metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­(2,2′-bi­pyridine-κ2N,N′)nickel(II) sulfate

aDepartment of Chemistry, Faculty of Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
*Correspondence e-mail: kittipongc@nu.ac.th

(Received 27 May 2012; accepted 4 June 2012; online 16 June 2012)

The asymmetric unit of the title complex, [Ni(C10H8N2)(H2O)4]SO4, consists of a complex [Ni(bipy)(H2O)4]2+ cation (bipy = 2,2′-bipyridine) and a non-coordinating [SO4]2− anion. The NiII atom is six-coordinated in a distorted octa­hedral geometry defined by the two N atoms of the bipy ligand and four water O atoms. The crystal structure contains extensive classical O—H⋯O hydrogen bonds, which link the ions into a two-dimensional array in the ab plane. Layers are connected into a three-dimensional supra­molecular structure by C—H⋯O inter­actions.

Related literature

For the structures and properties of coordination complexes with bipy as a ligand, see: Graaf & Sousa (2010[Graaf, C. & Sousa, C. (2010). Chem. Eur. J. 16, 4550-4556.]); Baruah et al. (2007[Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4478-4488.]); Schubert & Eschbaumer (2002[Schubert, U. S. & Eschbaumer, C. (2002). Angew. Chem. Int. Ed. 41, 2892-2926.]); Harvey et al. (1999[Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. (1999). Acta Cryst. C55, 1457-1460.]); Damrauer et al. (1997[Damrauer, N. H., Cerullo, G., Yeh, A., Boussie, T. R., Shank, C. V. & McCusker, J. K. (1997). Science, 275, 54-57.]); Healy et al. (1984[Healy, P. C., Patrick, J. M. & White, A. H. (1984). Aust. J. Chem. 37, 921-928.])

[Scheme 1]

Experimental

Crystal data
  • [Ni(C10H8N2)(H2O)4]SO4

  • Mr = 383.02

  • Orthorhombic, P b c a

  • a = 12.3035 (7) Å

  • b = 11.6560 (7) Å

  • c = 20.7112 (10) Å

  • V = 2970.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.707, Tmax = 0.755

  • 11218 measured reflections

  • 3626 independent reflections

  • 3024 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.07

  • 3626 reflections

  • 231 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O5 0.86 (2) 1.90 (2) 2.754 (2) 173 (3)
O1—H1A⋯O7i 0.86 (2) 1.83 (2) 2.683 (2) 173 (4)
O2—H2B⋯O5ii 0.86 (2) 1.87 (2) 2.728 (2) 174 (3)
O2—H2A⋯O8iii 0.86 (2) 1.97 (2) 2.800 (2) 162 (3)
O3—H3B⋯O6iii 0.86 (2) 1.89 (2) 2.736 (2) 168 (4)
O3—H3A⋯O8i 0.86 (2) 1.98 (2) 2.840 (2) 172 (3)
O4—H4B⋯O6 0.86 (2) 1.86 (2) 2.712 (2) 172 (3)
O4—H4A⋯O8ii 0.86 (2) 1.90 (2) 2.760 (2) 174 (3)
C8—H8⋯O6iv 0.93 2.55 3.310 (3) 139
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2,2'-Bipyridine (bipy) is well known as a bidentate chelating ligand. It is one of the most widely used ligands in coordination and supramolecular chemistry. Nowadays, numerous transition metal complexes containing the bipy ligand are known in the literature. These include the mononuclear compound contains the [M(bipy)n]2+ core (n = 1–3). Some of these complexes were found to have interesting catalytic (Schubert & Eschbaumer 2002), magnetic (Graaf & Sousa 2010) and optic (Damrauer et al., 1997) properties. Here, we report the crystal structure of title compound, I, a new member of [M(bipy)n]2+ family, which is isostructural to [Cd(bipy)(H2O)4]SO4 (Harvey et al., 1999).

The asymmetric unit of I consists of the cationic complex [Ni(bipy)(H2O)4]2+ and an uncoordinated [SO4]2- anion as shown in Fig. 1. The NiII atom displays a distorted octahedral environment. The two bipy N atoms and two water O atoms (O3 and O4) define an equatorial plane with a maximum deviation of -0.069 (1) Å for atom N2 and with the Ni1 atom lying 0.007 (1) Å out of the plane. The O atoms (O1 and O2) of the remaining two water molecules complete the octahedron in the axial positions, Table 1. The bipy ligand in I exhibits the usual acute N···N bite distances of 2.641 (2) Å [N1···N2]. The bite angle is 79.3 (1)° for N1—Ni1—N2. These are one of the main factors accounting for the distortion from the ideal octahedral geometry (90°) of the NiII centre. The mean Ni—N (2.069 (2) Å) and Ni—O (2.068 (2) Å) bond lengths are in agreement with those reported for other bipy complexes of nickel such as [Ni(bipy)(H2O)4]SO4.2H2O (Healy et al., 1984) and [Ni(bipy)(H2O)4][C12H8O8] (Baruah et al., 2007).

Fig. 2 shows the packing of I viewed along the b axis. An extensive classical O–H···O hydrogen bonds link the [Ni(bipy)(H2O)4]2+ cations to the [SO4]2- anions forming a two dimensional sheet in the ab plane, Fig. 3 and Table 2. There are also C–H···O interactions involving the ligated bipy molecules and the [SO4]2- anions, Fig. 4. The latter interactions link the two-dimensional sheets into a three-dimensional supramolecular network.

Related literature top

For the structures and properties of coordination complexes with bipy as a ligand, see: Graaf & Sousa (2010); Baruah et al. (2007); Schubert & Eschbaumer (2002); Harvey et al. (1999); Damrauer et al. (1997); Healy et al. (1984)

Experimental top

The title compound was obtained unexpectedly in an attempt to synthesize the cyanide-bridged bimetallic silver(I)-nickel(II) coordination polymers. In a typical experiment, K[Ag(CN)2] (40.1 mg, 0.2 mmol) was dissolved in 3 ml of DMF/MeCN, and this was pipetted into one side of the H-tube. NiSO4.6H2O (52.7 mg, 0.2 mmol) and bipy (31.1 mg, 0.2 mmol) were dissolved in 3 ml of DMF/MeCN, and this was pipetted into the other side arm of the H-tube. The H-tube was then carefully filled with distilled water. Upon slow diffusion for two weeks, blue block-shaped single crystals of I were formed in the silver-containing side of the H-tube. Yield: 25.8 mg (64% based on K[Ag(CN2]).

Refinement top

The C-bound hydrogen atoms were placed in the geometrically idealized positions based on chemical coordinations and constrained to ride on their parent atom positions with a C–H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) for aromatic. The water-bound hydrogen atoms were located in a difference Fourier map and refined being in their as-found positions with the O—H distance = 0.86±0.01 Å.

Structure description top

2,2'-Bipyridine (bipy) is well known as a bidentate chelating ligand. It is one of the most widely used ligands in coordination and supramolecular chemistry. Nowadays, numerous transition metal complexes containing the bipy ligand are known in the literature. These include the mononuclear compound contains the [M(bipy)n]2+ core (n = 1–3). Some of these complexes were found to have interesting catalytic (Schubert & Eschbaumer 2002), magnetic (Graaf & Sousa 2010) and optic (Damrauer et al., 1997) properties. Here, we report the crystal structure of title compound, I, a new member of [M(bipy)n]2+ family, which is isostructural to [Cd(bipy)(H2O)4]SO4 (Harvey et al., 1999).

The asymmetric unit of I consists of the cationic complex [Ni(bipy)(H2O)4]2+ and an uncoordinated [SO4]2- anion as shown in Fig. 1. The NiII atom displays a distorted octahedral environment. The two bipy N atoms and two water O atoms (O3 and O4) define an equatorial plane with a maximum deviation of -0.069 (1) Å for atom N2 and with the Ni1 atom lying 0.007 (1) Å out of the plane. The O atoms (O1 and O2) of the remaining two water molecules complete the octahedron in the axial positions, Table 1. The bipy ligand in I exhibits the usual acute N···N bite distances of 2.641 (2) Å [N1···N2]. The bite angle is 79.3 (1)° for N1—Ni1—N2. These are one of the main factors accounting for the distortion from the ideal octahedral geometry (90°) of the NiII centre. The mean Ni—N (2.069 (2) Å) and Ni—O (2.068 (2) Å) bond lengths are in agreement with those reported for other bipy complexes of nickel such as [Ni(bipy)(H2O)4]SO4.2H2O (Healy et al., 1984) and [Ni(bipy)(H2O)4][C12H8O8] (Baruah et al., 2007).

Fig. 2 shows the packing of I viewed along the b axis. An extensive classical O–H···O hydrogen bonds link the [Ni(bipy)(H2O)4]2+ cations to the [SO4]2- anions forming a two dimensional sheet in the ab plane, Fig. 3 and Table 2. There are also C–H···O interactions involving the ligated bipy molecules and the [SO4]2- anions, Fig. 4. The latter interactions link the two-dimensional sheets into a three-dimensional supramolecular network.

For the structures and properties of coordination complexes with bipy as a ligand, see: Graaf & Sousa (2010); Baruah et al. (2007); Schubert & Eschbaumer (2002); Harvey et al. (1999); Damrauer et al. (1997); Healy et al. (1984)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the packing of I along the b axis.
[Figure 3] Fig. 3. Two-dimensional sheet in the ab plane where ions are linked via classical O—H···O hydrogen bonds in I. Bipy molecules are omitted for clarity.
[Figure 4] Fig. 4. A view of the weak C—H···O hydrogen bond (a) in I. These serve to connect the layers into a three-dimensional architecture.
Tetraaqua(2,2'-bipyridyl-κ2N,N')nickel(II) sulfate top
Crystal data top
[Ni(C10H8N2)(H2O)4]SO4F(000) = 1584
Mr = 383.02Dx = 1.713 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 12.3035 (7) ŵ = 1.49 mm1
b = 11.6560 (7) ÅT = 298 K
c = 20.7112 (10) ÅBlock, blue
V = 2970.2 (3) Å30.25 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3626 independent reflections
Radiation source: fine-focus sealed tube3024 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 8 pixels mm-1θmax = 30.5°, θmin = 2.0°
ω and φ scansh = 017
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
k = 016
Tmin = 0.707, Tmax = 0.755l = 019
11218 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0322P)2 + 3.2213P]
where P = (Fo2 + 2Fc2)/3
3626 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.58 e Å3
12 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ni(C10H8N2)(H2O)4]SO4V = 2970.2 (3) Å3
Mr = 383.02Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.3035 (7) ŵ = 1.49 mm1
b = 11.6560 (7) ÅT = 298 K
c = 20.7112 (10) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
3626 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3024 reflections with I > 2σ(I)
Tmin = 0.707, Tmax = 0.755Rint = 0.045
11218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.58 e Å3
3626 reflectionsΔρmin = 0.70 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.05162 (2)0.72886 (2)0.655841 (16)0.01042 (10)
S10.25226 (4)0.98567 (4)0.69683 (3)0.01034 (14)
O10.10901 (13)0.73405 (14)0.62681 (9)0.0138 (4)
N10.07768 (16)0.56644 (16)0.61777 (11)0.0128 (4)
C10.0689 (2)0.4662 (2)0.64883 (14)0.0162 (5)
H10.04530.46650.69150.019*
O20.20770 (14)0.72708 (14)0.69286 (9)0.0133 (4)
N20.09637 (16)0.77000 (16)0.56277 (11)0.0134 (4)
C20.0934 (2)0.3618 (2)0.62007 (14)0.0184 (6)
H20.08710.29370.64310.022*
O30.00380 (14)0.67614 (14)0.74609 (9)0.0150 (4)
C30.1271 (2)0.3612 (2)0.55698 (14)0.0208 (6)
H30.14400.29230.53660.025*
O40.04198 (14)0.89878 (14)0.68080 (10)0.0170 (4)
C40.1357 (2)0.4641 (2)0.52378 (14)0.0178 (5)
H40.15760.46510.48080.021*
O50.25137 (14)0.85952 (13)0.70127 (9)0.0172 (4)
C50.11122 (18)0.56556 (19)0.55584 (13)0.0128 (5)
O60.13912 (13)1.02854 (14)0.69611 (8)0.0142 (4)
C60.11779 (18)0.67945 (19)0.52374 (13)0.0133 (5)
O70.30835 (14)1.02193 (14)0.63785 (9)0.0157 (4)
C70.1406 (2)0.6931 (2)0.45869 (14)0.0185 (6)
H70.15780.63000.43320.022*
O80.30946 (13)1.03373 (13)0.75434 (8)0.0137 (4)
C80.1376 (2)0.8021 (2)0.43219 (14)0.0201 (6)
H80.15080.81300.38840.024*
C90.1145 (2)0.8947 (2)0.47183 (14)0.0214 (6)
H90.11220.96870.45520.026*
C100.0950 (2)0.8751 (2)0.53642 (14)0.0174 (6)
H100.08010.93750.56290.021*
H1A0.134 (3)0.6650 (17)0.6270 (18)0.048 (11)*
H2A0.233 (3)0.6601 (17)0.7021 (14)0.030 (9)*
H3A0.0628 (19)0.636 (3)0.7451 (17)0.042 (11)*
H4A0.092 (2)0.937 (3)0.7005 (15)0.040 (10)*
H1B0.152 (3)0.778 (2)0.6482 (16)0.041 (11)*
H2B0.220 (3)0.773 (2)0.7246 (14)0.048 (12)*
H3B0.046 (3)0.639 (3)0.766 (2)0.071 (15)*
H4B0.0191 (18)0.934 (3)0.6840 (17)0.039 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00799 (13)0.01272 (14)0.0105 (3)0.00003 (10)0.00070 (11)0.00085 (11)
S10.0079 (2)0.0117 (2)0.0114 (4)0.00052 (17)0.0005 (2)0.0002 (2)
O10.0087 (7)0.0155 (7)0.0173 (12)0.0007 (6)0.0004 (7)0.0022 (7)
N10.0111 (9)0.0163 (9)0.0109 (15)0.0006 (7)0.0008 (8)0.0005 (8)
C10.0152 (11)0.0184 (11)0.0149 (18)0.0010 (9)0.0010 (9)0.0009 (9)
O20.0111 (7)0.0148 (7)0.0139 (12)0.0004 (6)0.0015 (7)0.0002 (7)
N20.0094 (8)0.0162 (9)0.0146 (14)0.0007 (7)0.0011 (8)0.0004 (8)
C20.0163 (11)0.0163 (10)0.0227 (19)0.0002 (9)0.0029 (10)0.0012 (10)
O30.0112 (8)0.0205 (8)0.0132 (12)0.0009 (6)0.0008 (7)0.0023 (7)
C30.0189 (12)0.0195 (11)0.024 (2)0.0035 (9)0.0010 (10)0.0055 (10)
O40.0098 (8)0.0171 (8)0.0241 (13)0.0013 (6)0.0022 (7)0.0062 (7)
C40.0171 (11)0.0221 (11)0.0143 (18)0.0030 (9)0.0027 (10)0.0046 (10)
O50.0198 (9)0.0115 (7)0.0204 (12)0.0015 (6)0.0071 (7)0.0001 (7)
C50.0080 (9)0.0179 (10)0.0126 (17)0.0005 (8)0.0000 (9)0.0010 (9)
O60.0083 (7)0.0191 (8)0.0153 (12)0.0020 (6)0.0005 (6)0.0008 (7)
C60.0091 (9)0.0172 (10)0.0137 (17)0.0006 (8)0.0020 (8)0.0011 (9)
O70.0159 (8)0.0187 (8)0.0125 (11)0.0025 (6)0.0041 (7)0.0019 (7)
C70.0149 (11)0.0250 (11)0.0157 (19)0.0006 (9)0.0013 (10)0.0012 (10)
O80.0115 (7)0.0159 (7)0.0137 (12)0.0003 (6)0.0025 (7)0.0005 (6)
C80.0160 (11)0.0304 (13)0.0139 (18)0.0021 (10)0.0033 (10)0.0049 (11)
C90.0161 (11)0.0243 (12)0.024 (2)0.0006 (9)0.0015 (10)0.0105 (11)
C100.0154 (11)0.0166 (10)0.0201 (19)0.0028 (9)0.0053 (10)0.0027 (10)
Geometric parameters (Å, º) top
Ni1—O42.0504 (17)C2—C31.371 (4)
Ni1—N22.061 (2)C2—H20.9300
Ni1—O12.0667 (17)O3—H3A0.864 (18)
Ni1—O22.0679 (17)O3—H3B0.862 (18)
Ni1—N12.0757 (19)C3—C41.387 (4)
Ni1—O32.0824 (19)C3—H30.9300
S1—O71.4653 (19)O4—H4A0.861 (18)
S1—O51.4732 (16)O4—H4B0.861 (18)
S1—O61.4791 (17)C4—C51.390 (3)
S1—O81.4926 (18)C4—H40.9300
O1—H1A0.862 (18)C5—C61.487 (3)
O1—H1B0.862 (18)C6—C71.386 (4)
N1—C11.338 (3)C7—C81.384 (4)
N1—C51.347 (3)C7—H70.9300
C1—C21.388 (3)C8—C91.386 (4)
C1—H10.9300C8—H80.9300
O2—H2A0.862 (17)C9—C101.378 (4)
O2—H2B0.863 (18)C9—H90.9300
N2—C101.341 (3)C10—H100.9300
N2—C61.355 (3)
O4—Ni1—N291.51 (8)C6—N2—Ni1115.37 (16)
O4—Ni1—O189.41 (7)C3—C2—C1118.7 (2)
N2—Ni1—O188.66 (8)C3—C2—H2120.7
O4—Ni1—O288.28 (7)C1—C2—H2120.7
N2—Ni1—O295.80 (8)Ni1—O3—H3A114 (2)
O1—Ni1—O2175.03 (8)Ni1—O3—H3B111 (3)
O4—Ni1—N1170.30 (8)H3A—O3—H3B109 (3)
N2—Ni1—N179.38 (8)C2—C3—C4119.4 (2)
O1—Ni1—N193.66 (7)C2—C3—H3120.3
O2—Ni1—N189.32 (7)C4—C3—H3120.3
O4—Ni1—O392.28 (8)Ni1—O4—H4A125 (2)
N2—Ni1—O3174.58 (7)Ni1—O4—H4B122 (2)
O1—Ni1—O387.52 (7)H4A—O4—H4B110 (3)
O2—Ni1—O388.18 (7)C3—C4—C5118.9 (3)
N1—Ni1—O397.03 (8)C3—C4—H4120.6
O7—S1—O5110.09 (10)C5—C4—H4120.6
O7—S1—O6109.72 (10)N1—C5—C4121.9 (2)
O5—S1—O6109.32 (10)N1—C5—C6115.8 (2)
O7—S1—O8109.57 (10)C4—C5—C6122.3 (2)
O5—S1—O8109.16 (10)N2—C6—C7122.0 (2)
O6—S1—O8108.96 (10)N2—C6—C5114.7 (2)
Ni1—O1—H1A108 (3)C7—C6—C5123.3 (2)
Ni1—O1—H1B117 (3)C8—C7—C6119.1 (2)
H1A—O1—H1B109 (3)C8—C7—H7120.5
C1—N1—C5118.4 (2)C6—C7—H7120.5
C1—N1—Ni1126.97 (18)C7—C8—C9119.0 (3)
C5—N1—Ni1114.57 (15)C7—C8—H8120.5
N1—C1—C2122.8 (3)C9—C8—H8120.5
N1—C1—H1118.6C10—C9—C8118.8 (2)
C2—C1—H1118.6C10—C9—H9120.6
Ni1—O2—H2A115 (2)C8—C9—H9120.6
Ni1—O2—H2B116 (3)N2—C10—C9123.0 (2)
H2A—O2—H2B110 (3)N2—C10—H10118.5
C10—N2—C6118.1 (2)C9—C10—H10118.5
C10—N2—Ni1126.14 (18)
O4—Ni1—N1—C1158.1 (4)C1—C2—C3—C40.0 (4)
N2—Ni1—N1—C1178.5 (2)C2—C3—C4—C50.8 (4)
O1—Ni1—N1—C193.6 (2)C1—N1—C5—C40.5 (3)
O2—Ni1—N1—C182.5 (2)Ni1—N1—C5—C4177.86 (18)
O3—Ni1—N1—C15.6 (2)C1—N1—C5—C6179.2 (2)
O4—Ni1—N1—C519.0 (6)Ni1—N1—C5—C63.5 (2)
N2—Ni1—N1—C51.39 (16)C3—C4—C5—N11.1 (4)
O1—Ni1—N1—C589.34 (16)C3—C4—C5—C6179.7 (2)
O2—Ni1—N1—C594.63 (16)C10—N2—C6—C71.7 (3)
O3—Ni1—N1—C5177.28 (16)Ni1—N2—C6—C7174.92 (19)
C5—N1—C1—C20.4 (3)C10—N2—C6—C5176.5 (2)
Ni1—N1—C1—C2176.60 (18)Ni1—N2—C6—C53.2 (3)
O4—Ni1—N2—C109.6 (2)N1—C5—C6—N24.5 (3)
O1—Ni1—N2—C1079.7 (2)C4—C5—C6—N2176.9 (2)
O2—Ni1—N2—C1098.1 (2)N1—C5—C6—C7173.6 (2)
N1—Ni1—N2—C10173.7 (2)C4—C5—C6—C75.0 (4)
O3—Ni1—N2—C10124.8 (7)N2—C6—C7—C82.4 (4)
O4—Ni1—N2—C6177.75 (17)C5—C6—C7—C8175.5 (2)
O1—Ni1—N2—C692.87 (17)C6—C7—C8—C91.6 (4)
O2—Ni1—N2—C689.33 (17)C7—C8—C9—C100.2 (4)
N1—Ni1—N2—C61.11 (16)C6—N2—C10—C90.1 (4)
O3—Ni1—N2—C647.8 (8)Ni1—N2—C10—C9172.58 (19)
N1—C1—C2—C30.7 (4)C8—C9—C10—N20.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O50.86 (2)1.90 (2)2.754 (2)173 (3)
O1—H1A···O7i0.86 (2)1.83 (2)2.683 (2)173 (4)
O2—H2B···O5ii0.86 (2)1.87 (2)2.728 (2)174 (3)
O2—H2A···O8iii0.86 (2)1.97 (2)2.800 (2)162 (3)
O3—H3B···O6iii0.86 (2)1.89 (2)2.736 (2)168 (4)
O3—H3A···O8i0.86 (2)1.98 (2)2.840 (2)172 (3)
O4—H4B···O60.86 (2)1.86 (2)2.712 (2)172 (3)
O4—H4A···O8ii0.86 (2)1.90 (2)2.760 (2)174 (3)
C8—H8···O6iv0.932.553.310 (3)139
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y, z+3/2; (iii) x, y1/2, z+3/2; (iv) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C10H8N2)(H2O)4]SO4
Mr383.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)12.3035 (7), 11.6560 (7), 20.7112 (10)
V3)2970.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.707, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
11218, 3626, 3024
Rint0.045
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.07
No. of reflections3626
No. of parameters231
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.70

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O50.862 (18)1.897 (19)2.754 (2)173 (3)
O1—H1A···O7i0.862 (18)1.825 (19)2.683 (2)173 (4)
O2—H2B···O5ii0.863 (18)1.868 (19)2.728 (2)174 (3)
O2—H2A···O8iii0.862 (17)1.97 (2)2.800 (2)162 (3)
O3—H3B···O6iii0.862 (18)1.89 (2)2.736 (2)168 (4)
O3—H3A···O8i0.864 (18)1.982 (19)2.840 (2)172 (3)
O4—H4B···O60.861 (18)1.857 (19)2.712 (2)172 (3)
O4—H4A···O8ii0.861 (18)1.903 (18)2.760 (2)174 (3)
C8—H8···O6iv0.932.553.310 (3)139
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y, z+3/2; (iii) x, y1/2, z+3/2; (iv) x, y+2, z+1.
 

Acknowledgements

This work was supported financially by the Thailand Research Funds (project approval No. MRG5480189).

References

First citationBaruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4478–4488.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamrauer, N. H., Cerullo, G., Yeh, A., Boussie, T. R., Shank, C. V. & McCusker, J. K. (1997). Science, 275, 54–57.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGraaf, C. & Sousa, C. (2010). Chem. Eur. J. 16, 4550–4556.  Web of Science PubMed Google Scholar
First citationHarvey, M., Baggio, S., Baggio, R. & Mombrú, A. (1999). Acta Cryst. C55, 1457–1460.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHealy, P. C., Patrick, J. M. & White, A. H. (1984). Aust. J. Chem. 37, 921–928.  CSD CrossRef CAS Google Scholar
First citationSchubert, U. S. & Eschbaumer, C. (2002). Angew. Chem. Int. Ed. 41, 2892–2926.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds