organic compounds
N′-(Adamantan-2-ylidene)benzohydrazide
aCollege of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and bDepartamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo – CINN, C/ Julián Clavería, 8, 33006 Oviedo, Asturias, Spain
*Correspondence e-mail: sgg@uniovi.es
The title molecule, C17H20N2O, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine N atoms. In the crystal, molecules are linked via N—H⋯N hydrogen bonds, forming chains propagating along the a-axis direction. There are also C—H⋯O, C—H⋯N and C—H⋯π interactions present within the chains.
Related literature
For the biological activity of adamantane derivatives, see: Togo et al. (1968); Kadi et al. (2007, 2010); Al-Deeb et al. (2006); El-Emam et al. (2004). For the biological activity of hydrazone derivatives, see: Zheng et al. (2009); Moldovan et al. (2011). For related adamantane structures, see: Almutairi et al. (2012); Rouchal et al. (2010); El-Emam et al. (2012). For related cyclic ketone hydrazone structures, see: Sankar et al. (2010); El-Emam & Ibrahim (1991); Kia et al. (2009); Kadi et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
https://doi.org/10.1107/S1600536812028644/su2467sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812028644/su2467Isup2.hkl
A mixture of benzohydrazide (1.36 g, 0.01 mol), 2-adamantanone (1.5 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for 4 h. On cooling, the precipitated crystalline solid was filtered, dried and recrystallized from ethanol to yield 2.52 g (94%) of the title compound as colourless needle crystals [M.p. 517-519 K]. Spectroscopic data for the title compound are given in the archived CIF.
The NH H-atom was located in a difference electron-density map and freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH(aromatic), CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = 1.2Ueq(parent C-atom).
Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam & Ibrahim, 1991). In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives (Almutairi et al., 2012; El-Emam et al., 2012), we synthesized the title compound as a precursor for potential chemotherapeutic agents. Herein, we report on the synthesis and
of the title compound.The title molecule, Fig. 1, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine nitrogen atoms, N1 and N2.
In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains propagating along the a axis direction. There are also C-H···O, C-H···N and C-H···π interactions present within the chains (Table 1).
For the biological activity of adamantane derivatives, see: Togo et al. (1968); Kadi et al. (2007, 2010); Al-Deeb et al. (2006); El-Emam et al. (2004). For the biological activity of hydrazone derivatives, see: Zheng et al. (2009); Moldovan et al. (2011). For related adamantane structures, see: Almutairi et al. (2012); Rouchal et al. (2010; El-Emam et al. (2012). For related cyclic ketone hydrazone structures, see: Sankar et al. (2010); El-Emam & Ibrahim (1991); Kia et al. (2009); Kadi et al. (2011).
Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell
CrysAlis CCD (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. A view of the molecular structure of the title molecule with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level. |
C17H20N2O | F(000) = 1152 |
Mr = 268.35 | Dx = 1.266 Mg m−3 |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1578 reflections |
a = 7.9698 (3) Å | θ = 3.3–70.4° |
b = 17.5466 (8) Å | µ = 0.62 mm−1 |
c = 20.1350 (8) Å | T = 120 K |
V = 2815.7 (2) Å3 | Prism, colourless |
Z = 8 | 0.26 × 0.08 × 0.02 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2634 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 1859 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.4°, θmin = 3.3° |
ω scans | h = −6→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −21→20 |
Tmin = 0.942, Tmax = 0.988 | l = −24→20 |
7280 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0662P)2] where P = (Fo2 + 2Fc2)/3 |
2634 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.17 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C17H20N2O | V = 2815.7 (2) Å3 |
Mr = 268.35 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 7.9698 (3) Å | µ = 0.62 mm−1 |
b = 17.5466 (8) Å | T = 120 K |
c = 20.1350 (8) Å | 0.26 × 0.08 × 0.02 mm |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2634 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 1859 reflections with I > 2σ(I) |
Tmin = 0.942, Tmax = 0.988 | Rint = 0.052 |
7280 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.139 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.17 e Å−3 |
2634 reflections | Δρmin = −0.23 e Å−3 |
185 parameters |
Experimental. Spectroscopic data for the title compound: 1H NMR (CDCl3, 500.13MHz): δ 1.82–1.96 (m, 14H, Adamantane-H), 7.36–7.43 (m, 3H, Ar—H), 7.51–7.53 (m, 2H, Ar—H), 8.81 (s, 1H, NH). 13C NMR (CDCl3, 125.76MHz): δ 27.70, 31.82, 36.20, 37.93, 39.06, 164.47 (Adamantane-C), 127.29, 128.66, 131.73, 133.77 (Ar—C), 171.29 (C═O). |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.41632 (17) | 0.06584 (9) | 0.16083 (8) | 0.0312 (5) | |
N1 | 0.6033 (2) | 0.11608 (10) | 0.23403 (9) | 0.0235 (5) | |
N2 | 0.4774 (2) | 0.16129 (10) | 0.26108 (9) | 0.0223 (5) | |
C1 | 0.5611 (2) | 0.07181 (12) | 0.18124 (10) | 0.0246 (6) | |
C2 | 0.7017 (2) | 0.02971 (12) | 0.14858 (10) | 0.0249 (6) | |
C3 | 0.8416 (3) | 0.00356 (13) | 0.18307 (12) | 0.0293 (6) | |
C4 | 0.9655 (3) | −0.03725 (14) | 0.14965 (14) | 0.0371 (8) | |
C5 | 0.9494 (3) | −0.05134 (15) | 0.08214 (14) | 0.0401 (8) | |
C6 | 0.8098 (3) | −0.02579 (14) | 0.04800 (12) | 0.0369 (7) | |
C7 | 0.6858 (3) | 0.01433 (13) | 0.08093 (11) | 0.0293 (6) | |
C8 | 0.5128 (2) | 0.20447 (12) | 0.31045 (10) | 0.0220 (6) | |
C9 | 0.6735 (3) | 0.21136 (13) | 0.34927 (10) | 0.0264 (6) | |
C10 | 0.6324 (3) | 0.18818 (14) | 0.42134 (11) | 0.0310 (7) | |
C11 | 0.7330 (3) | 0.29468 (14) | 0.34814 (11) | 0.0313 (7) | |
C12 | 0.4986 (3) | 0.24128 (14) | 0.45032 (11) | 0.0296 (6) | |
C13 | 0.3753 (2) | 0.25512 (12) | 0.33641 (10) | 0.0237 (6) | |
C14 | 0.3378 (3) | 0.23380 (14) | 0.40906 (11) | 0.0291 (6) | |
C15 | 0.4369 (3) | 0.33837 (13) | 0.33421 (11) | 0.0296 (7) | |
C16 | 0.5968 (3) | 0.34691 (13) | 0.37629 (11) | 0.0288 (6) | |
C17 | 0.5592 (3) | 0.32391 (14) | 0.44831 (10) | 0.0279 (6) | |
H1N | 0.716 (3) | 0.1276 (15) | 0.2457 (12) | 0.028 (6)* | |
H3 | 0.85230 | 0.01330 | 0.22830 | 0.0350* | |
H4 | 1.05900 | −0.05500 | 0.17260 | 0.0440* | |
H5 | 1.03280 | −0.07810 | 0.05980 | 0.0480* | |
H6 | 0.79920 | −0.03560 | 0.00280 | 0.0440* | |
H7 | 0.59160 | 0.03110 | 0.05790 | 0.0350* | |
H9 | 0.75980 | 0.17780 | 0.33070 | 0.0320* | |
H10A | 0.59200 | 0.13600 | 0.42220 | 0.0370* | |
H10B | 0.73330 | 0.19080 | 0.44820 | 0.0370* | |
H11A | 0.83450 | 0.29970 | 0.37440 | 0.0380* | |
H11B | 0.75850 | 0.30960 | 0.30290 | 0.0380* | |
H12 | 0.47540 | 0.22670 | 0.49640 | 0.0360* | |
H13 | 0.27400 | 0.24930 | 0.30930 | 0.0280* | |
H14A | 0.25190 | 0.26730 | 0.42680 | 0.0350* | |
H14B | 0.29650 | 0.18190 | 0.41130 | 0.0350* | |
H15A | 0.46020 | 0.35290 | 0.28870 | 0.0360* | |
H15B | 0.35010 | 0.37190 | 0.35130 | 0.0360* | |
H16 | 0.63530 | 0.39990 | 0.37500 | 0.0350* | |
H17A | 0.65970 | 0.32930 | 0.47510 | 0.0330* | |
H17B | 0.47350 | 0.35710 | 0.46660 | 0.0330* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0275 (7) | 0.0321 (9) | 0.0339 (8) | 0.0024 (7) | −0.0040 (6) | −0.0082 (7) |
N1 | 0.0219 (8) | 0.0216 (9) | 0.0270 (9) | 0.0025 (7) | 0.0013 (7) | −0.0049 (8) |
N2 | 0.0230 (8) | 0.0205 (9) | 0.0235 (8) | 0.0016 (7) | 0.0015 (7) | −0.0002 (7) |
C1 | 0.0276 (10) | 0.0218 (11) | 0.0244 (10) | 0.0000 (9) | 0.0005 (8) | 0.0009 (9) |
C2 | 0.0280 (10) | 0.0190 (10) | 0.0277 (11) | −0.0026 (8) | 0.0062 (9) | −0.0018 (9) |
C3 | 0.0274 (10) | 0.0225 (11) | 0.0381 (12) | −0.0009 (9) | 0.0020 (9) | −0.0011 (10) |
C4 | 0.0292 (11) | 0.0298 (13) | 0.0522 (15) | 0.0041 (10) | 0.0051 (10) | −0.0029 (12) |
C5 | 0.0431 (13) | 0.0270 (12) | 0.0501 (15) | 0.0032 (10) | 0.0223 (12) | −0.0052 (12) |
C6 | 0.0528 (14) | 0.0248 (12) | 0.0330 (12) | −0.0033 (11) | 0.0161 (12) | −0.0025 (10) |
C7 | 0.0374 (11) | 0.0214 (11) | 0.0290 (11) | −0.0013 (9) | 0.0022 (9) | −0.0010 (9) |
C8 | 0.0242 (9) | 0.0199 (10) | 0.0220 (10) | −0.0005 (8) | −0.0001 (8) | 0.0015 (9) |
C9 | 0.0245 (9) | 0.0289 (12) | 0.0259 (10) | 0.0035 (9) | −0.0012 (9) | −0.0065 (9) |
C10 | 0.0388 (11) | 0.0284 (13) | 0.0257 (11) | 0.0050 (10) | −0.0087 (10) | −0.0007 (10) |
C11 | 0.0299 (10) | 0.0342 (13) | 0.0298 (11) | −0.0096 (10) | 0.0010 (9) | −0.0049 (10) |
C12 | 0.0380 (11) | 0.0288 (12) | 0.0220 (10) | 0.0016 (10) | 0.0010 (9) | 0.0008 (9) |
C13 | 0.0250 (9) | 0.0219 (11) | 0.0242 (10) | 0.0016 (8) | 0.0003 (8) | −0.0014 (9) |
C14 | 0.0307 (10) | 0.0270 (12) | 0.0296 (11) | −0.0017 (9) | 0.0070 (9) | −0.0039 (10) |
C15 | 0.0371 (11) | 0.0235 (12) | 0.0282 (11) | 0.0032 (9) | −0.0021 (9) | 0.0002 (9) |
C16 | 0.0359 (11) | 0.0222 (11) | 0.0284 (11) | −0.0055 (10) | −0.0006 (9) | −0.0017 (9) |
C17 | 0.0313 (10) | 0.0276 (12) | 0.0248 (10) | 0.0014 (9) | −0.0031 (9) | −0.0060 (9) |
O1—C1 | 1.229 (2) | C15—C16 | 1.538 (3) |
N1—N2 | 1.390 (2) | C16—C17 | 1.535 (3) |
N1—C1 | 1.359 (3) | C3—H3 | 0.9300 |
N2—C8 | 1.281 (3) | C4—H4 | 0.9300 |
N1—H1N | 0.95 (2) | C5—H5 | 0.9300 |
C1—C2 | 1.495 (3) | C6—H6 | 0.9300 |
C2—C7 | 1.394 (3) | C7—H7 | 0.9300 |
C2—C3 | 1.391 (3) | C9—H9 | 0.9800 |
C3—C4 | 1.393 (3) | C10—H10A | 0.9700 |
C4—C5 | 1.388 (4) | C10—H10B | 0.9700 |
C5—C6 | 1.383 (3) | C11—H11A | 0.9700 |
C6—C7 | 1.383 (3) | C11—H11B | 0.9700 |
C8—C9 | 1.505 (3) | C12—H12 | 0.9800 |
C8—C13 | 1.505 (3) | C13—H13 | 0.9800 |
C9—C11 | 1.537 (3) | C14—H14A | 0.9700 |
C9—C10 | 1.542 (3) | C14—H14B | 0.9700 |
C10—C12 | 1.532 (3) | C15—H15A | 0.9700 |
C11—C16 | 1.530 (3) | C15—H15B | 0.9700 |
C12—C17 | 1.529 (3) | C16—H16 | 0.9800 |
C12—C14 | 1.533 (3) | C17—H17A | 0.9700 |
C13—C14 | 1.539 (3) | C17—H17B | 0.9700 |
C13—C15 | 1.542 (3) | ||
N2—N1—C1 | 117.00 (15) | C5—C6—H6 | 120.00 |
N1—N2—C8 | 118.84 (16) | C7—C6—H6 | 120.00 |
N2—N1—H1N | 117.7 (15) | C2—C7—H7 | 120.00 |
C1—N1—H1N | 123.3 (15) | C6—C7—H7 | 120.00 |
N1—C1—C2 | 116.18 (15) | C8—C9—H9 | 111.00 |
O1—C1—C2 | 120.97 (18) | C10—C9—H9 | 110.00 |
O1—C1—N1 | 122.86 (18) | C11—C9—H9 | 110.00 |
C1—C2—C7 | 117.22 (17) | C9—C10—H10A | 110.00 |
C3—C2—C7 | 119.77 (19) | C9—C10—H10B | 110.00 |
C1—C2—C3 | 122.97 (19) | C12—C10—H10A | 110.00 |
C2—C3—C4 | 119.8 (2) | C12—C10—H10B | 110.00 |
C3—C4—C5 | 120.0 (2) | H10A—C10—H10B | 108.00 |
C4—C5—C6 | 120.3 (2) | C9—C11—H11A | 110.00 |
C5—C6—C7 | 120.1 (2) | C9—C11—H11B | 110.00 |
C2—C7—C6 | 120.1 (2) | C16—C11—H11A | 110.00 |
N2—C8—C13 | 117.29 (16) | C16—C11—H11B | 110.00 |
N2—C8—C9 | 129.62 (18) | H11A—C11—H11B | 108.00 |
C9—C8—C13 | 113.07 (17) | C10—C12—H12 | 109.00 |
C8—C9—C11 | 109.34 (18) | C14—C12—H12 | 109.00 |
C8—C9—C10 | 106.66 (18) | C17—C12—H12 | 109.00 |
C10—C9—C11 | 109.29 (18) | C8—C13—H13 | 110.00 |
C9—C10—C12 | 110.24 (19) | C14—C13—H13 | 110.00 |
C9—C11—C16 | 110.21 (19) | C15—C13—H13 | 110.00 |
C10—C12—C17 | 110.30 (19) | C12—C14—H14A | 110.00 |
C10—C12—C14 | 108.88 (19) | C12—C14—H14B | 110.00 |
C14—C12—C17 | 109.33 (19) | C13—C14—H14A | 110.00 |
C8—C13—C15 | 108.53 (15) | C13—C14—H14B | 110.00 |
C8—C13—C14 | 109.15 (17) | H14A—C14—H14B | 108.00 |
C14—C13—C15 | 108.63 (17) | C13—C15—H15A | 110.00 |
C12—C14—C13 | 109.39 (18) | C13—C15—H15B | 110.00 |
C13—C15—C16 | 109.90 (18) | C16—C15—H15A | 110.00 |
C11—C16—C15 | 109.00 (18) | C16—C15—H15B | 110.00 |
C11—C16—C17 | 109.34 (19) | H15A—C15—H15B | 108.00 |
C15—C16—C17 | 109.46 (19) | C11—C16—H16 | 110.00 |
C12—C17—C16 | 109.64 (18) | C15—C16—H16 | 110.00 |
C2—C3—H3 | 120.00 | C17—C16—H16 | 110.00 |
C4—C3—H3 | 120.00 | C12—C17—H17A | 110.00 |
C3—C4—H4 | 120.00 | C12—C17—H17B | 110.00 |
C5—C4—H4 | 120.00 | C16—C17—H17A | 110.00 |
C4—C5—H5 | 120.00 | C16—C17—H17B | 110.00 |
C6—C5—H5 | 120.00 | H17A—C17—H17B | 108.00 |
C1—N1—N2—C8 | −179.23 (19) | C9—C8—C13—C14 | −59.8 (2) |
N2—N1—C1—O1 | −6.1 (3) | C9—C8—C13—C15 | 58.4 (2) |
N2—N1—C1—C2 | 174.01 (17) | C8—C9—C10—C12 | −60.3 (2) |
N1—N2—C8—C9 | −4.7 (3) | C11—C9—C10—C12 | 57.8 (2) |
N1—N2—C8—C13 | 177.34 (17) | C8—C9—C11—C16 | 57.4 (2) |
O1—C1—C2—C3 | −148.1 (2) | C10—C9—C11—C16 | −59.1 (2) |
O1—C1—C2—C7 | 29.5 (3) | C9—C10—C12—C14 | 61.6 (2) |
N1—C1—C2—C3 | 31.7 (3) | C9—C10—C12—C17 | −58.3 (2) |
N1—C1—C2—C7 | −150.6 (2) | C9—C11—C16—C15 | −59.3 (2) |
C1—C2—C3—C4 | 178.1 (2) | C9—C11—C16—C17 | 60.3 (2) |
C7—C2—C3—C4 | 0.5 (3) | C10—C12—C14—C13 | −59.2 (2) |
C1—C2—C7—C6 | −178.7 (2) | C17—C12—C14—C13 | 61.3 (2) |
C3—C2—C7—C6 | −1.0 (3) | C10—C12—C17—C16 | 59.2 (2) |
C2—C3—C4—C5 | 0.3 (4) | C14—C12—C17—C16 | −60.5 (2) |
C3—C4—C5—C6 | −0.8 (4) | C8—C13—C14—C12 | 57.5 (2) |
C4—C5—C6—C7 | 0.3 (4) | C15—C13—C14—C12 | −60.7 (2) |
C5—C6—C7—C2 | 0.5 (4) | C8—C13—C15—C16 | −58.7 (2) |
N2—C8—C9—C10 | −117.8 (2) | C14—C13—C15—C16 | 59.8 (2) |
N2—C8—C9—C11 | 124.1 (2) | C13—C15—C16—C11 | 60.2 (2) |
C13—C8—C9—C10 | 60.2 (2) | C13—C15—C16—C17 | −59.4 (2) |
C13—C8—C9—C11 | −57.9 (2) | C11—C16—C17—C12 | −59.9 (2) |
N2—C8—C13—C14 | 118.5 (2) | C15—C16—C17—C12 | 59.4 (2) |
N2—C8—C13—C15 | −123.3 (2) |
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.95 (2) | 2.17 (2) | 3.087 (2) | 162 (2) |
C3—H3···O1i | 0.93 | 2.47 | 3.381 (3) | 167 |
C9—H9···O1i | 0.98 | 2.33 | 3.210 (3) | 149 |
C9—H9···N2i | 0.98 | 2.55 | 3.402 (3) | 145 |
C15—H15A···Cg1ii | 0.97 | 2.57 | 3.519 (3) | 164 |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H20N2O |
Mr | 268.35 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 120 |
a, b, c (Å) | 7.9698 (3), 17.5466 (8), 20.1350 (8) |
V (Å3) | 2815.7 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 0.62 |
Crystal size (mm) | 0.26 × 0.08 × 0.02 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.942, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7280, 2634, 1859 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.139, 1.03 |
No. of reflections | 2634 |
No. of parameters | 185 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.17, −0.23 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).
Cg1 is the centroid of the C2–C7 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···N2i | 0.95 (2) | 2.17 (2) | 3.087 (2) | 162 (2) |
C3—H3···O1i | 0.93 | 2.47 | 3.381 (3) | 167 |
C9—H9···O1i | 0.98 | 2.33 | 3.210 (3) | 149 |
C9—H9···N2i | 0.98 | 2.55 | 3.402 (3) | 145 |
C15—H15A···Cg1ii | 0.97 | 2.57 | 3.519 (3) | 164 |
Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1, y+1/2, −z+1/2. |
Footnotes
‡Additional correspondence author, e-mail: elemam5@hotmail.com.
Acknowledgements
The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University, is greatly appreciated. Financial support from the Spanish Ministerio de Economía y Competitividad (MAT2010–15094, MAT2006–01997, Factoría de Cristalización – Consolider Ingenio 2010, and FPI grant BES-2011–046948 to MSM-A) and FEDER are gratefully acknowledged.
References
Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47. CAS Google Scholar
Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656. CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. App. Cryst. 27, 435. Google Scholar
El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. Web of Science CrossRef PubMed CAS Google Scholar
El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o657–o658. CSD CrossRef CAS IUCr Journals Google Scholar
El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. Web of Science CrossRef CAS PubMed Google Scholar
Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El- Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242. Web of Science CrossRef PubMed CAS Google Scholar
Kia, R., Fun, H.-K. & Kargar, H. (2009). Acta Cryst. E65, o382. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moldovan, C. M., Oniga, O., Pârvu, A., Tiperciuc, B., Verite, P. & Pîrnău, A. (2011). Eur. J. Med. Chem. 46, 526–534. Web of Science CrossRef CAS PubMed Google Scholar
Oxford Diffraction (2010). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rouchal, M., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o1736. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sankar, C., Pandiarajan, K., Thiruvalluvar, A. & Gayathri, P. (2010). Acta Cryst. E66, o2841. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Togo, Y., Hornick, R. B. & Dawkins, A. T. (1968). J. Am. Med. Assoc. 203, 1089–1094. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zheng, L., Wu, L., Zhao, B., Dong, W. & Miao, J. (2009). Bioorg. Med. Chem. 17, 1957–1962. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Togo et al., 1968) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010; El-Emam & Ibrahim, 1991). In continuation to our interest in the chemical and pharmacological properties of adamantane derivatives (Almutairi et al., 2012; El-Emam et al., 2012), we synthesized the title compound as a precursor for potential chemotherapeutic agents. Herein, we report on the synthesis and crystal structure of the title compound.
The title molecule, Fig. 1, is a functionalized hydrazine with benzoyl and adamantyl substituents attached to the two hydrazine nitrogen atoms, N1 and N2.
In the crystal, molecules are linked via N-H···N hydrogen bonds forming chains propagating along the a axis direction. There are also C-H···O, C-H···N and C-H···π interactions present within the chains (Table 1).