organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-2-tri­fluoro­methyl-3,4-di­hydro-2H-1-benzo­pyran-4-one

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 25 June 2012; accepted 27 June 2012; online 30 June 2012)

The heterocyclic ring in the title compound, C10H7F3O3, has a half-boat conformation with the hy­droxy-bearing C atom lying 0.595 (3) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.022 Å) in the direction of the hy­droxy O atom. Linear supra­molecular chains along the a axis, sustained by O—H⋯O hydrogen bonds between the hy­droxy H and ketone O atoms, feature in the crystal packing. These chains are connected into a three-dimensional architecture by C—H⋯O and C—H⋯F contacts.

Related literature

For an example of an anti­cipated product formed between the reaction of bis­(ethyl­idene)ethane-1,2-diamine with an anhydride, see: Asiri et al. (2011[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2659-o2660.]). For the crystal structure of a related compound, see: Wang et al. (1999[Wang, Q., Terreaux, C., Marston, A., Tan, R. X., Stoeckli-Evans, H. & Hostettmann, K. (1999). Planta Med. 65, 729-731.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7F3O3

  • Mr = 232.16

  • Triclinic, [P \overline 1]

  • a = 5.9516 (5) Å

  • b = 8.5188 (7) Å

  • c = 10.2036 (8) Å

  • α = 66.985 (8)°

  • β = 80.380 (7)°

  • γ = 78.311 (7)°

  • V = 464.05 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.528, Tmax = 1.000

  • 3161 measured reflections

  • 2126 independent reflections

  • 1665 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.171

  • S = 1.06

  • 2126 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2i 0.86 (3) 1.97 (3) 2.768 (2) 154 (3)
C2—H2⋯O1ii 0.95 2.60 3.444 (3) 148
C3—H3⋯F3iii 0.95 2.52 3.338 (3) 144
C8—H8A⋯F1iv 0.99 2.51 3.033 (2) 113
C8—H8B⋯O3v 0.99 2.56 3.547 (2) 175
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y, -z+2; (iii) x, y, z+1; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), was isolated unexpectedly from a reaction between N,N'-bis[1-(p-hydroxyhenyl)ethylidene]ethane-1,2-diamine and trifluoroacetic anhydride to yield the anticipated di-substituted ethylenediamine derivative in accord with literature precedents (Asiri et al., 2011).

In (I), Fig. 1, the heterocyclic ring has a half-boat conformation with the hydroxy bearing C9 atom lying 0.595 (3) Å out of the plane of the five remaining atoms [r.m.s. deviation = 0.022 Å] in the direction of the hydroxy O3 atom. A similar conformation was found in a literature precedent with phenyl rather than CF3 and with OH and two OMe substituents on the benzene ring (Wang et al., 1999).

In the crystal, linear supramolecular chains sustained by O—H···O hydrogen bonds between the hydroxy H and ketone-O atoms (Table 1), are formed along the a axis (Fig. 2). These are connected into a three-dimensional architecture by C—H···O and C—H···F contacts (Fig. 3 and Table 1).

Related literature top

For an example of an anticipated product formed between the reaction of bis(ethylidene)ethane-1,2-diamine with an anhydride, see: Asiri et al. (2011). For the crystal structure of a related compound, see: Wang et al. (1999).

Experimental top

A mixture of N,N'-bis[1-(p-hydroxyhenyl)ethylidene]ethane-1,2-diamine (0.01 M) in THF (30 ml) and trifluoroacetic anhydride (0.025 M) was refluxed for 2 h. The solid which separated on cooling was recrystallized from its ethanol solution. M. pt: 477–478 K. Yield: 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen-bound H-atom was located in a difference Fourier map and was refined freely.

Structure description top

The title compound, (I), was isolated unexpectedly from a reaction between N,N'-bis[1-(p-hydroxyhenyl)ethylidene]ethane-1,2-diamine and trifluoroacetic anhydride to yield the anticipated di-substituted ethylenediamine derivative in accord with literature precedents (Asiri et al., 2011).

In (I), Fig. 1, the heterocyclic ring has a half-boat conformation with the hydroxy bearing C9 atom lying 0.595 (3) Å out of the plane of the five remaining atoms [r.m.s. deviation = 0.022 Å] in the direction of the hydroxy O3 atom. A similar conformation was found in a literature precedent with phenyl rather than CF3 and with OH and two OMe substituents on the benzene ring (Wang et al., 1999).

In the crystal, linear supramolecular chains sustained by O—H···O hydrogen bonds between the hydroxy H and ketone-O atoms (Table 1), are formed along the a axis (Fig. 2). These are connected into a three-dimensional architecture by C—H···O and C—H···F contacts (Fig. 3 and Table 1).

For an example of an anticipated product formed between the reaction of bis(ethylidene)ethane-1,2-diamine with an anhydride, see: Asiri et al. (2011). For the crystal structure of a related compound, see: Wang et al. (1999).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain along the a axis in (I) mediated by O—H···O hydrogen bonds shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection along the b axis of the unit-cell contents of (I). The O—H···O, C—H···O and C—H···F interactions are shown as orange, blue and purple dashed lines, respectively.
2-Hydroxy-2-trifluoromethyl-3,4-dihydro-2H-1-benzopyran-4-one top
Crystal data top
C10H7F3O3Z = 2
Mr = 232.16F(000) = 236
Triclinic, P1Dx = 1.661 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9516 (5) ÅCell parameters from 1358 reflections
b = 8.5188 (7) Åθ = 2.6–27.5°
c = 10.2036 (8) ŵ = 0.16 mm1
α = 66.985 (8)°T = 100 K
β = 80.380 (7)°Block, colourless
γ = 78.311 (7)°0.30 × 0.30 × 0.15 mm
V = 464.05 (7) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2126 independent reflections
Radiation source: SuperNova (Mo) X-ray Source1665 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 811
Tmin = 0.528, Tmax = 1.000l = 1213
3161 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C10H7F3O3γ = 78.311 (7)°
Mr = 232.16V = 464.05 (7) Å3
Triclinic, P1Z = 2
a = 5.9516 (5) ÅMo Kα radiation
b = 8.5188 (7) ŵ = 0.16 mm1
c = 10.2036 (8) ÅT = 100 K
α = 66.985 (8)°0.30 × 0.30 × 0.15 mm
β = 80.380 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
2126 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1665 reflections with I > 2σ(I)
Tmin = 0.528, Tmax = 1.000Rint = 0.027
3161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.58 e Å3
2126 reflectionsΔρmin = 0.30 e Å3
149 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.0703 (2)0.18377 (19)0.58363 (13)0.0304 (4)
F20.8148 (2)0.01895 (17)0.63198 (13)0.0313 (4)
F30.7818 (2)0.26448 (18)0.45820 (12)0.0319 (4)
O10.7796 (2)0.16833 (18)0.82675 (13)0.0178 (3)
O20.1156 (2)0.4181 (2)0.79358 (15)0.0235 (4)
O30.7560 (3)0.43915 (19)0.64399 (14)0.0209 (4)
C10.6584 (3)0.2102 (3)0.93909 (19)0.0175 (4)
C20.7742 (4)0.1650 (3)1.0596 (2)0.0211 (5)
H20.92930.10851.06210.025*
C30.6602 (4)0.2034 (3)1.1755 (2)0.0232 (5)
H30.73780.17191.25830.028*
C40.4331 (4)0.2877 (3)1.1729 (2)0.0237 (5)
H40.35740.31411.25310.028*
C50.3191 (3)0.3325 (3)1.0531 (2)0.0213 (5)
H50.16410.38921.05140.026*
C60.4307 (3)0.2950 (3)0.93380 (19)0.0175 (4)
C70.3132 (3)0.3418 (3)0.8052 (2)0.0188 (4)
C80.4479 (3)0.2822 (3)0.6894 (2)0.0195 (4)
H8A0.41290.16720.70430.023*
H8B0.39970.36360.59500.023*
C90.7043 (3)0.2716 (3)0.68994 (19)0.0186 (4)
C100.8435 (3)0.1831 (3)0.59025 (19)0.0202 (5)
H3o0.893 (6)0.430 (5)0.666 (3)0.064 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0218 (7)0.0439 (9)0.0346 (7)0.0066 (6)0.0015 (5)0.0251 (7)
F20.0428 (9)0.0221 (7)0.0318 (7)0.0061 (6)0.0050 (6)0.0156 (6)
F30.0443 (9)0.0362 (8)0.0169 (6)0.0016 (6)0.0076 (5)0.0135 (6)
O10.0193 (7)0.0196 (8)0.0144 (6)0.0026 (6)0.0048 (5)0.0075 (6)
O20.0167 (7)0.0255 (8)0.0282 (8)0.0012 (6)0.0067 (6)0.0091 (7)
O30.0206 (8)0.0202 (8)0.0234 (7)0.0026 (6)0.0062 (6)0.0083 (6)
C10.0222 (10)0.0153 (10)0.0148 (9)0.0017 (8)0.0037 (8)0.0054 (8)
C20.0236 (11)0.0194 (11)0.0204 (9)0.0016 (8)0.0070 (8)0.0079 (8)
C30.0335 (12)0.0200 (11)0.0159 (9)0.0024 (9)0.0064 (8)0.0057 (8)
C40.0314 (12)0.0222 (11)0.0180 (9)0.0064 (9)0.0035 (8)0.0094 (9)
C50.0189 (10)0.0193 (11)0.0256 (10)0.0029 (8)0.0018 (8)0.0085 (9)
C60.0182 (10)0.0172 (10)0.0169 (9)0.0043 (8)0.0008 (7)0.0057 (8)
C70.0161 (10)0.0187 (10)0.0221 (9)0.0067 (8)0.0033 (8)0.0055 (8)
C80.0181 (10)0.0224 (11)0.0195 (9)0.0040 (8)0.0055 (8)0.0073 (8)
C90.0218 (10)0.0198 (10)0.0156 (9)0.0005 (8)0.0067 (8)0.0080 (8)
C100.0234 (11)0.0224 (11)0.0177 (9)0.0044 (8)0.0037 (8)0.0092 (8)
Geometric parameters (Å, º) top
F1—C101.341 (2)C3—C41.395 (3)
F2—C101.332 (2)C3—H30.9500
F3—C101.328 (2)C4—C51.381 (3)
O1—C11.379 (2)C4—H40.9500
O1—C91.419 (2)C5—C61.405 (3)
O2—C71.223 (3)C5—H50.9500
O3—C91.400 (2)C6—C71.467 (3)
O3—H3o0.86 (3)C7—C81.512 (3)
C1—C21.393 (2)C8—C91.511 (3)
C1—C61.400 (3)C8—H8A0.9900
C2—C31.382 (3)C8—H8B0.9900
C2—H20.9500C9—C101.534 (3)
C1—O1—C9115.51 (14)O2—C7—C8121.50 (17)
C9—O3—H3o107 (2)C6—C7—C8115.72 (17)
O1—C1—C2116.74 (17)C9—C8—C7111.33 (15)
O1—C1—C6122.38 (16)C9—C8—H8A109.4
C2—C1—C6120.89 (17)C7—C8—H8A109.4
C3—C2—C1119.07 (19)C9—C8—H8B109.4
C3—C2—H2120.5C7—C8—H8B109.4
C1—C2—H2120.5H8A—C8—H8B108.0
C2—C3—C4121.14 (18)O3—C9—O1111.26 (14)
C2—C3—H3119.4O3—C9—C8108.60 (17)
C4—C3—H3119.4O1—C9—C8111.81 (16)
C5—C4—C3119.62 (18)O3—C9—C10108.97 (16)
C5—C4—H4120.2O1—C9—C10104.54 (16)
C3—C4—H4120.2C8—C9—C10111.61 (15)
C4—C5—C6120.47 (19)F3—C10—F2107.65 (15)
C4—C5—H5119.8F3—C10—F1107.39 (16)
C6—C5—H5119.8F2—C10—F1106.72 (17)
C1—C6—C5118.81 (17)F3—C10—C9110.52 (17)
C1—C6—C7119.75 (17)F2—C10—C9112.73 (16)
C5—C6—C7121.44 (18)F1—C10—C9111.56 (15)
O2—C7—C6122.72 (18)
C9—O1—C1—C2154.98 (17)O2—C7—C8—C9152.82 (19)
C9—O1—C1—C624.6 (2)C6—C7—C8—C930.0 (2)
O1—C1—C2—C3179.77 (17)C1—O1—C9—O370.0 (2)
C6—C1—C2—C30.7 (3)C1—O1—C9—C851.6 (2)
C1—C2—C3—C40.6 (3)C1—O1—C9—C10172.49 (15)
C2—C3—C4—C50.5 (3)C7—C8—C9—O369.3 (2)
C3—C4—C5—C60.5 (3)C7—C8—C9—O153.8 (2)
O1—C1—C6—C5179.84 (16)C7—C8—C9—C10170.52 (16)
C2—C1—C6—C50.6 (3)O3—C9—C10—F363.4 (2)
O1—C1—C6—C70.2 (3)O1—C9—C10—F3177.59 (14)
C2—C1—C6—C7179.72 (17)C8—C9—C10—F356.6 (2)
C4—C5—C6—C10.5 (3)O3—C9—C10—F2176.10 (15)
C4—C5—C6—C7179.83 (18)O1—C9—C10—F257.1 (2)
C1—C6—C7—O2178.94 (18)C8—C9—C10—F264.0 (2)
C5—C6—C7—O21.4 (3)O3—C9—C10—F156.0 (2)
C1—C6—C7—C83.9 (3)O1—C9—C10—F163.0 (2)
C5—C6—C7—C8175.77 (17)C8—C9—C10—F1175.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.86 (3)1.97 (3)2.768 (2)154 (3)
C2—H2···O1ii0.952.603.444 (3)148
C3—H3···F3iii0.952.523.338 (3)144
C8—H8A···F1iv0.992.513.033 (2)113
C8—H8B···O3v0.992.563.547 (2)175
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+2; (iii) x, y, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H7F3O3
Mr232.16
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.9516 (5), 8.5188 (7), 10.2036 (8)
α, β, γ (°)66.985 (8), 80.380 (7), 78.311 (7)
V3)464.05 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.30 × 0.30 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.528, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3161, 2126, 1665
Rint0.027
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.171, 1.06
No. of reflections2126
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.30

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.86 (3)1.97 (3)2.768 (2)154 (3)
C2—H2···O1ii0.952.603.444 (3)148
C3—H3···F3iii0.952.523.338 (3)144
C8—H8A···F1iv0.992.513.033 (2)113
C8—H8B···O3v0.992.563.547 (2)175
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+2; (iii) x, y, z+1; (iv) x1, y, z; (v) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011). Acta Cryst. E67, o2659–o2660.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Terreaux, C., Marston, A., Tan, R. X., Stoeckli-Evans, H. & Hostettmann, K. (1999). Planta Med. 65, 729–731.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds