metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­ethyl­ammonium tris­­(thio­cyanato-κN)[tris­­(1H-pyrazol-1-yl-κN2)methane]­nickelate(II)

aDepartment of Chemistry and Physics, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu

(Received 29 May 2012; accepted 30 May 2012; online 13 June 2012)

The title salt, (C8H20N)[Ni(NCS)3(C10H10N6)], consists of a tetra­ethyl­ammonium cation and an anion comprising an octa­hedral NiII atom surrounded by three N atoms from a tripodal tris­(pyrazol-1-yl)methane ligand, and three thio­cyanate ligands, each bound at the N-atom end. The ligand Ni—N distances range from 2.097 (2) to 2.127 (2) Å for the tripodal ligand and from 2.045 (2) to 2.075 (2) Å for the thio­cyanate ligands. The dihedral angles between the three pyrazole rings are 59.03 (12), 53.09 (10) and 67.90 (10)°.

Related literature

For the ligand synthesis, see: Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For structural, spectroscopic and angular overlap studies of tris­(pyrazol-1-yl)methane complexes, see: Astley et al. (1993[Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509-515.]). For literature on tris­(pyrazol-1-yl)borate, see: Czernuszewicz et al. (1987[Czernuszewicz, R. S., Sheats, J. E. & Spiro, T. G. (1987). Inorg. Chem. 26, 2063-2067.]); Kitajima et al. (1992[Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277-1291.]); Lippard & Armstrong (1985[Lippard, S. J. & Armstrong, W. H. (1985). J. Am. Chem. Soc. 107, 3730-3731.]); Lippard et al. (1990[Lippard, S. J., Turowski, P. N., Armstrong, W. H. & Roth, M. E. (1990). J. Am. Chem. Soc. 112, 681-690.]). For a related structure, see: Lyubartseva et al. (2011[Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656-m1657.]).

[Scheme 1]

Experimental

Crystal data
  • (C8H20N)[Ni(NCS)3(C10H10N6)]

  • Mr = 577.44

  • Monoclinic, C 2/c

  • a = 31.7117 (12) Å

  • b = 7.4378 (3) Å

  • c = 24.7885 (9) Å

  • β = 110.592 (2)°

  • V = 5473.2 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.41 mm−1

  • T = 90 K

  • 0.20 × 0.09 × 0.02 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.562, Tmax = 0.935

  • 17387 measured reflections

  • 17387 independent reflections

  • 16112 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.186

  • S = 1.11

  • 17387 reflections

  • 321 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Tris(pyrazol-1-yl)borate has been used to structurally mimic the three histidine residues in the preparation of a hemerythrin analogue (Lippard & Armstrong, 1985, Lippard et al., 1990, Czernuszewicz et al., 1987), as well as to model methane monooxygenase (Kitajima et al., 1992). Tris(pyrazol-1-yl)methane is isoelectronic with tris(pyrazol-1-yl)borate (Astley et al., 1993). While trying to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand, and L is NCS-, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals (Lyubartseva et al., 2011). We hypothesized that by changing the source of nickel and thiocyanate in the reaction, we might be able to synthesize our target compound. Replacement of nickel chloride by commercially available nickel trifluoromethanesulfonate, and tetrabutyl ammonium thiocyanate by tetraethylammonium thiocyanate, the reaction allowed successful isolation of the title complex, tetraethylammonium [tris(1-pyrazolyl)methano tris(thiocyanato) nickelate(II)] as blue monoclinic twinned crystals in moderate yield. Crystallographic analysis of the title complex shows that the structure consists of tetraethylammonium cations and anions consisting of nickel(II) surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three thiocyanate ligands, each bound at the nitrogen end. The tripodal ligand N—Ni distance ranges from 2.097 (2) to 2.127 (2) Å and the distance between N-donor pseudohalide uni-negative anion N—Ni ranges from 2.045 (2) to 2.075 (2) Å, very similar to what we observed before in our previous study (Lyubartseva et al., 2011).

Related literature top

For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For literature on tris(pyrazol-1-yl)borate, see: Czernuszewicz et al. (1987); Kitajima et al. (1992); Lippard & Armstrong (1985); Lippard et al. (1990). For a related structure, see: Lyubartseva et al. (2011).

Experimental top

Tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetraethylammonium thiocyanate and nickel trifluoromethanesulfonate were commercially available and used as received. Ni(OTf)2 (179 mg, 0.5 mmol) was dissolved in 35 ml methanol. Tris(pyrazolyl)methane (107 mg, 0.5 mmol) was dissolved in 15 ml methanol. The ligand solution was added drop-wise to the metal containing solution with moderate stirring. Once the addition was complete, tetraethylammonium thiocyanate (0.282 g, 1.5 mmol) was added and stirred for 15 minutes. The clear solution was filtered and methanol was evaporated slowly. Blue crystals were obtained after 1 week (197 mg, 68% yield).

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (CH3), 1.00 Å (CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq of the attached atom.

The crystal is non-merohedry twinned, in which twin components are related by a 2-fold rotation about the a* axis. The resulting overlap resulted in a large number of rejections during integration, scaling, merging etc. Despite many attempts using a range of input parameters, the present dataset was the best that could be obtained.

In response to the low data completeness: The nature of the twinning in this structure (180° rotation about the a* axis) meant that a large number of reflections were rejected at the data reduction stage. After several attempts to eke out more usable reflections by tweaking parameters of the integration (APEX2) and of the scaling and merging (TWINABS), the present dataset was the best that we could manage. Although a complete dataset is of course always preferable, we believe that the structure solution and refinement are unambiguous, and that the model is of a reasonable quality given the unavoidable problems with this structure.

Rigid-body restraints (DELU in SHELXL97) were applied to the SCN– groups. The spherical atom scattering factor approximation is known to be particularly bad for carbon atoms involved in triple bonds.

Structure description top

Tris(pyrazol-1-yl)borate has been used to structurally mimic the three histidine residues in the preparation of a hemerythrin analogue (Lippard & Armstrong, 1985, Lippard et al., 1990, Czernuszewicz et al., 1987), as well as to model methane monooxygenase (Kitajima et al., 1992). Tris(pyrazol-1-yl)methane is isoelectronic with tris(pyrazol-1-yl)borate (Astley et al., 1993). While trying to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand, and L is NCS-, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals (Lyubartseva et al., 2011). We hypothesized that by changing the source of nickel and thiocyanate in the reaction, we might be able to synthesize our target compound. Replacement of nickel chloride by commercially available nickel trifluoromethanesulfonate, and tetrabutyl ammonium thiocyanate by tetraethylammonium thiocyanate, the reaction allowed successful isolation of the title complex, tetraethylammonium [tris(1-pyrazolyl)methano tris(thiocyanato) nickelate(II)] as blue monoclinic twinned crystals in moderate yield. Crystallographic analysis of the title complex shows that the structure consists of tetraethylammonium cations and anions consisting of nickel(II) surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three thiocyanate ligands, each bound at the nitrogen end. The tripodal ligand N—Ni distance ranges from 2.097 (2) to 2.127 (2) Å and the distance between N-donor pseudohalide uni-negative anion N—Ni ranges from 2.045 (2) to 2.075 (2) Å, very similar to what we observed before in our previous study (Lyubartseva et al., 2011).

For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For literature on tris(pyrazol-1-yl)borate, see: Czernuszewicz et al. (1987); Kitajima et al. (1992); Lippard & Armstrong (1985); Lippard et al. (1990). For a related structure, see: Lyubartseva et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound as viewed down the b axis. Hydrogen atoms are omitted to enhance clarity.
Tetraethylammonium tris(thiocyanato-κN)[tris(1H-pyrazol-1-yl- κN2)methane]nickelate(II) top
Crystal data top
(C8H20N)[Ni(NCS)3(C10H10N6)]F(000) = 2416
Mr = 577.44Dx = 1.402 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 9915 reflections
a = 31.7117 (12) Åθ = 3.0–68.1°
b = 7.4378 (3) ŵ = 3.41 mm1
c = 24.7885 (9) ÅT = 90 K
β = 110.592 (2)°Plate, blue
V = 5473.2 (4) Å30.20 × 0.09 × 0.02 mm
Z = 8
Data collection top
Bruker X8 Proteum
diffractometer
17387 independent reflections
Radiation source: fine-focus rotating anode16112 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.057
Detector resolution: 5.6 pixels mm-1θmax = 68.5°, θmin = 3.0°
φ and ω scansh = 3838
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 88
Tmin = 0.562, Tmax = 0.935l = 2929
17387 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.1128P)2 + 8.5319P]
where P = (Fo2 + 2Fc2)/3
17387 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.65 e Å3
9 restraintsΔρmin = 0.51 e Å3
Crystal data top
(C8H20N)[Ni(NCS)3(C10H10N6)]V = 5473.2 (4) Å3
Mr = 577.44Z = 8
Monoclinic, C2/cCu Kα radiation
a = 31.7117 (12) ŵ = 3.41 mm1
b = 7.4378 (3) ÅT = 90 K
c = 24.7885 (9) Å0.20 × 0.09 × 0.02 mm
β = 110.592 (2)°
Data collection top
Bruker X8 Proteum
diffractometer
17387 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
16112 reflections with I > 2σ(I)
Tmin = 0.562, Tmax = 0.935Rint = 0.057
17387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0549 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.11Δρmax = 0.65 e Å3
17387 reflectionsΔρmin = 0.51 e Å3
321 parameters
Special details top

Experimental. The crystal is twinned by non-merohedry, in which twin components are related by a 2-fold rotation about the a* axis. The resulting overlap resulted in a large number of rejections during integration, scaling, merging etc. Despite many attempts using a range of input parameters, the present dataset was the best that we could manage.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.407107 (14)0.17110 (5)0.63651 (2)0.01568 (13)
N10.35867 (7)0.1867 (3)0.61187 (10)0.0153 (5)
N20.35110 (7)0.0071 (3)0.61043 (9)0.0159 (4)
C10.32006 (8)0.2804 (4)0.58867 (11)0.0174 (6)
H10.31700.40730.58470.021*
C20.28630 (9)0.1564 (4)0.57207 (12)0.0214 (6)
H20.25500.17940.55430.026*
C30.30707 (9)0.0117 (4)0.58641 (11)0.0191 (6)
H30.29160.12360.57980.023*
N30.42727 (7)0.1922 (3)0.69244 (10)0.0169 (5)
N40.43242 (7)0.0126 (3)0.70447 (9)0.0146 (5)
C40.44329 (8)0.2906 (4)0.74113 (12)0.0176 (6)
H40.44320.41800.74360.021*
C50.45954 (9)0.1741 (4)0.78610 (13)0.0219 (7)
H50.47280.20310.82580.026*
C60.45241 (9)0.0008 (4)0.76109 (11)0.0195 (6)
H60.46080.10850.78190.023*
N50.42885 (7)0.1912 (3)0.59718 (10)0.0159 (5)
N60.43478 (8)0.0119 (3)0.59194 (9)0.0178 (5)
C70.44483 (9)0.2883 (4)0.56257 (12)0.0212 (6)
H70.44410.41550.55870.025*
C80.46233 (10)0.1675 (4)0.53401 (14)0.0246 (7)
H80.47610.19310.50650.030*
C90.45532 (9)0.0019 (4)0.55438 (13)0.0233 (6)
H90.46430.11250.54250.028*
C100.40484 (8)0.2525 (4)0.63393 (12)0.0181 (5)
H100.40430.38690.63360.022*
N70.37742 (8)0.3308 (3)0.68012 (11)0.0202 (5)
C110.35301 (9)0.4110 (4)0.69627 (12)0.0191 (6)
S10.31880 (3)0.52620 (10)0.71952 (3)0.02905 (19)
N80.37895 (8)0.3221 (3)0.56293 (11)0.0228 (6)
C120.35534 (9)0.3813 (4)0.52014 (13)0.0224 (6)
S20.32179 (3)0.46358 (10)0.45961 (3)0.0332 (2)
N90.46528 (8)0.3251 (3)0.65824 (11)0.0214 (5)
C130.49714 (9)0.3547 (3)0.64656 (13)0.0197 (6)
S30.54146 (2)0.39277 (10)0.63002 (4)0.0337 (2)
N1C0.33644 (7)0.0364 (3)0.85322 (10)0.0182 (5)
C1C0.31210 (10)0.0335 (4)0.89191 (12)0.0234 (7)
H1C10.31280.16650.89160.028*
H1C20.28010.00380.87540.028*
C2C0.33125 (12)0.0301 (4)0.95409 (13)0.0296 (7)
H2C10.36290.00640.97110.044*
H2C20.31410.02380.97600.044*
H2C30.32910.16140.95530.044*
C3C0.38609 (9)0.0102 (4)0.87637 (12)0.0232 (6)
H3C10.40020.04980.91410.028*
H3C20.40030.03920.84980.028*
C4C0.39633 (11)0.2101 (4)0.88395 (16)0.0360 (8)
H4C10.38360.25980.91150.054*
H4C20.42900.22830.89850.054*
H4C30.38300.27100.84670.054*
C5C0.31308 (10)0.0509 (4)0.79491 (13)0.0223 (6)
H5C10.31720.18260.79940.027*
H5C20.28040.02620.78300.027*
C6C0.32900 (11)0.0091 (4)0.74713 (13)0.0273 (7)
H6C10.32290.13770.73980.041*
H6C20.31300.05900.71200.041*
H6C30.36150.01250.75850.041*
C7C0.33375 (9)0.2414 (4)0.84895 (13)0.0223 (6)
H7C10.35040.29260.88750.027*
H7C20.34910.28170.82260.027*
C8C0.28625 (9)0.3166 (4)0.82774 (13)0.0234 (7)
H8C10.27020.27540.78830.035*
H8C20.28750.44830.82840.035*
H8C30.27030.27480.85290.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0155 (2)0.0125 (3)0.0192 (3)0.00071 (16)0.0062 (2)0.00040 (17)
N10.0149 (11)0.0118 (12)0.0192 (13)0.0020 (8)0.0060 (10)0.0006 (8)
N20.0165 (11)0.0122 (11)0.0197 (11)0.0007 (8)0.0074 (9)0.0019 (9)
C10.0159 (14)0.0205 (14)0.0164 (15)0.0059 (10)0.0062 (11)0.0019 (11)
C20.0128 (14)0.0307 (17)0.0206 (16)0.0040 (10)0.0056 (12)0.0012 (11)
C30.0178 (14)0.0212 (15)0.0177 (14)0.0018 (10)0.0056 (11)0.0018 (11)
N30.0153 (12)0.0126 (13)0.0231 (14)0.0025 (8)0.0071 (10)0.0016 (9)
N40.0112 (12)0.0126 (13)0.0183 (12)0.0028 (8)0.0030 (9)0.0029 (9)
C40.0114 (13)0.0167 (14)0.0250 (17)0.0005 (10)0.0069 (11)0.0082 (11)
C50.0090 (13)0.0334 (18)0.0219 (17)0.0029 (10)0.0038 (11)0.0032 (11)
C60.0128 (13)0.0234 (16)0.0226 (16)0.0012 (10)0.0066 (11)0.0011 (12)
N50.0128 (11)0.0120 (12)0.0228 (14)0.0002 (8)0.0062 (10)0.0006 (8)
N60.0211 (13)0.0152 (13)0.0194 (13)0.0011 (9)0.0101 (10)0.0013 (9)
C70.0206 (14)0.0248 (16)0.0189 (16)0.0040 (11)0.0078 (12)0.0004 (11)
C80.0270 (16)0.0271 (18)0.0283 (19)0.0036 (11)0.0202 (14)0.0006 (12)
C90.0192 (15)0.0238 (16)0.0288 (16)0.0005 (11)0.0107 (12)0.0018 (12)
C100.0138 (13)0.0166 (14)0.0205 (15)0.0003 (10)0.0017 (11)0.0022 (11)
N70.0249 (13)0.0151 (13)0.0248 (15)0.0019 (9)0.0139 (11)0.0000 (9)
C110.0230 (15)0.0143 (14)0.0197 (15)0.0039 (11)0.0072 (11)0.0030 (11)
S10.0347 (4)0.0252 (4)0.0350 (4)0.0087 (3)0.0220 (4)0.0034 (3)
N80.0226 (13)0.0137 (14)0.0290 (16)0.0033 (9)0.0051 (11)0.0009 (10)
C120.0261 (15)0.0141 (14)0.0282 (17)0.0021 (11)0.0112 (13)0.0052 (12)
S20.0456 (5)0.0246 (4)0.0237 (4)0.0145 (3)0.0052 (3)0.0027 (3)
N90.0187 (12)0.0164 (12)0.0294 (15)0.0015 (8)0.0088 (11)0.0029 (9)
C130.0185 (14)0.0109 (13)0.0265 (17)0.0031 (10)0.0039 (12)0.0048 (11)
S30.0239 (4)0.0253 (5)0.0565 (6)0.0003 (3)0.0200 (4)0.0070 (4)
N1C0.0157 (12)0.0221 (14)0.0189 (12)0.0017 (9)0.0085 (10)0.0018 (10)
C1C0.0227 (16)0.0275 (17)0.0251 (16)0.0032 (12)0.0148 (13)0.0081 (12)
C2C0.047 (2)0.0178 (17)0.0262 (17)0.0053 (13)0.0162 (15)0.0043 (12)
C3C0.0166 (14)0.0280 (16)0.0255 (16)0.0018 (11)0.0082 (12)0.0029 (12)
C4C0.0287 (18)0.0391 (19)0.042 (2)0.0134 (14)0.0152 (15)0.0140 (15)
C5C0.0219 (16)0.0215 (16)0.0253 (17)0.0027 (12)0.0105 (13)0.0006 (11)
C6C0.0346 (18)0.0257 (17)0.0245 (16)0.0059 (12)0.0140 (14)0.0014 (13)
C7C0.0286 (15)0.0128 (15)0.0268 (16)0.0011 (11)0.0114 (13)0.0013 (11)
C8C0.0218 (15)0.0216 (17)0.0287 (18)0.0039 (11)0.0114 (13)0.0034 (12)
Geometric parameters (Å, º) top
Ni1—N72.045 (2)N7—C111.155 (4)
Ni1—N82.059 (2)C11—S11.638 (3)
Ni1—N92.075 (2)N8—C121.149 (4)
Ni1—N42.097 (2)C12—S21.623 (3)
Ni1—N22.126 (2)N9—C131.166 (4)
Ni1—N62.127 (2)C13—S31.621 (3)
N1—C11.349 (3)N1C—C3C1.514 (3)
N1—N21.356 (3)N1C—C5C1.519 (4)
N1—C101.456 (3)N1C—C1C1.519 (3)
N2—C31.319 (3)N1C—C7C1.529 (4)
C1—C21.363 (4)C1C—C2C1.520 (4)
C1—H10.9500C1C—H1C10.9900
C2—C31.400 (4)C1C—H1C20.9900
C2—H20.9500C2C—H2C10.9800
C3—H30.9500C2C—H2C20.9800
N3—C41.349 (3)C2C—H2C30.9800
N3—N41.366 (3)C3C—C4C1.519 (4)
N3—C101.444 (4)C3C—H3C10.9900
N4—C61.324 (3)C3C—H3C20.9900
C4—C51.362 (4)C4C—H4C10.9800
C4—H40.9500C4C—H4C20.9800
C5—C61.414 (4)C4C—H4C30.9800
C5—H50.9500C5C—C6C1.509 (4)
C6—H60.9500C5C—H5C10.9900
N5—C71.349 (4)C5C—H5C20.9900
N5—N61.359 (3)C6C—H6C10.9800
N5—C101.451 (3)C6C—H6C20.9800
N6—C91.315 (4)C6C—H6C30.9800
C7—C81.376 (4)C7C—C8C1.517 (4)
C7—H70.9500C7C—H7C10.9900
C8—C91.404 (4)C7C—H7C20.9900
C8—H80.9500C8C—H8C10.9800
C9—H90.9500C8C—H8C20.9800
C10—H101.0000C8C—H8C30.9800
N7—Ni1—N890.83 (9)N3—C10—H10108.7
N7—Ni1—N994.28 (10)N5—C10—H10108.7
N8—Ni1—N989.87 (10)N1—C10—H10108.7
N7—Ni1—N494.08 (9)C11—N7—Ni1166.6 (2)
N8—Ni1—N4172.38 (9)N7—C11—S1179.4 (3)
N9—Ni1—N495.57 (9)C12—N8—Ni1164.9 (2)
N7—Ni1—N291.84 (9)N8—C12—S2179.6 (3)
N8—Ni1—N290.86 (9)C13—N9—Ni1144.0 (2)
N9—Ni1—N2173.83 (9)N9—C13—S3179.2 (3)
N4—Ni1—N283.16 (8)C3C—N1C—C5C110.9 (2)
N7—Ni1—N6175.50 (9)C3C—N1C—C1C112.0 (2)
N8—Ni1—N691.07 (9)C5C—N1C—C1C105.6 (2)
N9—Ni1—N689.81 (9)C3C—N1C—C7C106.25 (19)
N4—Ni1—N683.63 (8)C5C—N1C—C7C111.3 (2)
N2—Ni1—N684.05 (9)C1C—N1C—C7C110.9 (2)
C1—N1—N2111.9 (2)N1C—C1C—C2C115.0 (3)
C1—N1—C10128.9 (2)N1C—C1C—H1C1108.5
N2—N1—C10119.13 (19)C2C—C1C—H1C1108.5
C3—N2—N1105.4 (2)N1C—C1C—H1C2108.5
C3—N2—Ni1135.22 (18)C2C—C1C—H1C2108.5
N1—N2—Ni1119.00 (15)H1C1—C1C—H1C2107.5
N1—C1—C2106.1 (2)C1C—C2C—H2C1109.5
N1—C1—H1126.9C1C—C2C—H2C2109.5
C2—C1—H1126.9H2C1—C2C—H2C2109.5
C1—C2—C3106.2 (2)C1C—C2C—H2C3109.5
C1—C2—H2126.9H2C1—C2C—H2C3109.5
C3—C2—H2126.9H2C2—C2C—H2C3109.5
N2—C3—C2110.4 (2)N1C—C3C—C4C114.8 (2)
N2—C3—H3124.8N1C—C3C—H3C1108.6
C2—C3—H3124.8C4C—C3C—H3C1108.6
C4—N3—N4110.9 (2)N1C—C3C—H3C2108.6
C4—N3—C10128.9 (2)C4C—C3C—H3C2108.6
N4—N3—C10120.1 (2)H3C1—C3C—H3C2107.5
C6—N4—N3105.8 (2)C3C—C4C—H4C1109.5
C6—N4—Ni1135.53 (18)C3C—C4C—H4C2109.5
N3—N4—Ni1118.63 (16)H4C1—C4C—H4C2109.5
N3—C4—C5107.6 (2)C3C—C4C—H4C3109.5
N3—C4—H4126.2H4C1—C4C—H4C3109.5
C5—C4—H4126.2H4C2—C4C—H4C3109.5
C4—C5—C6105.4 (3)C6C—C5C—N1C115.8 (2)
C4—C5—H5127.3C6C—C5C—H5C1108.3
C6—C5—H5127.3N1C—C5C—H5C1108.3
N4—C6—C5110.3 (2)C6C—C5C—H5C2108.3
N4—C6—H6124.8N1C—C5C—H5C2108.3
C5—C6—H6124.8H5C1—C5C—H5C2107.4
C7—N5—N6111.7 (2)C5C—C6C—H6C1109.5
C7—N5—C10128.9 (2)C5C—C6C—H6C2109.5
N6—N5—C10119.3 (2)H6C1—C6C—H6C2109.5
C9—N6—N5105.3 (2)C5C—C6C—H6C3109.5
C9—N6—Ni1135.67 (19)H6C1—C6C—H6C3109.5
N5—N6—Ni1118.83 (16)H6C2—C6C—H6C3109.5
N5—C7—C8106.7 (2)C8C—C7C—N1C114.6 (2)
N5—C7—H7126.7C8C—C7C—H7C1108.6
C8—C7—H7126.7N1C—C7C—H7C1108.6
C7—C8—C9104.9 (3)C8C—C7C—H7C2108.6
C7—C8—H8127.5N1C—C7C—H7C2108.6
C9—C8—H8127.5H7C1—C7C—H7C2107.6
N6—C9—C8111.4 (3)C7C—C8C—H8C1109.5
N6—C9—H9124.3C7C—C8C—H8C2109.5
C8—C9—H9124.3H8C1—C8C—H8C2109.5
N3—C10—N5110.5 (2)C7C—C8C—H8C3109.5
N3—C10—N1110.4 (2)H8C1—C8C—H8C3109.5
N5—C10—N1109.8 (2)H8C2—C8C—H8C3109.5
C1—N1—N2—C30.5 (3)N9—Ni1—N6—N5138.72 (19)
C10—N1—N2—C3177.3 (2)N4—Ni1—N6—N543.10 (17)
C1—N1—N2—Ni1173.73 (18)N2—Ni1—N6—N540.65 (18)
C10—N1—N2—Ni13.1 (3)N6—N5—C7—C80.6 (3)
N7—Ni1—N2—C349.5 (3)C10—N5—C7—C8176.2 (2)
N8—Ni1—N2—C341.3 (3)N5—C7—C8—C90.0 (3)
N4—Ni1—N2—C3143.4 (3)N5—N6—C9—C81.0 (3)
N6—Ni1—N2—C3132.3 (3)Ni1—N6—C9—C8173.5 (2)
N7—Ni1—N2—N1138.4 (2)C7—C8—C9—N60.6 (3)
N8—Ni1—N2—N1130.8 (2)C4—N3—C10—N5122.9 (3)
N4—Ni1—N2—N144.47 (19)N4—N3—C10—N560.8 (3)
N6—Ni1—N2—N139.8 (2)C4—N3—C10—N1115.4 (3)
N2—N1—C1—C20.5 (3)N4—N3—C10—N160.9 (3)
C10—N1—C1—C2176.9 (3)C7—N5—C10—N3125.4 (3)
N1—C1—C2—C30.2 (3)N6—N5—C10—N359.4 (3)
N1—N2—C3—C20.4 (3)C7—N5—C10—N1112.6 (3)
Ni1—N2—C3—C2172.5 (2)N6—N5—C10—N162.7 (3)
C1—C2—C3—N20.1 (3)C1—N1—C10—N3125.4 (3)
C4—N3—N4—C60.9 (3)N2—N1—C10—N358.4 (3)
C10—N3—N4—C6177.8 (2)C1—N1—C10—N5112.5 (3)
C4—N3—N4—Ni1176.83 (17)N2—N1—C10—N563.7 (3)
C10—N3—N4—Ni10.1 (3)N8—Ni1—N7—C1157.8 (9)
N7—Ni1—N4—C642.9 (3)N9—Ni1—N7—C11147.7 (9)
N9—Ni1—N4—C651.8 (3)N4—Ni1—N7—C11116.4 (9)
N2—Ni1—N4—C6134.3 (3)N2—Ni1—N7—C1133.1 (9)
N6—Ni1—N4—C6141.0 (3)N7—Ni1—N8—C1285.6 (9)
N7—Ni1—N4—N3133.94 (18)N2—Ni1—N8—C126.2 (9)
N9—Ni1—N4—N3131.34 (18)N6—Ni1—N8—C1290.3 (9)
N2—Ni1—N4—N342.58 (18)N7—Ni1—N9—C13163.3 (3)
N6—Ni1—N4—N342.16 (17)N8—Ni1—N9—C1372.5 (3)
N4—N3—C4—C50.3 (3)N4—Ni1—N9—C13102.2 (3)
C10—N3—C4—C5176.9 (2)N6—Ni1—N9—C1318.6 (3)
N3—C4—C5—C60.3 (3)C3C—N1C—C1C—C2C56.6 (3)
N3—N4—C6—C51.1 (3)C5C—N1C—C1C—C2C177.4 (3)
Ni1—N4—C6—C5176.07 (18)C7C—N1C—C1C—C2C61.9 (3)
C4—C5—C6—N40.9 (3)C5C—N1C—C3C—C4C58.8 (3)
C7—N5—N6—C91.0 (3)C1C—N1C—C3C—C4C58.8 (3)
C10—N5—N6—C9177.0 (2)C7C—N1C—C3C—C4C180.0 (3)
C7—N5—N6—Ni1174.60 (18)C3C—N1C—C5C—C6C63.1 (3)
C10—N5—N6—Ni11.4 (3)C1C—N1C—C5C—C6C175.4 (3)
N8—Ni1—N6—C942.5 (3)C7C—N1C—C5C—C6C55.0 (3)
N9—Ni1—N6—C947.3 (3)C3C—N1C—C7C—C8C178.6 (2)
N4—Ni1—N6—C9143.0 (3)C5C—N1C—C7C—C8C60.6 (3)
N2—Ni1—N6—C9133.3 (3)C1C—N1C—C7C—C8C56.7 (3)
N8—Ni1—N6—N5131.41 (19)

Experimental details

Crystal data
Chemical formula(C8H20N)[Ni(NCS)3(C10H10N6)]
Mr577.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)90
a, b, c (Å)31.7117 (12), 7.4378 (3), 24.7885 (9)
β (°) 110.592 (2)
V3)5473.2 (4)
Z8
Radiation typeCu Kα
µ (mm1)3.41
Crystal size (mm)0.20 × 0.09 × 0.02
Data collection
DiffractometerBruker X8 Proteum
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.562, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
17387, 17387, 16112
Rint0.057
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.186, 1.11
No. of reflections17387
No. of parameters321
No. of restraints9
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.51

Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

GL gratefully acknowledges Southern Arkansas University for the financial support.

References

First citationAstley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzernuszewicz, R. S., Sheats, J. E. & Spiro, T. G. (1987). Inorg. Chem. 26, 2063–2067.  CrossRef CAS Web of Science Google Scholar
First citationKitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291.  CSD CrossRef CAS Web of Science Google Scholar
First citationLippard, S. J. & Armstrong, W. H. (1985). J. Am. Chem. Soc. 107, 3730–3731.  Google Scholar
First citationLippard, S. J., Turowski, P. N., Armstrong, W. H. & Roth, M. E. (1990). J. Am. Chem. Soc. 112, 681–690.  Google Scholar
First citationLyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds