organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(R)-4-Iso­propyl-3-iso­propyl­sulfanyl-5,5-di­phenyl-1,3-oxazolidin-2-one

aDepartamento de Química, Instituto de Química, Universidade Federal do Rio, Grande do Sul, Porto Alegre/RS 91501-970, Brazil, and bDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre, Dame, IN 46556-5670, USA
*Correspondence e-mail: gustavo.silveira@iq.ufrgs.br

(Received 4 June 2012; accepted 5 June 2012; online 13 June 2012)

The title compound, C21H25NO2S, consists of a five-membered heterocyclic ring, with pendant phenyl groups, an isopropyl group and a thio­ether residue. The thio­ether bonds to the heterocycle via the N atom. The absolute configuration results from an inversion of the configuration of substrate during the synthesis.

Related literature

For background to the preparation of chiral auxiliaries containing sulfilimine functionalities, see: Celentano et al. (1998[Celentano, G., Colonna, S., Gaggero, N. & Richelmi, C. (1998). Chem. Commun. pp. 701-702.]). For a related structure, see: Valle et al. (1992[Valle, G., Crisma, M., Formaggio, F., Toniolo, C., Redlinski, A. S., Kaczmarek, K. & Leplawy, M. T. (1992). Z. Kristallogr. 199, 229-237.]). For the synthesis, see: Hinter­mann & Seebach (1998[Hintermann, T. & Seebach, D. A. (1998). Helv. Chim. Acta, 81, 2093-2126.]); Derbesy & Harpp (1995[Derbesy, G. & Harpp, D. N. (1995). J. Org. Chem. 60, 4468-4474.]). For the structural characterization and absolute configuration analysis, see: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]). For a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO2S

  • Mr = 355.48

  • Orthorhombic, P 21 21 21

  • a = 6.0621 (1) Å

  • b = 17.2963 (3) Å

  • c = 18.5398 (3) Å

  • V = 1943.93 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.58 mm−1

  • T = 100 K

  • 0.50 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.720, Tmax = 0.964

  • 18292 measured reflections

  • 3008 independent reflections

  • 2887 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.071

  • S = 1.06

  • 3008 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1165 Friedel pairs

  • Flack parameter: 0.039 (15)

Data collection: APEX2 (Bruker, 2008[Bruker. (2008). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker. (2008). APEX2 and SAINT. Bruker-Nonius AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Oxazolindinone compounds, such as the title compound, (R)-4-isopropyl-3-(isopropylthio)-5,5-diphenyloxazolidin-2-one (I), are synthesized as precursors for the preparation of chiral auxiliaries containing sulfilimine functionalities. Eventually, these auxiliaries are applied to the synthesis of new sulfimines in a high enantiomeric ratio (Celentano et al., 1998). To the best of our knowledge, the only other N-thioether-containing oxazolindinone is a dione (Valle et al., 1992). All other oxazoldininones that exhibit an N—S bond are sulfinyl- or sulfonyl-containing compounds (Allen, 2002).

An interesting feature of this compound is the conversion of S-isopropyl isopropanesulfonothioate to an R-isomer during the synthesis. Confirmation of the correct absolute stereochemistry of (I) was determined as described below.

Related literature top

For background to the preparation of chiral auxiliaries containing sulfilimine functionalities, see: Celentano et al. (1998). For a related structure, see: Valle et al. (1992). For the synthesis, see: Hintermann & Seebach (1998); Derbesy & Harpp (1995). For the structural characterization and absolute configuration analysis, see: Flack (1983); Hooft et al. (2008). For a description of the Cambridge Structural Database, see Allen (2002).

Experimental top

To a solution of the oxazolidinone (Hintermann & Seebach, 1998) (2.50 g, 8.80 mmol) in dry THF (40 ml) at 273 K was slowly added 1 equiv of n-BuLi (Celentano et al., 1998). The solution turned from colorless to dark-red. After the mixture was left to react for 30 min at 273 K, a solution of S-isopropyl isopropanesulfonothioate (Derbesy & Harpp, 1995) (1.58 g, 9.10 mmol) in dry THF (40 ml) was added by cannula, at once, and the reaction was left stirring overnight at room temperature. The white mixture was quenched with saturated NH4Cl (50 ml) and extracted with ethyl acetate (50 ml). The organic layer was washed with H2O (50 ml) and brine, dried with MgSO4 and then filtered. The solvent was removed at reduced pressure on a rotovap and the colorless oil was purified through flash chromatography with elution by (1:9 ethyl acetate/hexanes) to provide 2.28 g of the oxazolidine sulfide (73% yield) as colorless prisms after slow evaporation.

Refinement top

All hydrogen atoms were included in geometrically calculated positions with C—H distances constrained to 0.95 Å for aromatic C–H and 0.98–1.00 Å for aliphatic C–H bonds. Hydrogen thermal parameters were tied to the occupancy of the atom to which they are bonded. The Uiso was set to 1.5 × Ueq for methyl H atoms and 1.2 × Ueq for all others.

The absolute configuration was determined by the known handedness of the molecule from synthesis, comparison of intensities of Friedel pairs of reflections (Flack, 1983) and by Bayesian analysis of Bijvoet pairs (Hooft et al., 2008). All three techniques agree and the correct configuration is depicted in Fig. 1. The Flack x parameter refined to 0.039 (15) based on 1165 Friedel pairs. The Hooft y parameter was 0.056 (6) based on 1170 Bijvoet pairs. P2(true) and P3(true) values were calculated at 1.000 and 1.000 indicative an an enantiopure crystal.

Structure description top

Oxazolindinone compounds, such as the title compound, (R)-4-isopropyl-3-(isopropylthio)-5,5-diphenyloxazolidin-2-one (I), are synthesized as precursors for the preparation of chiral auxiliaries containing sulfilimine functionalities. Eventually, these auxiliaries are applied to the synthesis of new sulfimines in a high enantiomeric ratio (Celentano et al., 1998). To the best of our knowledge, the only other N-thioether-containing oxazolindinone is a dione (Valle et al., 1992). All other oxazoldininones that exhibit an N—S bond are sulfinyl- or sulfonyl-containing compounds (Allen, 2002).

An interesting feature of this compound is the conversion of S-isopropyl isopropanesulfonothioate to an R-isomer during the synthesis. Confirmation of the correct absolute stereochemistry of (I) was determined as described below.

For background to the preparation of chiral auxiliaries containing sulfilimine functionalities, see: Celentano et al. (1998). For a related structure, see: Valle et al. (1992). For the synthesis, see: Hintermann & Seebach (1998); Derbesy & Harpp (1995). For the structural characterization and absolute configuration analysis, see: Flack (1983); Hooft et al. (2008). For a description of the Cambridge Structural Database, see Allen (2002).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. H atoms are shown as idealized spheres of an arbitrary radius.
(R)-4-Isopropyl-3-isopropylsulfanyl-5,5-diphenyl-1,3-oxazolidin-2-one top
Crystal data top
C21H25NO2SF(000) = 760
Mr = 355.48Dx = 1.215 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9921 reflections
a = 6.0621 (1) Åθ = 3.5–68.2°
b = 17.2963 (3) ŵ = 1.58 mm1
c = 18.5398 (3) ÅT = 100 K
V = 1943.93 (6) Å3Block, colourless
Z = 40.50 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX
diffractometer
3008 independent reflections
Radiation source: fine-focus sealed tube2887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.33 pixels mm-1θmax = 68.3°, θmin = 3.5°
combination of ω and φ–scansh = 75
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
k = 2019
Tmin = 0.720, Tmax = 0.964l = 2219
18292 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.4225P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
3008 reflectionsΔρmax = 0.19 e Å3
230 parametersΔρmin = 0.16 e Å3
0 restraintsAbsolute structure: Flack (1983), 1165 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.039 (15)
Crystal data top
C21H25NO2SV = 1943.93 (6) Å3
Mr = 355.48Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.0621 (1) ŵ = 1.58 mm1
b = 17.2963 (3) ÅT = 100 K
c = 18.5398 (3) Å0.50 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEX
diffractometer
3008 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008)
2887 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.964Rint = 0.026
18292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.19 e Å3
S = 1.06Δρmin = 0.16 e Å3
3008 reflectionsAbsolute structure: Flack (1983), 1165 Friedel pairs
230 parametersAbsolute structure parameter: 0.039 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.98999 (7)0.85676 (3)0.12949 (2)0.02269 (12)
O11.4437 (2)0.84260 (8)0.20523 (7)0.0278 (3)
O21.2940 (2)0.88301 (7)0.30979 (6)0.0219 (3)
N11.0729 (2)0.87582 (9)0.21499 (7)0.0209 (3)
C11.2833 (3)0.86441 (11)0.23819 (9)0.0215 (4)
C20.9378 (3)0.91505 (11)0.26982 (8)0.0201 (4)
H2A0.78680.89180.27060.024*
C31.0683 (3)0.88855 (11)0.33765 (9)0.0204 (4)
C40.8825 (3)0.75865 (11)0.13766 (10)0.0262 (4)
H4A0.79050.75490.18230.031*
C51.0669 (3)0.69929 (12)0.14156 (11)0.0344 (5)
H5A1.00330.64730.14400.052*
H5B1.15630.70870.18470.052*
H5C1.16000.70360.09850.052*
C60.7353 (4)0.74711 (14)0.07179 (11)0.0376 (5)
H6A0.67520.69450.07220.056*
H6B0.82230.75490.02780.056*
H6C0.61400.78450.07310.056*
C70.9201 (3)1.00311 (11)0.25872 (9)0.0213 (4)
H7A0.86721.02570.30530.026*
C81.1389 (3)1.04238 (12)0.24058 (10)0.0283 (4)
H8A1.24491.03300.27950.042*
H8B1.11531.09810.23520.042*
H8C1.19691.02120.19540.042*
C90.7481 (3)1.02356 (12)0.20090 (10)0.0303 (5)
H9A0.60980.99640.21120.045*
H9B0.80291.00790.15340.045*
H9C0.72181.07950.20120.045*
C101.0041 (3)0.80762 (10)0.36471 (8)0.0215 (4)
C111.1590 (3)0.76845 (12)0.40647 (10)0.0275 (5)
H11A1.29990.79090.41450.033*
C121.1099 (4)0.69714 (12)0.43639 (10)0.0345 (5)
H12A1.21760.67090.46440.041*
C130.9050 (4)0.66396 (12)0.42565 (10)0.0327 (5)
H13A0.87090.61520.44640.039*
C140.7502 (3)0.70267 (12)0.38436 (10)0.0300 (5)
H14A0.60950.68000.37650.036*
C150.7983 (3)0.77417 (11)0.35432 (9)0.0249 (4)
H15A0.69000.80040.32650.030*
C161.0661 (3)0.94454 (11)0.40064 (9)0.0205 (4)
C170.8725 (3)0.95254 (12)0.44058 (9)0.0250 (4)
H17A0.74490.92410.42710.030*
C180.8645 (3)1.00158 (12)0.49972 (9)0.0287 (5)
H18A0.73111.00700.52610.034*
C191.0499 (3)1.04269 (12)0.52041 (9)0.0299 (5)
H19A1.04541.07560.56140.036*
C201.2420 (3)1.03529 (11)0.48068 (9)0.0266 (4)
H20A1.36901.06390.49430.032*
C211.2520 (3)0.98667 (11)0.42123 (9)0.0249 (4)
H21A1.38520.98210.39460.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (2)0.0230 (3)0.01463 (18)0.00277 (19)0.00080 (17)0.00131 (18)
O10.0247 (7)0.0330 (9)0.0257 (6)0.0008 (5)0.0016 (5)0.0044 (6)
O20.0207 (6)0.0255 (8)0.0193 (5)0.0003 (5)0.0009 (5)0.0012 (5)
N10.0228 (8)0.0238 (9)0.0160 (6)0.0004 (6)0.0001 (5)0.0017 (7)
C10.0253 (9)0.0182 (11)0.0208 (8)0.0043 (8)0.0007 (7)0.0007 (8)
C20.0231 (9)0.0195 (10)0.0177 (8)0.0017 (7)0.0001 (6)0.0002 (8)
C30.0196 (9)0.0220 (11)0.0196 (8)0.0000 (7)0.0006 (6)0.0008 (8)
C40.0327 (11)0.0224 (11)0.0236 (8)0.0059 (8)0.0022 (8)0.0020 (9)
C50.0399 (12)0.0245 (12)0.0389 (11)0.0001 (9)0.0032 (9)0.0033 (10)
C60.0386 (12)0.0356 (13)0.0386 (11)0.0019 (10)0.0097 (9)0.0143 (10)
C70.0257 (9)0.0209 (11)0.0173 (7)0.0008 (7)0.0006 (7)0.0011 (8)
C80.0340 (11)0.0229 (11)0.0280 (9)0.0017 (8)0.0006 (8)0.0064 (9)
C90.0315 (11)0.0273 (13)0.0320 (9)0.0032 (8)0.0049 (8)0.0033 (9)
C100.0318 (9)0.0180 (10)0.0148 (7)0.0020 (8)0.0030 (8)0.0020 (7)
C110.0350 (11)0.0249 (12)0.0227 (8)0.0008 (8)0.0038 (8)0.0019 (9)
C120.0510 (13)0.0273 (13)0.0252 (9)0.0087 (10)0.0037 (9)0.0036 (10)
C130.0575 (13)0.0169 (12)0.0236 (9)0.0020 (9)0.0091 (9)0.0017 (9)
C140.0382 (11)0.0240 (12)0.0277 (9)0.0029 (8)0.0068 (8)0.0015 (9)
C150.0291 (10)0.0218 (11)0.0237 (8)0.0009 (8)0.0024 (7)0.0006 (9)
C160.0269 (10)0.0179 (10)0.0167 (7)0.0017 (7)0.0033 (6)0.0044 (8)
C170.0284 (10)0.0232 (11)0.0234 (9)0.0005 (8)0.0008 (7)0.0035 (9)
C180.0401 (11)0.0256 (12)0.0204 (8)0.0071 (9)0.0045 (8)0.0010 (9)
C190.0483 (13)0.0224 (11)0.0190 (8)0.0074 (9)0.0063 (8)0.0014 (9)
C200.0367 (11)0.0187 (11)0.0244 (9)0.0006 (8)0.0117 (8)0.0003 (8)
C210.0298 (10)0.0217 (11)0.0231 (8)0.0016 (8)0.0035 (7)0.0023 (9)
Geometric parameters (Å, º) top
S1—N11.6952 (14)C20—C211.388 (3)
S1—C41.8240 (19)C2—H2A1.0000
O1—C11.209 (2)C4—H4A1.0000
O2—C11.367 (2)C5—H5A0.9800
O2—C31.466 (2)C5—H5B0.9800
N1—C11.361 (2)C5—H5C0.9800
N1—C21.471 (2)C6—H6A0.9800
C2—C71.541 (3)C6—H6B0.9800
C2—C31.555 (2)C6—H6C0.9800
C3—C161.517 (3)C7—H7A1.0000
C3—C101.537 (3)C8—H8A0.9800
C4—C51.519 (3)C8—H8B0.9800
C4—C61.525 (3)C8—H8C0.9800
C7—C81.528 (3)C9—H9A0.9800
C7—C91.537 (2)C9—H9B0.9800
C10—C151.388 (3)C9—H9C0.9800
C10—C111.393 (3)C11—H11A0.9500
C11—C121.385 (3)C12—H12A0.9500
C12—C131.383 (3)C13—H13A0.9500
C13—C141.384 (3)C14—H14A0.9500
C14—C151.387 (3)C15—H15A0.9500
C16—C171.395 (2)C17—H17A0.9500
C16—C211.395 (3)C18—H18A0.9500
C17—C181.387 (3)C19—H19A0.9500
C18—C191.385 (3)C20—H20A0.9500
C19—C201.384 (3)C21—H21A0.9500
N1—S1—C4102.07 (8)C4—C5—H5B109.5
C1—O2—C3108.25 (12)H5A—C5—H5B109.5
C1—N1—C2111.72 (13)C4—C5—H5C109.5
C1—N1—S1123.04 (12)H5A—C5—H5C109.5
C2—N1—S1124.82 (11)H5B—C5—H5C109.5
O1—C1—N1129.76 (16)C4—C6—H6A109.5
O1—C1—O2121.74 (15)C4—C6—H6B109.5
N1—C1—O2108.50 (14)H6A—C6—H6B109.5
N1—C2—C7113.74 (14)C4—C6—H6C109.5
N1—C2—C398.05 (13)H6A—C6—H6C109.5
C7—C2—C3115.78 (14)H6B—C6—H6C109.5
O2—C3—C16108.72 (14)C8—C7—H7A107.1
O2—C3—C10106.96 (14)C9—C7—H7A107.1
C16—C3—C10109.14 (14)C2—C7—H7A107.1
O2—C3—C2102.07 (12)C7—C8—H8A109.5
C16—C3—C2115.48 (15)C7—C8—H8B109.5
C10—C3—C2113.81 (15)H8A—C8—H8B109.5
C5—C4—C6112.33 (16)C7—C8—H8C109.5
C5—C4—S1111.71 (13)H8A—C8—H8C109.5
C6—C4—S1105.32 (14)H8B—C8—H8C109.5
C8—C7—C9109.46 (15)C7—C9—H9A109.5
C8—C7—C2114.11 (15)C7—C9—H9B109.5
C9—C7—C2111.60 (15)H9A—C9—H9B109.5
C15—C10—C11118.71 (17)C7—C9—H9C109.5
C15—C10—C3124.17 (16)H9A—C9—H9C109.5
C11—C10—C3116.97 (17)H9B—C9—H9C109.5
C12—C11—C10120.71 (19)C12—C11—H11A119.6
C13—C12—C11120.3 (2)C10—C11—H11A119.6
C12—C13—C14119.21 (19)C13—C12—H12A119.8
C13—C14—C15120.7 (2)C11—C12—H12A119.8
C14—C15—C10120.31 (18)C12—C13—H13A120.4
C17—C16—C21118.85 (17)C14—C13—H13A120.4
C17—C16—C3118.63 (16)C13—C14—H14A119.6
C21—C16—C3122.49 (15)C15—C14—H14A119.6
C18—C17—C16120.67 (18)C14—C15—H15A119.8
C19—C18—C17120.29 (18)C10—C15—H15A119.8
C18—C19—C20119.23 (17)C18—C17—H17A119.7
C19—C20—C21121.05 (19)C16—C17—H17A119.7
C20—C21—C16119.90 (18)C19—C18—H18A119.9
N1—C2—H2A109.6C17—C18—H18A119.9
C7—C2—H2A109.6C18—C19—H19A120.4
C3—C2—H2A109.6C20—C19—H19A120.4
C5—C4—H4A109.1C19—C20—H20A119.5
C6—C4—H4A109.1C21—C20—H20A119.5
S1—C4—H4A109.1C20—C21—H21A120.0
C4—C5—H5A109.5C16—C21—H21A120.0
C4—S1—N1—C194.18 (16)C16—C3—C10—C15103.39 (18)
C4—S1—N1—C293.83 (15)C2—C3—C10—C1527.2 (2)
C2—N1—C1—O1170.44 (19)O2—C3—C10—C1145.47 (19)
S1—N1—C1—O12.5 (3)C16—C3—C10—C1171.98 (19)
C2—N1—C1—O28.9 (2)C2—C3—C10—C11157.40 (15)
S1—N1—C1—O2178.19 (11)C15—C10—C11—C120.7 (3)
C3—O2—C1—O1166.32 (17)C3—C10—C11—C12176.36 (16)
C3—O2—C1—N114.3 (2)C10—C11—C12—C130.5 (3)
C1—N1—C2—C796.89 (17)C11—C12—C13—C140.3 (3)
S1—N1—C2—C775.89 (17)C12—C13—C14—C150.4 (3)
C1—N1—C2—C325.94 (18)C13—C14—C15—C100.7 (3)
S1—N1—C2—C3161.28 (13)C11—C10—C15—C140.8 (3)
C1—O2—C3—C16152.32 (15)C3—C10—C15—C14176.10 (16)
C1—O2—C3—C1089.95 (16)O2—C3—C16—C17173.21 (15)
C1—O2—C3—C229.84 (18)C10—C3—C16—C1756.9 (2)
N1—C2—C3—O231.85 (15)C2—C3—C16—C1772.8 (2)
C7—C2—C3—O289.47 (16)O2—C3—C16—C215.0 (2)
N1—C2—C3—C16149.59 (15)C10—C3—C16—C21121.36 (18)
C7—C2—C3—C1628.3 (2)C2—C3—C16—C21108.93 (19)
N1—C2—C3—C1083.01 (16)C21—C16—C17—C180.1 (3)
C7—C2—C3—C10155.67 (14)C3—C16—C17—C18178.38 (17)
N1—S1—C4—C576.73 (14)C16—C17—C18—C190.7 (3)
N1—S1—C4—C6161.06 (13)C17—C18—C19—C201.1 (3)
N1—C2—C7—C844.64 (18)C18—C19—C20—C210.9 (3)
C3—C2—C7—C867.84 (19)C19—C20—C21—C160.2 (3)
N1—C2—C7—C980.09 (18)C17—C16—C21—C200.2 (3)
C3—C2—C7—C9167.43 (14)C3—C16—C21—C20178.05 (17)
O2—C3—C10—C15139.16 (16)

Experimental details

Crystal data
Chemical formulaC21H25NO2S
Mr355.48
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)6.0621 (1), 17.2963 (3), 18.5398 (3)
V3)1943.93 (6)
Z4
Radiation typeCu Kα
µ (mm1)1.58
Crystal size (mm)0.50 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEX
Absorption correctionNumerical
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.720, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
18292, 3008, 2887
Rint0.026
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.06
No. of reflections3008
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.16
Absolute structureFlack (1983), 1165 Friedel pairs
Absolute structure parameter0.039 (15)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

 

Acknowledgements

We thank the University of Notre Dame for its generous support of this program.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker. (2008). APEX2 and SAINT. Bruker–Nonius AXS, Madison, Wisconsin, USA.  Google Scholar
First citationCelentano, G., Colonna, S., Gaggero, N. & Richelmi, C. (1998). Chem. Commun. pp. 701–702.  Web of Science CrossRef Google Scholar
First citationDerbesy, G. & Harpp, D. N. (1995). J. Org. Chem. 60, 4468–4474.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHintermann, T. & Seebach, D. A. (1998). Helv. Chim. Acta, 81, 2093–2126.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Crisma, M., Formaggio, F., Toniolo, C., Redlinski, A. S., Kaczmarek, K. & Leplawy, M. T. (1992). Z. Kristallogr. 199, 229–237.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds