metal-organic compounds
Tetraethylammonium tris(thiocyanato-κN)[tris(1H-pyrazol-1-yl-κN2)methane]nickelate(II)
aDepartment of Chemistry and Physics, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu
The title salt, (C8H20N)[Ni(NCS)3(C10H10N6)], consists of a tetraethylammonium cation and an anion comprising an octahedral NiII atom surrounded by three N atoms from a tripodal tris(pyrazol-1-yl)methane ligand, and three thiocyanate ligands, each bound at the N-atom end. The ligand Ni—N distances range from 2.097 (2) to 2.127 (2) Å for the tripodal ligand and from 2.045 (2) to 2.075 (2) Å for the thiocyanate ligands. The dihedral angles between the three pyrazole rings are 59.03 (12), 53.09 (10) and 67.90 (10)°.
Related literature
For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For literature on tris(pyrazol-1-yl)borate, see: Czernuszewicz et al. (1987); Kitajima et al. (1992); Lippard & Armstrong (1985); Lippard et al. (1990). For a related structure, see: Lyubartseva et al. (2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and local procedures.
Supporting information
https://doi.org/10.1107/S1600536812024774/tk5107sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024774/tk5107Isup2.hkl
Tris(pyrazolyl)methane ligand was synthesized according to the previously published procedure by Reger et al. (2000). Tetraethylammonium thiocyanate and nickel trifluoromethanesulfonate were commercially available and used as received. Ni(OTf)2 (179 mg, 0.5 mmol) was dissolved in 35 ml methanol. Tris(pyrazolyl)methane (107 mg, 0.5 mmol) was dissolved in 15 ml methanol. The ligand solution was added drop-wise to the metal containing solution with moderate stirring. Once the addition was complete, tetraethylammonium thiocyanate (0.282 g, 1.5 mmol) was added and stirred for 15 minutes. The clear solution was filtered and methanol was evaporated slowly. Blue crystals were obtained after 1 week (197 mg, 68% yield).
H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (CH3), 1.00 Å (CH), 0.95 Å (Csp2H), 0.84 Å (O—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq of the attached atom.
The crystal is non-merohedry twinned, in which twin components are related by a 2-fold rotation about the a* axis. The resulting overlap resulted in a large number of rejections during integration, scaling, merging etc. Despite many attempts using a range of input parameters, the present dataset was the best that could be obtained.
In response to the low data completeness: The nature of the
in this structure (180° rotation about the a* axis) meant that a large number of reflections were rejected at the data reduction stage. After several attempts to eke out more usable reflections by tweaking parameters of the integration (APEX2) and of the scaling and merging (TWINABS), the present dataset was the best that we could manage. Although a complete dataset is of course always preferable, we believe that the structure solution and are unambiguous, and that the model is of a reasonable quality given the unavoidable problems with this structure.Rigid-body restraints (DELU in SHELXL97) were applied to the SCN– groups. The spherical atom scattering factor approximation is known to be particularly bad for carbon atoms involved in triple bonds.
Tris(pyrazol-1-yl)borate has been used to structurally mimic the three histidine residues in the preparation of a hemerythrin analogue (Lippard & Armstrong, 1985, Lippard et al., 1990, Czernuszewicz et al., 1987), as well as to model methane monooxygenase (Kitajima et al., 1992). Tris(pyrazol-1-yl)methane is isoelectronic with tris(pyrazol-1-yl)borate (Astley et al., 1993). While trying to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand, and L is NCS-, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals (Lyubartseva et al., 2011). We hypothesized that by changing the source of nickel and thiocyanate in the reaction, we might be able to synthesize our target compound. Replacement of nickel chloride by commercially available nickel trifluoromethanesulfonate, and tetrabutyl ammonium thiocyanate by tetraethylammonium thiocyanate, the reaction allowed successful isolation of the title complex, tetraethylammonium [tris(1-pyrazolyl)methano tris(thiocyanato) nickelate(II)] as blue monoclinic twinned crystals in moderate yield. Crystallographic analysis of the title complex shows that the structure consists of tetraethylammonium cations and anions consisting of nickel(II) surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three thiocyanate ligands, each bound at the nitrogen end. The tripodal ligand N—Ni distance ranges from 2.097 (2) to 2.127 (2) Å and the distance between N-donor pseudohalide uni-negative anion N—Ni ranges from 2.045 (2) to 2.075 (2) Å, very similar to what we observed before in our previous study (Lyubartseva et al., 2011).
For the ligand synthesis, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For literature on tris(pyrazol-1-yl)borate, see: Czernuszewicz et al. (1987); Kitajima et al. (1992); Lippard & Armstrong (1985); Lippard et al. (1990). For a related structure, see: Lyubartseva et al. (2011).
Data collection: APEX2 (Bruker, 2006); cell
APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.(C8H20N)[Ni(NCS)3(C10H10N6)] | F(000) = 2416 |
Mr = 577.44 | Dx = 1.402 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 9915 reflections |
a = 31.7117 (12) Å | θ = 3.0–68.1° |
b = 7.4378 (3) Å | µ = 3.41 mm−1 |
c = 24.7885 (9) Å | T = 90 K |
β = 110.592 (2)° | Plate, blue |
V = 5473.2 (4) Å3 | 0.20 × 0.09 × 0.02 mm |
Z = 8 |
Bruker X8 Proteum diffractometer | 17387 independent reflections |
Radiation source: fine-focus rotating anode | 16112 reflections with I > 2σ(I) |
Graded multilayer optics monochromator | Rint = 0.057 |
Detector resolution: 5.6 pixels mm-1 | θmax = 68.5°, θmin = 3.0° |
φ and ω scans | h = −38→38 |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | k = −8→8 |
Tmin = 0.562, Tmax = 0.935 | l = −29→29 |
17387 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.1128P)2 + 8.5319P] where P = (Fo2 + 2Fc2)/3 |
17387 reflections | (Δ/σ)max = 0.001 |
321 parameters | Δρmax = 0.65 e Å−3 |
9 restraints | Δρmin = −0.51 e Å−3 |
(C8H20N)[Ni(NCS)3(C10H10N6)] | V = 5473.2 (4) Å3 |
Mr = 577.44 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 31.7117 (12) Å | µ = 3.41 mm−1 |
b = 7.4378 (3) Å | T = 90 K |
c = 24.7885 (9) Å | 0.20 × 0.09 × 0.02 mm |
β = 110.592 (2)° |
Bruker X8 Proteum diffractometer | 17387 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 16112 reflections with I > 2σ(I) |
Tmin = 0.562, Tmax = 0.935 | Rint = 0.057 |
17387 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 9 restraints |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.65 e Å−3 |
17387 reflections | Δρmin = −0.51 e Å−3 |
321 parameters |
Experimental. The crystal is twinned by non-merohedry, in which twin components are related by a 2-fold rotation about the a* axis. The resulting overlap resulted in a large number of rejections during integration, scaling, merging etc. Despite many attempts using a range of input parameters, the present dataset was the best that we could manage. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.407107 (14) | 0.17110 (5) | 0.63651 (2) | 0.01568 (13) | |
N1 | 0.35867 (7) | −0.1867 (3) | 0.61187 (10) | 0.0153 (5) | |
N2 | 0.35110 (7) | −0.0071 (3) | 0.61043 (9) | 0.0159 (4) | |
C1 | 0.32006 (8) | −0.2804 (4) | 0.58867 (11) | 0.0174 (6) | |
H1 | 0.3170 | −0.4073 | 0.5847 | 0.021* | |
C2 | 0.28630 (9) | −0.1564 (4) | 0.57207 (12) | 0.0214 (6) | |
H2 | 0.2550 | −0.1794 | 0.5543 | 0.026* | |
C3 | 0.30707 (9) | 0.0117 (4) | 0.58641 (11) | 0.0191 (6) | |
H3 | 0.2916 | 0.1236 | 0.5798 | 0.023* | |
N3 | 0.42727 (7) | −0.1922 (3) | 0.69244 (10) | 0.0169 (5) | |
N4 | 0.43242 (7) | −0.0126 (3) | 0.70447 (9) | 0.0146 (5) | |
C4 | 0.44329 (8) | −0.2906 (4) | 0.74113 (12) | 0.0176 (6) | |
H4 | 0.4432 | −0.4180 | 0.7436 | 0.021* | |
C5 | 0.45954 (9) | −0.1741 (4) | 0.78610 (13) | 0.0219 (7) | |
H5 | 0.4728 | −0.2031 | 0.8258 | 0.026* | |
C6 | 0.45241 (9) | −0.0008 (4) | 0.76109 (11) | 0.0195 (6) | |
H6 | 0.4608 | 0.1085 | 0.7819 | 0.023* | |
N5 | 0.42885 (7) | −0.1912 (3) | 0.59718 (10) | 0.0159 (5) | |
N6 | 0.43478 (8) | −0.0119 (3) | 0.59194 (9) | 0.0178 (5) | |
C7 | 0.44483 (9) | −0.2883 (4) | 0.56257 (12) | 0.0212 (6) | |
H7 | 0.4441 | −0.4155 | 0.5587 | 0.025* | |
C8 | 0.46233 (10) | −0.1675 (4) | 0.53401 (14) | 0.0246 (7) | |
H8 | 0.4761 | −0.1931 | 0.5065 | 0.030* | |
C9 | 0.45532 (9) | 0.0019 (4) | 0.55438 (13) | 0.0233 (6) | |
H9 | 0.4643 | 0.1125 | 0.5425 | 0.028* | |
C10 | 0.40484 (8) | −0.2525 (4) | 0.63393 (12) | 0.0181 (5) | |
H10 | 0.4043 | −0.3869 | 0.6336 | 0.022* | |
N7 | 0.37742 (8) | 0.3308 (3) | 0.68012 (11) | 0.0202 (5) | |
C11 | 0.35301 (9) | 0.4110 (4) | 0.69627 (12) | 0.0191 (6) | |
S1 | 0.31880 (3) | 0.52620 (10) | 0.71952 (3) | 0.02905 (19) | |
N8 | 0.37895 (8) | 0.3221 (3) | 0.56293 (11) | 0.0228 (6) | |
C12 | 0.35534 (9) | 0.3813 (4) | 0.52014 (13) | 0.0224 (6) | |
S2 | 0.32179 (3) | 0.46358 (10) | 0.45961 (3) | 0.0332 (2) | |
N9 | 0.46528 (8) | 0.3251 (3) | 0.65824 (11) | 0.0214 (5) | |
C13 | 0.49714 (9) | 0.3547 (3) | 0.64656 (13) | 0.0197 (6) | |
S3 | 0.54146 (2) | 0.39277 (10) | 0.63002 (4) | 0.0337 (2) | |
N1C | 0.33644 (7) | 0.0364 (3) | 0.85322 (10) | 0.0182 (5) | |
C1C | 0.31210 (10) | −0.0335 (4) | 0.89191 (12) | 0.0234 (7) | |
H1C1 | 0.3128 | −0.1665 | 0.8916 | 0.028* | |
H1C2 | 0.2801 | 0.0038 | 0.8754 | 0.028* | |
C2C | 0.33125 (12) | 0.0301 (4) | 0.95409 (13) | 0.0296 (7) | |
H2C1 | 0.3629 | −0.0064 | 0.9711 | 0.044* | |
H2C2 | 0.3141 | −0.0238 | 0.9760 | 0.044* | |
H2C3 | 0.3291 | 0.1614 | 0.9553 | 0.044* | |
C3C | 0.38609 (9) | −0.0102 (4) | 0.87637 (12) | 0.0232 (6) | |
H3C1 | 0.4002 | 0.0498 | 0.9141 | 0.028* | |
H3C2 | 0.4003 | 0.0392 | 0.8498 | 0.028* | |
C4C | 0.39633 (11) | −0.2101 (4) | 0.88395 (16) | 0.0360 (8) | |
H4C1 | 0.3836 | −0.2598 | 0.9115 | 0.054* | |
H4C2 | 0.4290 | −0.2283 | 0.8985 | 0.054* | |
H4C3 | 0.3830 | −0.2710 | 0.8467 | 0.054* | |
C5C | 0.31308 (10) | −0.0509 (4) | 0.79491 (13) | 0.0223 (6) | |
H5C1 | 0.3172 | −0.1826 | 0.7994 | 0.027* | |
H5C2 | 0.2804 | −0.0262 | 0.7830 | 0.027* | |
C6C | 0.32900 (11) | 0.0091 (4) | 0.74713 (13) | 0.0273 (7) | |
H6C1 | 0.3229 | 0.1377 | 0.7398 | 0.041* | |
H6C2 | 0.3130 | −0.0590 | 0.7120 | 0.041* | |
H6C3 | 0.3615 | −0.0125 | 0.7585 | 0.041* | |
C7C | 0.33375 (9) | 0.2414 (4) | 0.84895 (13) | 0.0223 (6) | |
H7C1 | 0.3504 | 0.2926 | 0.8875 | 0.027* | |
H7C2 | 0.3491 | 0.2817 | 0.8226 | 0.027* | |
C8C | 0.28625 (9) | 0.3166 (4) | 0.82774 (13) | 0.0234 (7) | |
H8C1 | 0.2702 | 0.2754 | 0.7883 | 0.035* | |
H8C2 | 0.2875 | 0.4483 | 0.8284 | 0.035* | |
H8C3 | 0.2703 | 0.2748 | 0.8529 | 0.035* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0155 (2) | 0.0125 (3) | 0.0192 (3) | −0.00071 (16) | 0.0062 (2) | 0.00040 (17) |
N1 | 0.0149 (11) | 0.0118 (12) | 0.0192 (13) | 0.0020 (8) | 0.0060 (10) | 0.0006 (8) |
N2 | 0.0165 (11) | 0.0122 (11) | 0.0197 (11) | 0.0007 (8) | 0.0074 (9) | 0.0019 (9) |
C1 | 0.0159 (14) | 0.0205 (14) | 0.0164 (15) | −0.0059 (10) | 0.0062 (11) | −0.0019 (11) |
C2 | 0.0128 (14) | 0.0307 (17) | 0.0206 (16) | −0.0040 (10) | 0.0056 (12) | 0.0012 (11) |
C3 | 0.0178 (14) | 0.0212 (15) | 0.0177 (14) | 0.0018 (10) | 0.0056 (11) | 0.0018 (11) |
N3 | 0.0153 (12) | 0.0126 (13) | 0.0231 (14) | −0.0025 (8) | 0.0071 (10) | 0.0016 (9) |
N4 | 0.0112 (12) | 0.0126 (13) | 0.0183 (12) | −0.0028 (8) | 0.0030 (9) | −0.0029 (9) |
C4 | 0.0114 (13) | 0.0167 (14) | 0.0250 (17) | 0.0005 (10) | 0.0069 (11) | 0.0082 (11) |
C5 | 0.0090 (13) | 0.0334 (18) | 0.0219 (17) | −0.0029 (10) | 0.0038 (11) | 0.0032 (11) |
C6 | 0.0128 (13) | 0.0234 (16) | 0.0226 (16) | −0.0012 (10) | 0.0066 (11) | −0.0011 (12) |
N5 | 0.0128 (11) | 0.0120 (12) | 0.0228 (14) | 0.0002 (8) | 0.0062 (10) | 0.0006 (8) |
N6 | 0.0211 (13) | 0.0152 (13) | 0.0194 (13) | −0.0011 (9) | 0.0101 (10) | 0.0013 (9) |
C7 | 0.0206 (14) | 0.0248 (16) | 0.0189 (16) | 0.0040 (11) | 0.0078 (12) | −0.0004 (11) |
C8 | 0.0270 (16) | 0.0271 (18) | 0.0283 (19) | 0.0036 (11) | 0.0202 (14) | −0.0006 (12) |
C9 | 0.0192 (15) | 0.0238 (16) | 0.0288 (16) | 0.0005 (11) | 0.0107 (12) | 0.0018 (12) |
C10 | 0.0138 (13) | 0.0166 (14) | 0.0205 (15) | 0.0003 (10) | 0.0017 (11) | 0.0022 (11) |
N7 | 0.0249 (13) | 0.0151 (13) | 0.0248 (15) | −0.0019 (9) | 0.0139 (11) | 0.0000 (9) |
C11 | 0.0230 (15) | 0.0143 (14) | 0.0197 (15) | −0.0039 (11) | 0.0072 (11) | 0.0030 (11) |
S1 | 0.0347 (4) | 0.0252 (4) | 0.0350 (4) | 0.0087 (3) | 0.0220 (4) | 0.0034 (3) |
N8 | 0.0226 (13) | 0.0137 (14) | 0.0290 (16) | 0.0033 (9) | 0.0051 (11) | 0.0009 (10) |
C12 | 0.0261 (15) | 0.0141 (14) | 0.0282 (17) | 0.0021 (11) | 0.0112 (13) | −0.0052 (12) |
S2 | 0.0456 (5) | 0.0246 (4) | 0.0237 (4) | 0.0145 (3) | 0.0052 (3) | 0.0027 (3) |
N9 | 0.0187 (12) | 0.0164 (12) | 0.0294 (15) | −0.0015 (8) | 0.0088 (11) | 0.0029 (9) |
C13 | 0.0185 (14) | 0.0109 (13) | 0.0265 (17) | 0.0031 (10) | 0.0039 (12) | 0.0048 (11) |
S3 | 0.0239 (4) | 0.0253 (5) | 0.0565 (6) | 0.0003 (3) | 0.0200 (4) | 0.0070 (4) |
N1C | 0.0157 (12) | 0.0221 (14) | 0.0189 (12) | 0.0017 (9) | 0.0085 (10) | 0.0018 (10) |
C1C | 0.0227 (16) | 0.0275 (17) | 0.0251 (16) | 0.0032 (12) | 0.0148 (13) | 0.0081 (12) |
C2C | 0.047 (2) | 0.0178 (17) | 0.0262 (17) | 0.0053 (13) | 0.0162 (15) | 0.0043 (12) |
C3C | 0.0166 (14) | 0.0280 (16) | 0.0255 (16) | 0.0018 (11) | 0.0082 (12) | 0.0029 (12) |
C4C | 0.0287 (18) | 0.0391 (19) | 0.042 (2) | 0.0134 (14) | 0.0152 (15) | 0.0140 (15) |
C5C | 0.0219 (16) | 0.0215 (16) | 0.0253 (17) | −0.0027 (12) | 0.0105 (13) | −0.0006 (11) |
C6C | 0.0346 (18) | 0.0257 (17) | 0.0245 (16) | −0.0059 (12) | 0.0140 (14) | −0.0014 (13) |
C7C | 0.0286 (15) | 0.0128 (15) | 0.0268 (16) | −0.0011 (11) | 0.0114 (13) | −0.0013 (11) |
C8C | 0.0218 (15) | 0.0216 (17) | 0.0287 (18) | 0.0039 (11) | 0.0114 (13) | 0.0034 (12) |
Ni1—N7 | 2.045 (2) | N7—C11 | 1.155 (4) |
Ni1—N8 | 2.059 (2) | C11—S1 | 1.638 (3) |
Ni1—N9 | 2.075 (2) | N8—C12 | 1.149 (4) |
Ni1—N4 | 2.097 (2) | C12—S2 | 1.623 (3) |
Ni1—N2 | 2.126 (2) | N9—C13 | 1.166 (4) |
Ni1—N6 | 2.127 (2) | C13—S3 | 1.621 (3) |
N1—C1 | 1.349 (3) | N1C—C3C | 1.514 (3) |
N1—N2 | 1.356 (3) | N1C—C5C | 1.519 (4) |
N1—C10 | 1.456 (3) | N1C—C1C | 1.519 (3) |
N2—C3 | 1.319 (3) | N1C—C7C | 1.529 (4) |
C1—C2 | 1.363 (4) | C1C—C2C | 1.520 (4) |
C1—H1 | 0.9500 | C1C—H1C1 | 0.9900 |
C2—C3 | 1.400 (4) | C1C—H1C2 | 0.9900 |
C2—H2 | 0.9500 | C2C—H2C1 | 0.9800 |
C3—H3 | 0.9500 | C2C—H2C2 | 0.9800 |
N3—C4 | 1.349 (3) | C2C—H2C3 | 0.9800 |
N3—N4 | 1.366 (3) | C3C—C4C | 1.519 (4) |
N3—C10 | 1.444 (4) | C3C—H3C1 | 0.9900 |
N4—C6 | 1.324 (3) | C3C—H3C2 | 0.9900 |
C4—C5 | 1.362 (4) | C4C—H4C1 | 0.9800 |
C4—H4 | 0.9500 | C4C—H4C2 | 0.9800 |
C5—C6 | 1.414 (4) | C4C—H4C3 | 0.9800 |
C5—H5 | 0.9500 | C5C—C6C | 1.509 (4) |
C6—H6 | 0.9500 | C5C—H5C1 | 0.9900 |
N5—C7 | 1.349 (4) | C5C—H5C2 | 0.9900 |
N5—N6 | 1.359 (3) | C6C—H6C1 | 0.9800 |
N5—C10 | 1.451 (3) | C6C—H6C2 | 0.9800 |
N6—C9 | 1.315 (4) | C6C—H6C3 | 0.9800 |
C7—C8 | 1.376 (4) | C7C—C8C | 1.517 (4) |
C7—H7 | 0.9500 | C7C—H7C1 | 0.9900 |
C8—C9 | 1.404 (4) | C7C—H7C2 | 0.9900 |
C8—H8 | 0.9500 | C8C—H8C1 | 0.9800 |
C9—H9 | 0.9500 | C8C—H8C2 | 0.9800 |
C10—H10 | 1.0000 | C8C—H8C3 | 0.9800 |
N7—Ni1—N8 | 90.83 (9) | N3—C10—H10 | 108.7 |
N7—Ni1—N9 | 94.28 (10) | N5—C10—H10 | 108.7 |
N8—Ni1—N9 | 89.87 (10) | N1—C10—H10 | 108.7 |
N7—Ni1—N4 | 94.08 (9) | C11—N7—Ni1 | 166.6 (2) |
N8—Ni1—N4 | 172.38 (9) | N7—C11—S1 | 179.4 (3) |
N9—Ni1—N4 | 95.57 (9) | C12—N8—Ni1 | 164.9 (2) |
N7—Ni1—N2 | 91.84 (9) | N8—C12—S2 | 179.6 (3) |
N8—Ni1—N2 | 90.86 (9) | C13—N9—Ni1 | 144.0 (2) |
N9—Ni1—N2 | 173.83 (9) | N9—C13—S3 | 179.2 (3) |
N4—Ni1—N2 | 83.16 (8) | C3C—N1C—C5C | 110.9 (2) |
N7—Ni1—N6 | 175.50 (9) | C3C—N1C—C1C | 112.0 (2) |
N8—Ni1—N6 | 91.07 (9) | C5C—N1C—C1C | 105.6 (2) |
N9—Ni1—N6 | 89.81 (9) | C3C—N1C—C7C | 106.25 (19) |
N4—Ni1—N6 | 83.63 (8) | C5C—N1C—C7C | 111.3 (2) |
N2—Ni1—N6 | 84.05 (9) | C1C—N1C—C7C | 110.9 (2) |
C1—N1—N2 | 111.9 (2) | N1C—C1C—C2C | 115.0 (3) |
C1—N1—C10 | 128.9 (2) | N1C—C1C—H1C1 | 108.5 |
N2—N1—C10 | 119.13 (19) | C2C—C1C—H1C1 | 108.5 |
C3—N2—N1 | 105.4 (2) | N1C—C1C—H1C2 | 108.5 |
C3—N2—Ni1 | 135.22 (18) | C2C—C1C—H1C2 | 108.5 |
N1—N2—Ni1 | 119.00 (15) | H1C1—C1C—H1C2 | 107.5 |
N1—C1—C2 | 106.1 (2) | C1C—C2C—H2C1 | 109.5 |
N1—C1—H1 | 126.9 | C1C—C2C—H2C2 | 109.5 |
C2—C1—H1 | 126.9 | H2C1—C2C—H2C2 | 109.5 |
C1—C2—C3 | 106.2 (2) | C1C—C2C—H2C3 | 109.5 |
C1—C2—H2 | 126.9 | H2C1—C2C—H2C3 | 109.5 |
C3—C2—H2 | 126.9 | H2C2—C2C—H2C3 | 109.5 |
N2—C3—C2 | 110.4 (2) | N1C—C3C—C4C | 114.8 (2) |
N2—C3—H3 | 124.8 | N1C—C3C—H3C1 | 108.6 |
C2—C3—H3 | 124.8 | C4C—C3C—H3C1 | 108.6 |
C4—N3—N4 | 110.9 (2) | N1C—C3C—H3C2 | 108.6 |
C4—N3—C10 | 128.9 (2) | C4C—C3C—H3C2 | 108.6 |
N4—N3—C10 | 120.1 (2) | H3C1—C3C—H3C2 | 107.5 |
C6—N4—N3 | 105.8 (2) | C3C—C4C—H4C1 | 109.5 |
C6—N4—Ni1 | 135.53 (18) | C3C—C4C—H4C2 | 109.5 |
N3—N4—Ni1 | 118.63 (16) | H4C1—C4C—H4C2 | 109.5 |
N3—C4—C5 | 107.6 (2) | C3C—C4C—H4C3 | 109.5 |
N3—C4—H4 | 126.2 | H4C1—C4C—H4C3 | 109.5 |
C5—C4—H4 | 126.2 | H4C2—C4C—H4C3 | 109.5 |
C4—C5—C6 | 105.4 (3) | C6C—C5C—N1C | 115.8 (2) |
C4—C5—H5 | 127.3 | C6C—C5C—H5C1 | 108.3 |
C6—C5—H5 | 127.3 | N1C—C5C—H5C1 | 108.3 |
N4—C6—C5 | 110.3 (2) | C6C—C5C—H5C2 | 108.3 |
N4—C6—H6 | 124.8 | N1C—C5C—H5C2 | 108.3 |
C5—C6—H6 | 124.8 | H5C1—C5C—H5C2 | 107.4 |
C7—N5—N6 | 111.7 (2) | C5C—C6C—H6C1 | 109.5 |
C7—N5—C10 | 128.9 (2) | C5C—C6C—H6C2 | 109.5 |
N6—N5—C10 | 119.3 (2) | H6C1—C6C—H6C2 | 109.5 |
C9—N6—N5 | 105.3 (2) | C5C—C6C—H6C3 | 109.5 |
C9—N6—Ni1 | 135.67 (19) | H6C1—C6C—H6C3 | 109.5 |
N5—N6—Ni1 | 118.83 (16) | H6C2—C6C—H6C3 | 109.5 |
N5—C7—C8 | 106.7 (2) | C8C—C7C—N1C | 114.6 (2) |
N5—C7—H7 | 126.7 | C8C—C7C—H7C1 | 108.6 |
C8—C7—H7 | 126.7 | N1C—C7C—H7C1 | 108.6 |
C7—C8—C9 | 104.9 (3) | C8C—C7C—H7C2 | 108.6 |
C7—C8—H8 | 127.5 | N1C—C7C—H7C2 | 108.6 |
C9—C8—H8 | 127.5 | H7C1—C7C—H7C2 | 107.6 |
N6—C9—C8 | 111.4 (3) | C7C—C8C—H8C1 | 109.5 |
N6—C9—H9 | 124.3 | C7C—C8C—H8C2 | 109.5 |
C8—C9—H9 | 124.3 | H8C1—C8C—H8C2 | 109.5 |
N3—C10—N5 | 110.5 (2) | C7C—C8C—H8C3 | 109.5 |
N3—C10—N1 | 110.4 (2) | H8C1—C8C—H8C3 | 109.5 |
N5—C10—N1 | 109.8 (2) | H8C2—C8C—H8C3 | 109.5 |
C1—N1—N2—C3 | 0.5 (3) | N9—Ni1—N6—N5 | 138.72 (19) |
C10—N1—N2—C3 | 177.3 (2) | N4—Ni1—N6—N5 | 43.10 (17) |
C1—N1—N2—Ni1 | −173.73 (18) | N2—Ni1—N6—N5 | −40.65 (18) |
C10—N1—N2—Ni1 | 3.1 (3) | N6—N5—C7—C8 | 0.6 (3) |
N7—Ni1—N2—C3 | 49.5 (3) | C10—N5—C7—C8 | 176.2 (2) |
N8—Ni1—N2—C3 | −41.3 (3) | N5—C7—C8—C9 | 0.0 (3) |
N4—Ni1—N2—C3 | 143.4 (3) | N5—N6—C9—C8 | 1.0 (3) |
N6—Ni1—N2—C3 | −132.3 (3) | Ni1—N6—C9—C8 | −173.5 (2) |
N7—Ni1—N2—N1 | −138.4 (2) | C7—C8—C9—N6 | −0.6 (3) |
N8—Ni1—N2—N1 | 130.8 (2) | C4—N3—C10—N5 | −122.9 (3) |
N4—Ni1—N2—N1 | −44.47 (19) | N4—N3—C10—N5 | 60.8 (3) |
N6—Ni1—N2—N1 | 39.8 (2) | C4—N3—C10—N1 | 115.4 (3) |
N2—N1—C1—C2 | −0.5 (3) | N4—N3—C10—N1 | −60.9 (3) |
C10—N1—C1—C2 | −176.9 (3) | C7—N5—C10—N3 | 125.4 (3) |
N1—C1—C2—C3 | 0.2 (3) | N6—N5—C10—N3 | −59.4 (3) |
N1—N2—C3—C2 | −0.4 (3) | C7—N5—C10—N1 | −112.6 (3) |
Ni1—N2—C3—C2 | 172.5 (2) | N6—N5—C10—N1 | 62.7 (3) |
C1—C2—C3—N2 | 0.1 (3) | C1—N1—C10—N3 | −125.4 (3) |
C4—N3—N4—C6 | 0.9 (3) | N2—N1—C10—N3 | 58.4 (3) |
C10—N3—N4—C6 | 177.8 (2) | C1—N1—C10—N5 | 112.5 (3) |
C4—N3—N4—Ni1 | −176.83 (17) | N2—N1—C10—N5 | −63.7 (3) |
C10—N3—N4—Ni1 | 0.1 (3) | N8—Ni1—N7—C11 | 57.8 (9) |
N7—Ni1—N4—C6 | −42.9 (3) | N9—Ni1—N7—C11 | 147.7 (9) |
N9—Ni1—N4—C6 | 51.8 (3) | N4—Ni1—N7—C11 | −116.4 (9) |
N2—Ni1—N4—C6 | −134.3 (3) | N2—Ni1—N7—C11 | −33.1 (9) |
N6—Ni1—N4—C6 | 141.0 (3) | N7—Ni1—N8—C12 | −85.6 (9) |
N7—Ni1—N4—N3 | 133.94 (18) | N2—Ni1—N8—C12 | 6.2 (9) |
N9—Ni1—N4—N3 | −131.34 (18) | N6—Ni1—N8—C12 | 90.3 (9) |
N2—Ni1—N4—N3 | 42.58 (18) | N7—Ni1—N9—C13 | −163.3 (3) |
N6—Ni1—N4—N3 | −42.16 (17) | N8—Ni1—N9—C13 | −72.5 (3) |
N4—N3—C4—C5 | −0.3 (3) | N4—Ni1—N9—C13 | 102.2 (3) |
C10—N3—C4—C5 | −176.9 (2) | N6—Ni1—N9—C13 | 18.6 (3) |
N3—C4—C5—C6 | −0.3 (3) | C3C—N1C—C1C—C2C | 56.6 (3) |
N3—N4—C6—C5 | −1.1 (3) | C5C—N1C—C1C—C2C | 177.4 (3) |
Ni1—N4—C6—C5 | 176.07 (18) | C7C—N1C—C1C—C2C | −61.9 (3) |
C4—C5—C6—N4 | 0.9 (3) | C5C—N1C—C3C—C4C | −58.8 (3) |
C7—N5—N6—C9 | −1.0 (3) | C1C—N1C—C3C—C4C | 58.8 (3) |
C10—N5—N6—C9 | −177.0 (2) | C7C—N1C—C3C—C4C | −180.0 (3) |
C7—N5—N6—Ni1 | 174.60 (18) | C3C—N1C—C5C—C6C | −63.1 (3) |
C10—N5—N6—Ni1 | −1.4 (3) | C1C—N1C—C5C—C6C | 175.4 (3) |
N8—Ni1—N6—C9 | 42.5 (3) | C7C—N1C—C5C—C6C | 55.0 (3) |
N9—Ni1—N6—C9 | −47.3 (3) | C3C—N1C—C7C—C8C | −178.6 (2) |
N4—Ni1—N6—C9 | −143.0 (3) | C5C—N1C—C7C—C8C | 60.6 (3) |
N2—Ni1—N6—C9 | 133.3 (3) | C1C—N1C—C7C—C8C | −56.7 (3) |
N8—Ni1—N6—N5 | −131.41 (19) |
Experimental details
Crystal data | |
Chemical formula | (C8H20N)[Ni(NCS)3(C10H10N6)] |
Mr | 577.44 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 90 |
a, b, c (Å) | 31.7117 (12), 7.4378 (3), 24.7885 (9) |
β (°) | 110.592 (2) |
V (Å3) | 5473.2 (4) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 3.41 |
Crystal size (mm) | 0.20 × 0.09 × 0.02 |
Data collection | |
Diffractometer | Bruker X8 Proteum |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.562, 0.935 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17387, 17387, 16112 |
Rint | 0.057 |
(sin θ/λ)max (Å−1) | 0.604 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.186, 1.11 |
No. of reflections | 17387 |
No. of parameters | 321 |
No. of restraints | 9 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.65, −0.51 |
Computer programs: APEX2 (Bruker, 2006), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.
Acknowledgements
GL gratefully acknowledges Southern Arkansas University for the financial support.
References
Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515. CSD CrossRef Web of Science Google Scholar
Bruker (2006). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Czernuszewicz, R. S., Sheats, J. E. & Spiro, T. G. (1987). Inorg. Chem. 26, 2063–2067. CrossRef CAS Web of Science Google Scholar
Kitajima, N., Fujisawa, K., Fujimoto, C., Morooka, Y., Hashimoto, S., Kitagawa, T., Toriumi, K., Tatsumi, K. & Nakamura, A. (1992). J. Am. Chem. Soc. 114, 1277–1291. CSD CrossRef CAS Web of Science Google Scholar
Lippard, S. J. & Armstrong, W. H. (1985). J. Am. Chem. Soc. 107, 3730–3731. Google Scholar
Lippard, S. J., Turowski, P. N., Armstrong, W. H. & Roth, M. E. (1990). J. Am. Chem. Soc. 112, 681–690. Google Scholar
Lyubartseva, G., Parkin, S. & Mallik, U. P. (2011). Acta Cryst. E67, m1656–m1657. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tris(pyrazol-1-yl)borate has been used to structurally mimic the three histidine residues in the preparation of a hemerythrin analogue (Lippard & Armstrong, 1985, Lippard et al., 1990, Czernuszewicz et al., 1987), as well as to model methane monooxygenase (Kitajima et al., 1992). Tris(pyrazol-1-yl)methane is isoelectronic with tris(pyrazol-1-yl)borate (Astley et al., 1993). While trying to prepare mononuclear [(tpm)NiIIL3]-1 , where tpm is tris(pyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand, and L is NCS-, we obtained [(tpm)2NiII][(tpm)NiII(NCS)3]2.2CH3OH as blue monoclinic crystals (Lyubartseva et al., 2011). We hypothesized that by changing the source of nickel and thiocyanate in the reaction, we might be able to synthesize our target compound. Replacement of nickel chloride by commercially available nickel trifluoromethanesulfonate, and tetrabutyl ammonium thiocyanate by tetraethylammonium thiocyanate, the reaction allowed successful isolation of the title complex, tetraethylammonium [tris(1-pyrazolyl)methano tris(thiocyanato) nickelate(II)] as blue monoclinic twinned crystals in moderate yield. Crystallographic analysis of the title complex shows that the structure consists of tetraethylammonium cations and anions consisting of nickel(II) surrounded octahedrally by one tripodal tris(pyrazol-1-yl)methane ligand and three thiocyanate ligands, each bound at the nitrogen end. The tripodal ligand N—Ni distance ranges from 2.097 (2) to 2.127 (2) Å and the distance between N-donor pseudohalide uni-negative anion N—Ni ranges from 2.045 (2) to 2.075 (2) Å, very similar to what we observed before in our previous study (Lyubartseva et al., 2011).