organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[4-(4-nitro­benz­yl­oxy)phen­yl]propano­ate

aInstitute for Frontier Materials, SRC for Biotechnology, Chemistry and Systems Biology, Faculty of Science and Technology, Deakin University, Victoria 3216, Australia, and bQueensland Micro and Nanotechnology Centre, Griffith University, Brisbane 4111, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 29 May 2012; accepted 30 May 2012; online 2 June 2012)

The title compound, C17H17NO5, crystallizes with two mol­ecules (A and B) in the asymmetric unit. The conformational structures of the two mol­ecules show small but significant differences in the dihedral angles between the two aryl rings with values of 18.8 (1)° for mol­ecule A and 7.5 (1)° for mol­ecule B. In mol­ecule A, the propano­ate group is twisted out of the plane of the benzene group [Car—Car—C—C torsion angle = −44.9 (2)°], while for mol­ecule B, this group lies closer to the plane [Car—Car—C—C torsion angle = 8.6 (3)°]. C—H⋯O inter­actions characterize the crystal-packing inter­actions in this compound.

Related literature

For background to the functionalization of carbon nanostructures and fibres, see: Forohar et al. (2011[Forohar, F., Whitaker, C. M., Uber, I. C. & Bellitto, V. (2011). J. Energ. Mater. 30, 55-71.]); Moradi et al. (2012[Moradi, O., Yari, M., Zare, K., Mirza, B. & Najafi, F. (2012). Fullerene Nanotub. Carbon Nanostruct. 20, 138-151.]); Nierengarten et al. (2004[Nierengarten, J. F., Guttiérez-Nava, M., Zhang, S., Masson, P., Oswald, L., Bourgogne, C., Rio, Y., Accorsi, G., Armaroli, N. & Setayesh, S. (2004). Carbon, 42, 1077-1083.]). For the synthesis, see: Greene et al. (1999[Greene, T. W. & Wurs, P. G. M. (1999). In Protecting groups in Organic Synthesis, 3rd ed. Brisbane: John Wiley & Sons Inc.]). For related structures, see: Li & Chen (2008[Li, M. & Chen, X. (2008). Acta Cryst. E64, o2291.]); Wang et al. (2007[Wang, S.-Q., Cao, J. & Liu, X.-J. (2007). Acta Cryst. E63, o683-o684.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO5

  • Mr = 315.32

  • Triclinic, [P \overline 1]

  • a = 10.7434 (5) Å

  • b = 10.9408 (5) Å

  • c = 14.7225 (6) Å

  • α = 100.085 (4)°

  • β = 102.451 (4)°

  • γ = 110.329 (4)°

  • V = 1524.34 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 223 K

  • 0.48 × 0.30 × 0.27 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.953, Tmax = 0.973

  • 10836 measured reflections

  • 5352 independent reflections

  • 4439 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.113

  • S = 1.02

  • 5352 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3 0.95 2.43 2.757 (2) 100
C6—H6⋯O6i 0.95 2.53 3.362 (2) 146
C19—H19⋯O2ii 0.95 2.55 3.430 (2) 153
C20—H20⋯O8 0.95 2.40 2.736 (2) 101
C7—H72⋯O9 0.95 2.49 3.336 (3) 149
Symmetry codes: (i) x-1, y, z+1; (ii) x+1, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]) and SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: TEXSAN and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of the title compound 1 was determined as part of an ongoing project investigating the surface functionalization of carbon nanostructures and carbon fibers, which have massive application in chemistry and materials science, respectively (Forohar et al., 2011; Moradi et al., 2012; Nierengarten et al., 2004). The oxidized nitro group present on the aryl ring serves as an excellent diagnostic handle for surface characterization using X-Ray Photoelectron Spectroscopy (XPS). This compound provides a synthetically versatile scaffold with an alkyl carboxyl group which can be used for compound derivatization and surface attachment strategies. Additionally the 4-nitrophenyl group serves as an excellent protecting group for alcohols, including phenols, which can readily be removed by hydrogenolysis or electrolytically (Greene et al., 1999).

The compound crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The bond lengths and angles for each molecule are in accord with related structures (e.g. Li & Chen, 2008; Wang et al., 2007). The conformational structure of the two molecules show small but significant differences in the dihedral angles between the two aryl rings with values of 18.8 (1)° for molecule A and 7.5 (1)° for molecule B. In molecule A, the propanoate group is twisted out of the plane of the phenyl group with the C12—C11—C14—C15 torsion angle = -44.9 (2)°, while for molecule B, this group lies closer to the plane with the torsion angle C29—C30—C31—C32 = 8.6 (3)°. C—H···O interactions characterize the crystal packing interactions in this compound (Table 1).

Related literature top

For background to the functionalization of carbon nanostructures and fibres, see: Forohar et al. (2011); Moradi et al. (2012); Nierengarten et al. (2004). For the synthesis, see: Greene et al. (1999). For related structures, see: Li & Chen (2008); Wang et al. (2007).

Experimental top

To a solution of (CH3)2CO (10 ml) and methyl 4-hydroxyphenylpropanoate (0.194 g, 1.28 mmol), was added K2CO3 (0.195 g, 1.41 mmol) followed by reflux at 55 °C for 1 h. Nitrobenzyl bromide (0.305 g, 1.41 mmol) and NaI (0.192 g, 1.28 mmol) were added to the solution and the reaction stirred a further 15 h at 55 °C (Fig. 2). The resulting crude mixture was filtered, and the residual precipitate washed with acetone and diethyl ether. The organic phases were combined, dried over MgSO4, and solvent removed in vacuo. Purification by column chromatography (9:1, PET ether:ethyl acetate) gave a colourless crystalline solid was confirmed to be the desired propanoate 1 (51%, 0.206 g). The purified solid was dissolved in toluene and slowly evaporated over 3 days to give well formed single crystals suitable for X-ray diffraction studies. ν(max) cm -1: 2922 (aromatic C—H), 2830 (methyl C—H, aliphatic –CH2–), 1728 (ester C=O), 1511 (aromatic C—C=C), 1160 (ether C—O—C). 1H NMR (270 MHz, CDCl3): δ= 8.23 (d, 2H, 3JHH= 8.64 Hz, ArH), 7.59 (d, 2H, 3JHH = 8.37 Hz, ArH), 7.12 (d, 2H, 3JHH = 8.64 Hz, ArH), 6.87 (d, 2H, 3JHH = 8.91 Hz, ArH), 5.14 (s, 2H, CH2Bn), 3.65 (s, 3H, CH3), 2.89 (t, 2H, 3JHH = 7.29, 8.10 Hz, CH2), 2.59 (t, 2H, 3JHH = 7.83 Hz, CH2). 13C NMR (400 MHz, CDCl3): δ = 173.41, 156.74, 147.65, 144.75, 133.69, 129.51, 127.66, 123.91, 114.95, 68.81, 51.69, 35.95, 30.15. M.P. 110.5–116.8 °C. MS, m/z found: MNa+ 338.09985, (C17H17NO5), MNa+ requires 338.09989.

Refinement top

The carbon-bound H atoms were constrained as riding atoms with C—H = 0.95 Å. Uiso(H) values were set at 1.2Ueq of the parent atom.

Structure description top

The structure of the title compound 1 was determined as part of an ongoing project investigating the surface functionalization of carbon nanostructures and carbon fibers, which have massive application in chemistry and materials science, respectively (Forohar et al., 2011; Moradi et al., 2012; Nierengarten et al., 2004). The oxidized nitro group present on the aryl ring serves as an excellent diagnostic handle for surface characterization using X-Ray Photoelectron Spectroscopy (XPS). This compound provides a synthetically versatile scaffold with an alkyl carboxyl group which can be used for compound derivatization and surface attachment strategies. Additionally the 4-nitrophenyl group serves as an excellent protecting group for alcohols, including phenols, which can readily be removed by hydrogenolysis or electrolytically (Greene et al., 1999).

The compound crystallizes with two independent molecules in the asymmetric unit (Fig. 1). The bond lengths and angles for each molecule are in accord with related structures (e.g. Li & Chen, 2008; Wang et al., 2007). The conformational structure of the two molecules show small but significant differences in the dihedral angles between the two aryl rings with values of 18.8 (1)° for molecule A and 7.5 (1)° for molecule B. In molecule A, the propanoate group is twisted out of the plane of the phenyl group with the C12—C11—C14—C15 torsion angle = -44.9 (2)°, while for molecule B, this group lies closer to the plane with the torsion angle C29—C30—C31—C32 = 8.6 (3)°. C—H···O interactions characterize the crystal packing interactions in this compound (Table 1).

For background to the functionalization of carbon nanostructures and fibres, see: Forohar et al. (2011); Moradi et al. (2012); Nierengarten et al. (2004). For the synthesis, see: Greene et al. (1999). For related structures, see: Li & Chen (2008); Wang et al. (2007).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of molecules A and B of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Reaction scheme for the preparation of the title compound.
Methyl 3-[4-(4-nitrobenzyloxy)phenyl]propanoate top
Crystal data top
C17H17NO5Z = 4
Mr = 315.32F(000) = 664
Triclinic, P1Dx = 1.374 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 10.7434 (5) ÅCell parameters from 3807 reflections
b = 10.9408 (5) Åθ = 3.3–32.3°
c = 14.7225 (6) ŵ = 0.10 mm1
α = 100.085 (4)°T = 223 K
β = 102.451 (4)°Block, colourless
γ = 110.329 (4)°0.48 × 0.30 × 0.27 mm
V = 1524.34 (14) Å3
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5352 independent reflections
Radiation source: Enhance (Mo) X-ray Source4439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1312
Tmin = 0.953, Tmax = 0.973l = 1617
10836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2 + 0.4295P]
where P = (Fo2 + 2Fc2)/3
5352 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H17NO5γ = 110.329 (4)°
Mr = 315.32V = 1524.34 (14) Å3
Triclinic, P1Z = 4
a = 10.7434 (5) ÅMo Kα radiation
b = 10.9408 (5) ŵ = 0.10 mm1
c = 14.7225 (6) ÅT = 223 K
α = 100.085 (4)°0.48 × 0.30 × 0.27 mm
β = 102.451 (4)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5352 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4439 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.973Rint = 0.023
10836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
5352 reflectionsΔρmin = 0.21 e Å3
415 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38540 (15)0.44558 (14)0.75138 (10)0.0536 (5)
O20.46341 (14)0.66419 (13)0.79376 (9)0.0442 (4)
O30.77377 (12)0.46142 (12)0.43690 (8)0.0361 (4)
O41.27684 (16)0.40392 (16)0.06737 (10)0.0584 (6)
O51.20730 (15)0.54474 (14)0.00107 (10)0.0527 (5)
N10.45760 (15)0.55726 (15)0.74593 (10)0.0353 (5)
C10.54163 (16)0.56360 (17)0.67913 (11)0.0296 (5)
C20.54634 (17)0.44504 (17)0.63167 (12)0.0327 (5)
C30.63065 (17)0.45237 (17)0.57180 (12)0.0328 (5)
C40.70756 (16)0.57620 (17)0.55938 (11)0.0295 (5)
C50.69733 (17)0.69303 (17)0.60625 (12)0.0324 (5)
C60.61555 (17)0.68788 (17)0.66726 (11)0.0320 (5)
C70.80603 (17)0.59037 (17)0.49921 (11)0.0327 (5)
C80.85805 (16)0.45517 (17)0.37967 (11)0.0295 (5)
C90.82338 (17)0.32775 (17)0.31975 (12)0.0339 (5)
C100.89918 (18)0.31117 (17)0.25746 (12)0.0337 (5)
C111.01274 (17)0.41883 (17)0.25341 (11)0.0298 (5)
C121.04699 (17)0.54498 (17)0.31516 (12)0.0334 (5)
C130.97100 (17)0.56459 (17)0.37775 (11)0.0327 (5)
C141.09481 (18)0.39482 (18)0.18584 (12)0.0358 (6)
C151.1326 (2)0.49946 (19)0.13152 (13)0.0433 (6)
C161.21374 (19)0.47485 (18)0.06437 (12)0.0383 (6)
C171.2821 (2)0.5335 (2)0.07054 (15)0.0580 (8)
O61.58768 (17)0.98754 (15)0.31164 (11)0.0605 (6)
O71.61594 (17)1.19282 (15)0.30738 (11)0.0609 (6)
O81.21905 (13)0.96352 (12)0.01260 (8)0.0394 (4)
O90.8214 (2)0.88318 (16)0.45479 (12)0.0749 (7)
O100.76481 (17)1.05413 (17)0.43287 (11)0.0653 (6)
N21.57398 (17)1.09104 (16)0.27962 (11)0.0419 (5)
C181.50153 (17)1.09276 (17)0.20589 (12)0.0332 (5)
C191.46203 (18)0.98197 (17)0.16998 (12)0.0331 (5)
C201.38825 (17)0.98116 (17)0.10369 (11)0.0325 (5)
C211.35429 (17)1.09054 (16)0.07405 (11)0.0310 (5)
C221.39757 (19)1.20163 (17)0.11081 (13)0.0386 (6)
C231.4716 (2)1.20386 (18)0.17701 (13)0.0398 (6)
C241.27354 (18)1.09383 (17)0.00279 (12)0.0348 (5)
C251.14952 (17)0.95195 (17)0.08110 (11)0.0324 (5)
C261.1068 (2)0.82765 (18)0.10146 (13)0.0396 (6)
C271.0374 (2)0.80774 (18)0.17001 (13)0.0393 (6)
C281.00838 (17)0.90992 (17)0.22033 (11)0.0323 (5)
C291.05156 (18)1.03236 (17)0.19785 (12)0.0356 (5)
C301.12121 (19)1.05475 (17)0.12914 (12)0.0362 (5)
C310.93478 (19)0.88386 (18)0.29658 (13)0.0386 (6)
C320.89227 (19)0.99506 (18)0.33696 (12)0.0375 (6)
C330.82259 (19)0.96733 (19)0.41304 (13)0.0396 (6)
C340.6981 (3)1.0422 (3)0.50823 (17)0.0715 (10)
H20.492900.360400.640000.0390*
H30.635800.372100.539100.0390*
H50.747400.777400.596100.0390*
H60.610300.767900.700200.0380*
H90.747400.251900.321600.0410*
H100.873100.223600.216100.0400*
H121.124800.620200.314700.0400*
H130.996300.652200.418800.0390*
H710.898900.625100.540500.0390*
H720.796900.650800.461600.0390*
H1411.040800.309100.140100.0430*
H1511.186900.585200.177200.0520*
H1521.049100.500700.094500.0520*
H1711.274400.591800.110300.0700*
H1721.243600.442600.109600.0700*
H1731.377300.558700.037400.0700*
H4121.178400.393800.222900.0430*
H191.485100.907400.190300.0400*
H201.360400.905400.078200.0390*
H221.376001.277000.090200.0460*
H231.501301.279900.202000.0480*
H261.125200.756200.068400.0470*
H271.008600.722000.183300.0470*
H291.032901.103900.230600.0430*
H301.149201.140100.115300.0430*
H2411.333201.158200.056700.0420*
H2421.199201.118600.027500.0420*
H3110.853300.802600.268500.0460*
H3120.995500.872600.348700.0460*
H3210.973201.076900.364200.0450*
H3220.829901.005400.285300.0450*
H3410.611900.965400.484500.0860*
H3420.756501.032000.562100.0860*
H3430.681901.121500.527500.0860*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0659 (9)0.0450 (8)0.0700 (9)0.0238 (7)0.0479 (8)0.0268 (7)
O20.0553 (8)0.0453 (8)0.0450 (7)0.0283 (7)0.0286 (6)0.0099 (6)
O30.0381 (7)0.0342 (7)0.0408 (6)0.0145 (5)0.0230 (5)0.0077 (5)
O40.0766 (10)0.0764 (10)0.0645 (9)0.0567 (9)0.0462 (8)0.0363 (8)
O50.0738 (10)0.0639 (9)0.0571 (8)0.0446 (8)0.0477 (8)0.0353 (7)
N10.0377 (8)0.0406 (9)0.0376 (8)0.0207 (7)0.0189 (6)0.0149 (7)
C10.0313 (8)0.0366 (9)0.0281 (8)0.0181 (7)0.0128 (7)0.0118 (7)
C20.0371 (9)0.0301 (9)0.0371 (9)0.0154 (8)0.0159 (7)0.0139 (7)
C30.0392 (9)0.0321 (9)0.0346 (9)0.0200 (8)0.0157 (7)0.0095 (7)
C40.0300 (8)0.0352 (9)0.0280 (8)0.0166 (7)0.0105 (7)0.0104 (7)
C50.0352 (9)0.0300 (9)0.0358 (9)0.0134 (7)0.0151 (7)0.0119 (7)
C60.0382 (9)0.0297 (9)0.0333 (9)0.0180 (8)0.0140 (7)0.0081 (7)
C70.0358 (9)0.0323 (9)0.0337 (9)0.0153 (7)0.0153 (7)0.0086 (7)
C80.0316 (9)0.0347 (9)0.0295 (8)0.0178 (7)0.0135 (7)0.0115 (7)
C90.0319 (9)0.0313 (9)0.0393 (9)0.0116 (7)0.0142 (7)0.0096 (7)
C100.0382 (9)0.0305 (9)0.0360 (9)0.0177 (8)0.0136 (7)0.0066 (7)
C110.0359 (9)0.0347 (9)0.0291 (8)0.0216 (8)0.0135 (7)0.0132 (7)
C120.0350 (9)0.0337 (9)0.0382 (9)0.0148 (8)0.0185 (7)0.0148 (8)
C130.0383 (9)0.0295 (9)0.0340 (9)0.0154 (8)0.0157 (7)0.0080 (7)
C140.0431 (10)0.0412 (10)0.0360 (9)0.0257 (8)0.0194 (8)0.0142 (8)
C150.0600 (12)0.0428 (11)0.0473 (10)0.0307 (10)0.0337 (9)0.0186 (9)
C160.0467 (11)0.0380 (10)0.0400 (10)0.0215 (9)0.0226 (8)0.0129 (8)
C170.0643 (14)0.0803 (16)0.0516 (12)0.0355 (13)0.0408 (11)0.0289 (11)
O60.0928 (12)0.0517 (9)0.0691 (9)0.0448 (9)0.0535 (9)0.0250 (7)
O70.0843 (11)0.0526 (9)0.0737 (10)0.0331 (8)0.0540 (9)0.0354 (8)
O80.0530 (8)0.0326 (7)0.0440 (7)0.0208 (6)0.0280 (6)0.0134 (5)
O90.1260 (15)0.0617 (10)0.0817 (11)0.0514 (10)0.0743 (11)0.0456 (9)
O100.0896 (12)0.0874 (12)0.0684 (9)0.0624 (10)0.0579 (9)0.0423 (9)
N20.0499 (9)0.0414 (9)0.0444 (8)0.0220 (8)0.0238 (7)0.0165 (7)
C180.0350 (9)0.0328 (9)0.0337 (9)0.0139 (8)0.0135 (7)0.0094 (7)
C190.0377 (9)0.0305 (9)0.0337 (9)0.0173 (8)0.0110 (7)0.0072 (7)
C200.0375 (9)0.0291 (9)0.0315 (8)0.0138 (7)0.0094 (7)0.0100 (7)
C210.0320 (9)0.0302 (9)0.0280 (8)0.0123 (7)0.0065 (7)0.0049 (7)
C220.0476 (11)0.0305 (9)0.0449 (10)0.0205 (8)0.0198 (8)0.0103 (8)
C230.0497 (11)0.0310 (9)0.0469 (10)0.0180 (8)0.0222 (9)0.0174 (8)
C240.0412 (10)0.0304 (9)0.0347 (9)0.0157 (8)0.0138 (8)0.0077 (7)
C250.0354 (9)0.0345 (9)0.0320 (8)0.0172 (8)0.0134 (7)0.0099 (7)
C260.0532 (11)0.0318 (10)0.0450 (10)0.0240 (9)0.0235 (9)0.0119 (8)
C270.0493 (11)0.0305 (9)0.0470 (10)0.0197 (8)0.0211 (9)0.0163 (8)
C280.0329 (9)0.0335 (9)0.0328 (9)0.0148 (7)0.0109 (7)0.0105 (7)
C290.0445 (10)0.0312 (9)0.0387 (9)0.0203 (8)0.0188 (8)0.0096 (7)
C300.0459 (10)0.0297 (9)0.0406 (9)0.0182 (8)0.0195 (8)0.0137 (7)
C310.0449 (10)0.0393 (10)0.0409 (10)0.0207 (9)0.0196 (8)0.0169 (8)
C320.0423 (10)0.0378 (10)0.0387 (9)0.0170 (8)0.0189 (8)0.0150 (8)
C330.0456 (11)0.0375 (10)0.0380 (9)0.0147 (9)0.0188 (8)0.0119 (8)
C340.0716 (16)0.108 (2)0.0606 (14)0.0485 (15)0.0448 (13)0.0278 (14)
Geometric parameters (Å, º) top
O1—N11.226 (2)C13—H130.9500
O2—N11.229 (2)C14—H4120.9500
O3—C71.422 (2)C14—H1410.9500
O3—C81.373 (2)C15—H1510.9500
O4—C161.195 (3)C15—H1520.9500
O5—C161.336 (2)C17—H1720.9500
O5—C171.444 (3)C17—H1730.9500
O6—N21.219 (2)C17—H1710.9500
O7—N21.225 (2)C18—C191.376 (3)
O8—C241.420 (2)C18—C231.383 (3)
O8—C251.377 (2)C19—C201.383 (3)
O9—C331.191 (3)C20—C211.395 (3)
O10—C331.328 (3)C21—C221.390 (2)
O10—C341.446 (3)C21—C241.502 (3)
N1—C11.466 (2)C22—C231.383 (3)
N2—C181.467 (3)C25—C261.385 (3)
C1—C21.385 (3)C25—C301.382 (3)
C1—C61.379 (3)C26—C271.382 (3)
C2—C31.387 (3)C27—C281.396 (3)
C3—C41.388 (3)C28—C291.382 (3)
C4—C51.394 (3)C28—C311.518 (3)
C4—C71.505 (3)C29—C301.389 (3)
C5—C61.380 (3)C31—C321.514 (3)
C8—C131.387 (3)C32—C331.493 (3)
C8—C91.388 (2)C19—H190.9500
C9—C101.380 (3)C20—H200.9500
C10—C111.392 (3)C22—H220.9500
C11—C141.511 (3)C23—H230.9500
C11—C121.389 (2)C24—H2410.9500
C12—C131.392 (3)C24—H2420.9500
C14—C151.501 (3)C26—H260.9500
C15—C161.500 (3)C27—H270.9500
C2—H20.9500C29—H290.9500
C3—H30.9500C30—H300.9500
C5—H50.9500C31—H3110.9500
C6—H60.9500C31—H3120.9500
C7—H710.9500C32—H3210.9500
C7—H720.9500C32—H3220.9500
C9—H90.9500C34—H3410.9500
C10—H100.9500C34—H3420.9500
C12—H120.9500C34—H3430.9500
O1···C17i3.185 (3)C29···H242x2.9700
O1···C23ii3.350 (3)C30···H2422.7400
O2···C9iii3.212 (2)C30···H2412.7000
O2···C17i3.252 (3)C32···H292.5600
O3···C1iii3.342 (2)H2···O12.4300
O3···N1iii3.1678 (19)H2···O7ii2.7300
O4···C24iv3.354 (3)H3···O32.4300
O6···C6v3.362 (2)H5···H722.4800
O6···C34v3.196 (3)H5···O92.6900
O7···C34v3.368 (3)H6···O22.4300
O7···C2vi3.315 (2)H6···O6i2.5300
O9···C73.336 (3)H9···C19viii2.9000
O1···H172i2.8000H9···H19viii2.5900
O1···H22.4300H10···H20viii2.6000
O1···H23ii2.6300H10···H29iv2.4900
O2···H19i2.5500H10···H1412.3300
O2···H241vii2.6200H10···C20viii2.8200
O2···H62.4300H12···H1512.2800
O2···H171i2.6900H12···O7ix2.8600
O3···H32.4300H12···C152.8200
O4···H1732.6000H13···H722.3600
O4···H4122.7200H13···C72.5300
O4···H1722.6800H13···H712.2700
O4···H1412.9000H19···O62.4300
O5···H152viii2.6300H19···O2v2.5500
O5···H262.8600H19···H9viii2.5900
O6···H6v2.5300H20···O82.4000
O6···H192.4300H20···C20ix3.0600
O6···H342v2.8500H20···H10viii2.6000
O7···H232.4400H22···H2422.5500
O7···H151ix2.6700H23···O1vi2.6300
O7···H343v2.7400H23···O72.4400
O7···H12ix2.8600H26···O52.8600
O7···H2vi2.7300H27···C123.0400
O7···H341x2.9200H27···H3112.5800
O8···H202.4000H27···H172viii2.5300
O9···H52.6900H29···H3212.2300
O9···H3112.8600H29···H3222.4500
O9···H3122.7000H29···C322.5600
O9···H722.4900H29···H10xii2.4900
O9···H3422.4500H29···C10xii3.0900
O9···H3412.7900H30···C14xii3.0900
N1···C8iii3.439 (2)H30···C242.5000
N1···O3iii3.1678 (19)H30···H2422.2700
C1···O3iii3.342 (2)H30···H2412.2800
C2···C5iii3.585 (2)H30···H141xii2.5200
C2···O7ii3.315 (2)H71···C8xi3.1000
C2···C4iii3.381 (2)H71···C9xi3.0500
C3···C12xi3.492 (3)H71···H132.2700
C3···C5iii3.533 (3)H71···C132.7200
C4···C2iii3.381 (2)H71···C10xi3.0800
C4···C11xi3.591 (2)H72···O92.4900
C5···C29vii3.550 (2)H72···C132.7800
C5···C3iii3.533 (3)H72···H52.4800
C5···C2iii3.585 (2)H72···H132.3600
C6···C30vii3.573 (2)H141···H102.3300
C6···O6i3.362 (2)H141···O42.9000
C7···O93.336 (3)H141···H30iv2.5200
C8···N1iii3.439 (2)H151···C122.7800
C9···O2iii3.212 (2)H151···H122.2800
C10···C20viii3.532 (3)H151···O7ix2.6700
C11···C4xi3.591 (2)H152···O5viii2.6300
C12···C3xi3.492 (3)H171···O2v2.6900
C17···O1v3.185 (3)H172···O42.6800
C17···O2v3.252 (3)H172···O1v2.8000
C20···C10viii3.532 (3)H172···H27viii2.5300
C20···C20ix3.312 (2)H173···O42.6000
C23···O1vi3.350 (3)H173···C22ix2.9700
C24···O4xii3.354 (3)H241···C302.7000
C29···C5vii3.550 (2)H241···H302.2800
C30···C6vii3.573 (2)H241···O2vii2.6200
C34···O6i3.196 (3)H242···C302.7400
C34···O7i3.368 (3)H242···H302.2700
C1···H412xi2.8700H242···C28x3.1000
C2···H412xi2.9600H242···C29x2.9700
C3···H412xi3.0500H242···H222.5500
C4···H412xi3.0900H311···O92.8600
C5···H412xi3.0500H311···H272.5800
C6···H412xi2.9400H312···O92.7000
C7···H132.5300H312···H342vii2.4500
C8···H71xi3.1000H321···C292.7700
C9···H71xi3.0500H321···H292.2300
C10···H71xi3.0800H322···C292.9000
C10···H29iv3.0900H322···H292.4500
C12···H273.0400H322···C21x3.0700
C12···H1512.7800H322···C22x3.0200
C13···H722.7800H341···O92.7900
C13···H712.7200H341···O7x2.9200
C14···H30iv3.0900H342···H312vii2.4500
C15···H122.8200H342···O6i2.8500
C19···H9viii2.9000H342···O92.4500
C20···H20ix3.0600H343···O7i2.7400
C20···H10viii2.8200H412···C3xi3.0500
C21···H322x3.0700H412···C6xi2.9400
C22···H322x3.0200H412···C4xi3.0900
C22···H173ix2.9700H412···C5xi3.0500
C24···H302.5000H412···O42.7200
C28···H242x3.1000H412···C1xi2.8700
C29···H3222.9000H412···C2xi2.9600
C29···H3212.7700
C7—O3—C8117.05 (14)H172—C17—H173110.00
C16—O5—C17117.38 (17)O5—C17—H171109.00
C24—O8—C25116.46 (14)O5—C17—H172109.00
C33—O10—C34116.9 (2)O5—C17—H173109.00
O2—N1—C1118.30 (15)H171—C17—H172109.00
O1—N1—O2123.36 (16)N2—C18—C19118.83 (17)
O1—N1—C1118.34 (15)N2—C18—C23118.89 (16)
O6—N2—O7122.95 (18)C19—C18—C23122.26 (18)
O6—N2—C18118.45 (16)C18—C19—C20118.77 (17)
O7—N2—C18118.59 (17)C19—C20—C21120.55 (16)
C2—C1—C6122.26 (17)C20—C21—C22119.13 (17)
N1—C1—C2118.87 (16)C20—C21—C24122.46 (15)
N1—C1—C6118.86 (15)C22—C21—C24118.41 (16)
C1—C2—C3118.64 (17)C21—C22—C23120.91 (18)
C2—C3—C4120.39 (17)C18—C23—C22118.37 (17)
C5—C4—C7118.21 (16)O8—C24—C21109.36 (15)
C3—C4—C5119.39 (16)O8—C25—C26116.11 (16)
C3—C4—C7122.37 (16)O8—C25—C30124.36 (16)
C4—C5—C6120.96 (17)C26—C25—C30119.53 (17)
C1—C6—C5118.32 (16)C25—C26—C27119.88 (18)
O3—C7—C4109.47 (15)C26—C27—C28121.93 (18)
O3—C8—C9115.45 (16)C27—C28—C29116.73 (17)
O3—C8—C13125.10 (15)C27—C28—C31119.85 (16)
C9—C8—C13119.45 (16)C29—C28—C31123.41 (16)
C8—C9—C10120.04 (17)C28—C29—C30122.41 (17)
C9—C10—C11121.99 (16)C25—C30—C29119.52 (17)
C10—C11—C12116.98 (17)C28—C31—C32115.05 (16)
C10—C11—C14120.00 (16)C31—C32—C33113.63 (16)
C12—C11—C14123.00 (17)O9—C33—O10122.7 (2)
C11—C12—C13122.09 (17)O9—C33—C32126.3 (2)
C8—C13—C12119.43 (16)O10—C33—C32111.03 (17)
C11—C14—C15114.51 (17)C18—C19—H19121.00
C14—C15—C16114.25 (17)C20—C19—H19121.00
O4—C16—C15126.18 (17)C19—C20—H20120.00
O4—C16—O5123.33 (19)C21—C20—H20120.00
O5—C16—C15110.49 (17)C21—C22—H22120.00
C1—C2—H2121.00C23—C22—H22120.00
C3—C2—H2121.00C18—C23—H23121.00
C4—C3—H3120.00C22—C23—H23121.00
C2—C3—H3120.00O8—C24—H241109.00
C6—C5—H5120.00O8—C24—H242109.00
C4—C5—H5120.00C21—C24—H241110.00
C1—C6—H6121.00C21—C24—H242110.00
C5—C6—H6121.00H241—C24—H242109.00
C4—C7—H72109.00C25—C26—H26120.00
O3—C7—H71109.00C27—C26—H26120.00
H71—C7—H72109.00C26—C27—H27119.00
C4—C7—H71109.00C28—C27—H27119.00
O3—C7—H72109.00C28—C29—H29119.00
C10—C9—H9120.00C30—C29—H29119.00
C8—C9—H9120.00C25—C30—H30120.00
C11—C10—H10119.00C29—C30—H30120.00
C9—C10—H10119.00C28—C31—H311108.00
C11—C12—H12119.00C28—C31—H312108.00
C13—C12—H12119.00C32—C31—H311108.00
C12—C13—H13120.00C32—C31—H312108.00
C8—C13—H13120.00H311—C31—H312109.00
C11—C14—H141108.00C31—C32—H321108.00
C11—C14—H412108.00C31—C32—H322108.00
C15—C14—H141108.00C33—C32—H321108.00
C15—C14—H412108.00C33—C32—H322108.00
H141—C14—H412109.00H321—C32—H322109.00
C16—C15—H151108.00O10—C34—H341109.00
C16—C15—H152108.00O10—C34—H342109.00
C14—C15—H152108.00O10—C34—H343109.00
C14—C15—H151108.00H341—C34—H342110.00
H151—C15—H152109.00H341—C34—H343109.00
H171—C17—H173110.00H342—C34—H343109.00
C8—O3—C7—C4177.23 (14)C9—C10—C11—C120.1 (3)
C7—O3—C8—C9179.95 (14)C10—C11—C12—C130.8 (3)
C7—O3—C8—C130.4 (2)C14—C11—C12—C13179.17 (17)
C17—O5—C16—O40.6 (3)C12—C11—C14—C1544.9 (2)
C17—O5—C16—C15179.13 (16)C10—C11—C14—C15136.77 (18)
C24—O8—C25—C305.1 (2)C11—C12—C13—C80.6 (3)
C25—O8—C24—C21175.97 (14)C11—C14—C15—C16179.85 (16)
C24—O8—C25—C26174.82 (16)C14—C15—C16—O5161.32 (16)
C34—O10—C33—O90.4 (3)C14—C15—C16—O419.0 (3)
C34—O10—C33—C32177.68 (19)N2—C18—C23—C22177.03 (17)
O2—N1—C1—C64.7 (2)C19—C18—C23—C221.0 (3)
O1—N1—C1—C25.9 (2)C23—C18—C19—C200.9 (3)
O1—N1—C1—C6175.45 (16)N2—C18—C19—C20177.13 (16)
O2—N1—C1—C2173.96 (16)C18—C19—C20—C210.2 (3)
O7—N2—C18—C19175.91 (18)C19—C20—C21—C24179.58 (17)
O6—N2—C18—C195.3 (3)C19—C20—C21—C221.1 (3)
O6—N2—C18—C23172.80 (18)C20—C21—C22—C231.0 (3)
O7—N2—C18—C236.0 (3)C22—C21—C24—O8169.92 (16)
C6—C1—C2—C31.4 (3)C24—C21—C22—C23179.66 (17)
N1—C1—C2—C3177.26 (16)C20—C21—C24—O810.7 (2)
N1—C1—C6—C5178.22 (16)C21—C22—C23—C180.1 (3)
C2—C1—C6—C50.4 (3)O8—C25—C26—C27179.40 (17)
C1—C2—C3—C40.5 (3)C30—C25—C26—C270.5 (3)
C2—C3—C4—C7176.84 (16)O8—C25—C30—C29179.27 (17)
C2—C3—C4—C51.2 (3)C26—C25—C30—C290.7 (3)
C3—C4—C5—C62.2 (3)C25—C26—C27—C280.0 (3)
C5—C4—C7—O3163.63 (15)C26—C27—C28—C31178.60 (18)
C7—C4—C5—C6175.92 (16)C26—C27—C28—C290.5 (3)
C3—C4—C7—O318.3 (2)C27—C28—C29—C300.3 (3)
C4—C5—C6—C11.4 (3)C27—C28—C31—C32172.41 (17)
C13—C8—C9—C101.4 (3)C29—C28—C31—C328.6 (3)
O3—C8—C13—C12179.03 (16)C31—C28—C29—C30178.69 (18)
C9—C8—C13—C120.5 (3)C28—C29—C30—C250.2 (3)
O3—C8—C9—C10178.24 (16)C28—C31—C32—C33178.92 (16)
C8—C9—C10—C111.1 (3)C31—C32—C33—O10168.35 (17)
C9—C10—C11—C14178.37 (17)C31—C32—C33—O914.5 (3)
Symmetry codes: (i) x1, y, z+1; (ii) x1, y1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x+1, y, z1; (vi) x+1, y+1, z1; (vii) x+2, y+2, z+1; (viii) x+2, y+1, z; (ix) x+3, y+2, z; (x) x+2, y+2, z; (xi) x+2, y+1, z+1; (xii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.952.432.757 (2)100
C6—H6···O6i0.952.533.362 (2)146
C19—H19···O2v0.952.553.430 (2)153
C20—H20···O80.952.402.736 (2)101
C7—H72···O90.952.493.336 (3)149
Symmetry codes: (i) x1, y, z+1; (v) x+1, y, z1.

Experimental details

Crystal data
Chemical formulaC17H17NO5
Mr315.32
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)10.7434 (5), 10.9408 (5), 14.7225 (6)
α, β, γ (°)100.085 (4), 102.451 (4), 110.329 (4)
V3)1524.34 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.30 × 0.27
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.953, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
10836, 5352, 4439
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.113, 1.02
No. of reflections5352
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: CrysAlis PRO (Agilent, 2012), TEXSAN (Molecular Structure Corporation, 2001) and SIR97 (Altomare et al., 1999), TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O30.952.432.757 (2)100
C6—H6···O6i0.952.533.362 (2)146
C19—H19···O2ii0.952.553.430 (2)153
C20—H20···O80.952.402.736 (2)101
C7—H72···O90.952.493.336 (3)149
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y, z1.
 

Acknowledgements

We acknowledge support of this work by Griffith University, the Queensland University of Technology, the Strategic Research Center for Biotechnology, Chemistry and Systems Biology and the Institute for Frontier Materials Deakin University.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationForohar, F., Whitaker, C. M., Uber, I. C. & Bellitto, V. (2011). J. Energ. Mater. 30, 55–71.  Web of Science CrossRef Google Scholar
First citationGreene, T. W. & Wurs, P. G. M. (1999). In Protecting groups in Organic Synthesis, 3rd ed. Brisbane: John Wiley & Sons Inc.  Google Scholar
First citationLi, M. & Chen, X. (2008). Acta Cryst. E64, o2291.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMoradi, O., Yari, M., Zare, K., Mirza, B. & Najafi, F. (2012). Fullerene Nanotub. Carbon Nanostruct. 20, 138–151.  Web of Science CrossRef CAS Google Scholar
First citationNierengarten, J. F., Guttiérez-Nava, M., Zhang, S., Masson, P., Oswald, L., Bourgogne, C., Rio, Y., Accorsi, G., Armaroli, N. & Setayesh, S. (2004). Carbon, 42, 1077–1083.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S.-Q., Cao, J. & Liu, X.-J. (2007). Acta Cryst. E63, o683–o684.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds