—C17—C18—O2178.6 (3)
O1—C1—C2—Cl11.0 (3)Cl3—C17—C18—O20.4 (3)
C6—C1—C2—Cl1179.33 (19)C16—C17—C18—C130.4 (4)
C1—C2—C3—C40.6 (4)Cl3—C17—C18—C13179.41 (19)
Cl1—C2—C3—C4179.4 (2)Ni1—O3—C19—N3169.0 (2)
C2—C3—C4—C51.7 (4)C20—N3—C19—O31.0 (5)
C2—C3—C4—Cl2178.5 (2)C21—N3—C19—O3174.7 (3)
C3—C4—C5—C61.6 (4)Ni1—O4—C22—N4161.8 (3)
Cl2—C4—C5—C6178.6 (2)C23—N4—C22—O42.2 (5)
C4—C5—C6—C10.3 (4)C24—N4—C22—O4178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O40.972.583.327 (4)134
C11—H11B···O40.972.403.057 (4)125
C19—H19···O10.932.252.865 (4)123
C8—H8A···Cl3i0.972.863.753 (3)153
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C18H14Cl4N2O2)(C3H7NO)2]
Mr637.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)9.7392 (11), 19.165 (2), 15.0197 (14)
β (°) 93.236 (3)
V3)2799.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.36 × 0.28 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.690, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
23789, 6633, 4349
Rint0.053
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.02
No. of reflections6633
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.58

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O40.972.583.327 (4)134
C11—H11B···O40.972.403.057 (4)125
C19—H19···O10.932.252.865 (4)123
C8—H8A···Cl3i0.972.863.753 (3)153
Symmetry code: (i) x, y, z+1.
 

Footnotes

Present address: Structural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.

Acknowledgements

HK and AAA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68, m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Ardakani, A. A. S. & Tahir, M. N. (2012). Acta Cryst. E68, o2244–o2245.  CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds