organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium (S)-2-azido-3-phenyl­propano­ate

aEskitis Institute for Cell and Molecular Therapies, Griffith University, Nathan, Brisbane 4111, Australia, and bQueensland Micro and Nanotechnology Centre, Griffith University, Nathan, Brisbane 4111, Australia
*Correspondence e-mail: P.Healy@griffith.edu.au

(Received 5 June 2012; accepted 5 June 2012; online 13 June 2012)

The asymmetric unit of the title compound, C12H24N+·C9H8N3O2, consists of two dicyclo­hexyl­ammonium cations linked to two (S)-2-azido-3-phenyl­propano­ate anions by four short N—H⋯O hydrogen bonds with N⋯O distances in the range 2.712 (3)–2.765 (3) Å. The dicyclo­hexyl­ammonium cations and the aryl and carboxyl­ate groups of the anion are related by a pseudo-inversion centre, with overall crystallographic inversion symmetry for the structure broken by the chirality of the α-C atoms of the anions.

Related literature

For potential inhibitors of malarial proteases, see: Gardiner et al. (2009[Gardiner, D. L., Skinner-Adams, T. S., Brown, C. L., Andrews, K. T., Stack, C. M., McCarthy, J. S., Dalton, J. P. & Trenholme, K. R. (2009). Exp. Rev. Anti-infective Ther. 7, 1087-1098.]). For background to the synthesis, see: Goddard-Borger & Stick (2007[Goddard-Borger, E. D. & Stick, R. J. (2007). Org. Lett. 9, 3797-3800.]). For related structures, see: Judaš & Portada (2008[Judaš, N. & Portada, T. (2008). Acta Cryst. E64, o774-o775.]); Ng et al. (2001[Ng, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291-292.]); Zain & Ng (2007[Zain, S. M. & Ng, S. W. (2007). Acta Cryst. E63, o3303.]). For graph-set analysis, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·C9H8N3O2

  • Mr = 372.51

  • Triclinic, P 1

  • a = 9.4557 (7) Å

  • b = 11.0580 (6) Å

  • c = 11.0715 (8) Å

  • α = 113.187 (6)°

  • β = 99.919 (6)°

  • γ = 92.815 (5)°

  • V = 1039.46 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.48 × 0.41 × 0.37 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.964, Tmax = 0.972

  • 6774 measured reflections

  • 4986 independent reflections

  • 4410 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 1.06

  • 4986 reflections

  • 487 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O11 0.85 1.93 2.765 (3) 168
N3—H3B⋯O22 0.85 1.88 2.712 (3) 167
N5—H5A⋯O12 0.85 1.90 2.741 (3) 168
N5—H5B⋯O21 0.85 1.90 2.725 (3) 164

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001[Molecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Recent investigations into the development of new molecules to act as potential inhibitors of malarial proteases (Gardiner et al., 2009) resulted in the synthesis of the title compound (I) through utilization of the azido-transfer reagent imidazole-1-sulfonyl azide hydrochloride (Goddard-Borger & Stick, 2007). The structure of (I) is shown in Fig. 1 to consist of two dicyclohexylammonium cations and two (S)-2-azido-3-phenylpropanoate anions linked by four N—H···O hydrogen bonds with N···O = 2.712 (3) - 2.765 (3) Å, [graph set R44(12); Etter et al., 1990] (Table 1). The carboxylate C—O bond lengths span a narrow range from 1.247 (4) - 1.249 (4) Å. This structural format is similar to a number of other dimeric dicyclohexylammonium carboxylate salts (e.g. Ng et al., 2001; Zain & Ng, 2007; Judaš & Portada, 2008) in which the ion-pairs are disposed about a crystallographic inversion centre. In the present structure, the Cy2NH2+ cations and the aryl and carboxylate groups of the anions are related by a pseudo-inversion centre, with overall crystallographic inversion symmetry for the structure broken by the chirality of the α-carbon of the anions.

Related literature top

For potential inhibitors of malarial proteases, see: Gardiner et al. (2009). For background to the synthesis, see: Goddard-Borger & Stick (2007). For related structures, see: Judaš & Portada (2008); Ng et al. (2001); Zain & Ng (2007). For graph-set analysis, see: Etter et al. (1990).

Experimental top

(L)-phenylalanine (1.00 g, 6.05 mmol), imidazole-1-sulfonyl azide hydrochloride (1.52 g, 7.25 mmol), and copper sulfate pentahydrate (0.015 g, 0.06 mmol) were dissolved in methanol (30 ml) at 273 K. Anhydrous potassium carbonate (1.00 g, 7.24 mmol) was introduced over 5 minutes with stirring. The heterogeneous mixture was allowed to return to room temperature, and stirred for a further 16 h. Volatiles were removed in vacuo and the resulting material was suspended in water (90 ml). The mixture was acidifed to pH < 2 by dropwise addition of concentrated aqueous hydrochloric acid solution (37%). The resulting mixture was extracted with ethyl acetate (3 x 60 ml). The organic phases were combined, dried over anhydrous magnesium sulfate and volatiles were removed in vacuo to afford a crude oil. The crude oil was purified by flash chromatography (89:10:1 hexane:ethyl acetate:acetic acid) and the resulting oil dissolved in an excess of diethyl ether at 273 K. Dicyclohexylamine was added dropwise until pH > 10 was achieved by water-wet litmus paper, resulting in precipitation of (I). This was filtered, washed with excess cold diethyl ether and dried in vacuo to give (I) as an opaque white solid. Yield 0.91 g, 82%. Colourless crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone/methanol solution of the compound.

1H NMR NMR (400 MHz, 298 K, d6-DMSO): δ (anion) 7.22 (m, 5H, ArH), 3.64 (dd, J=9.3,4.5 Hz, 2H, CH), 3.06 (dd, J=14.0, 4.5 Hz, 2H, CH2)), 2.78 (dd, J=14.0, 9.3 Hz, 2H, CH2)). δ (cation) 2.99 (m, 2H, CH), 1.97 (m, 4H, CH2α), 1.72 (m, 4H, CH2β), 1.59 (m, 2H, CH2γ), 1.28 (m, 8H, CH2α,β), 1.08 (m, 2H, CH2γ). 13C NMR (100 MHz, d6-DMSO): δ 171.6, 139.0, 129.0, 128.0, 126.0, 65.4, 51.7, 37.9, 28.8, 24.9, 24.1. ESMS (-ve mode): carboxylate anion calcd 190.18, found 189.91.

Refinement top

The carbon-bound H atoms were constrained as riding atoms with C—H = 0.95 Å. The ammonium protons were located in difference Fourier maps and constrained with N—H 0.85 Å. Uiso(H) values were set at 1.2Ueq of the parent atom. In the absence of significant anomalous scatterers in the compound, Friedel equivalents were merged with the absolute configuration assigned from the chirality of the L-phenylalanine precursor.

Structure description top

Recent investigations into the development of new molecules to act as potential inhibitors of malarial proteases (Gardiner et al., 2009) resulted in the synthesis of the title compound (I) through utilization of the azido-transfer reagent imidazole-1-sulfonyl azide hydrochloride (Goddard-Borger & Stick, 2007). The structure of (I) is shown in Fig. 1 to consist of two dicyclohexylammonium cations and two (S)-2-azido-3-phenylpropanoate anions linked by four N—H···O hydrogen bonds with N···O = 2.712 (3) - 2.765 (3) Å, [graph set R44(12); Etter et al., 1990] (Table 1). The carboxylate C—O bond lengths span a narrow range from 1.247 (4) - 1.249 (4) Å. This structural format is similar to a number of other dimeric dicyclohexylammonium carboxylate salts (e.g. Ng et al., 2001; Zain & Ng, 2007; Judaš & Portada, 2008) in which the ion-pairs are disposed about a crystallographic inversion centre. In the present structure, the Cy2NH2+ cations and the aryl and carboxylate groups of the anions are related by a pseudo-inversion centre, with overall crystallographic inversion symmetry for the structure broken by the chirality of the α-carbon of the anions.

For potential inhibitors of malarial proteases, see: Gardiner et al. (2009). For background to the synthesis, see: Goddard-Borger & Stick (2007). For related structures, see: Judaš & Portada (2008); Ng et al. (2001); Zain & Ng (2007). For graph-set analysis, see: Etter et al. (1990).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecules in the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 40% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Hydrogen bonds are shown as dashed lines.
Dicyclohexylammonium (S)-2-azido-3-phenylpropanoate top
Crystal data top
C12H24N+·C9H8N3O2Z = 2
Mr = 372.51F(000) = 404
Triclinic, P1Dx = 1.190 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71070 Å
a = 9.4557 (7) ÅCell parameters from 3545 reflections
b = 11.0580 (6) Åθ = 3.2–30.5°
c = 11.0715 (8) ŵ = 0.08 mm1
α = 113.187 (6)°T = 200 K
β = 99.919 (6)°Block, colourless
γ = 92.815 (5)°0.48 × 0.41 × 0.37 mm
V = 1039.46 (13) Å3
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4986 independent reflections
Radiation source: Enhance (Mo) X-ray Source4410 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 16.0774 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω and φ scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1313
Tmin = 0.964, Tmax = 0.972l = 1311
6774 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.0496P]
where P = (Fo2 + 2Fc2)/3
4986 reflections(Δ/σ)max = 0.031
487 parametersΔρmax = 0.25 e Å3
3 restraintsΔρmin = 0.15 e Å3
Crystal data top
C12H24N+·C9H8N3O2γ = 92.815 (5)°
Mr = 372.51V = 1039.46 (13) Å3
Triclinic, P1Z = 2
a = 9.4557 (7) ÅMo Kα radiation
b = 11.0580 (6) ŵ = 0.08 mm1
c = 11.0715 (8) ÅT = 200 K
α = 113.187 (6)°0.48 × 0.41 × 0.37 mm
β = 99.919 (6)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4986 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4410 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.972Rint = 0.024
6774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0423 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
4986 reflectionsΔρmin = 0.15 e Å3
487 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.6721 (2)0.4822 (2)0.3905 (2)0.0270 (7)
C310.7523 (3)0.5718 (2)0.3451 (3)0.0277 (9)
C320.7019 (3)0.7080 (3)0.4040 (3)0.0336 (10)
C330.7875 (4)0.8105 (3)0.3743 (3)0.0415 (10)
C340.9497 (4)0.8148 (3)0.4160 (3)0.0449 (11)
C350.9940 (3)0.6778 (3)0.3502 (3)0.0399 (11)
C360.9146 (3)0.5778 (3)0.3869 (3)0.0324 (9)
C410.7050 (3)0.3416 (2)0.3482 (3)0.0292 (9)
C420.6864 (3)0.2703 (3)0.1971 (3)0.0395 (10)
C430.7139 (4)0.1261 (3)0.1581 (4)0.0526 (13)
C440.6181 (4)0.0541 (3)0.2114 (4)0.0551 (11)
C450.6374 (3)0.1266 (3)0.3627 (4)0.0442 (11)
C460.6080 (3)0.2699 (3)0.4024 (3)0.0364 (10)
N50.3324 (2)0.5072 (2)0.6097 (2)0.0274 (7)
C510.2476 (3)0.4200 (2)0.6542 (3)0.0274 (8)
C520.2925 (3)0.2812 (3)0.5961 (3)0.0354 (9)
C530.2047 (4)0.1833 (3)0.6287 (3)0.0440 (11)
C540.0424 (4)0.1825 (3)0.5865 (3)0.0440 (11)
C550.0014 (3)0.3215 (3)0.6486 (3)0.0375 (10)
C560.0861 (3)0.4171 (3)0.6102 (3)0.0311 (9)
C610.3032 (3)0.6489 (2)0.6513 (3)0.0290 (9)
C620.3270 (3)0.7228 (3)0.8025 (3)0.0369 (10)
C630.2998 (4)0.8665 (3)0.8391 (4)0.0532 (11)
C640.3947 (4)0.9353 (3)0.7823 (4)0.0567 (13)
C650.3739 (4)0.8604 (3)0.6302 (4)0.0487 (11)
C660.3998 (3)0.7171 (3)0.5926 (3)0.0364 (10)
O110.7677 (2)0.6136 (2)0.6656 (2)0.0491 (8)
O120.6097 (2)0.52022 (19)0.7418 (2)0.0388 (7)
N110.7730 (3)0.6229 (3)0.9980 (3)0.0425 (9)
N120.6464 (3)0.6260 (3)1.0145 (3)0.0455 (10)
N130.5370 (4)0.6264 (4)1.0423 (4)0.0715 (14)
C110.7210 (3)0.5944 (3)0.7561 (3)0.0311 (9)
C120.8073 (3)0.6765 (2)0.9020 (3)0.0319 (8)
C130.9694 (3)0.6833 (3)0.9105 (3)0.0355 (9)
C141.0640 (3)0.7758 (3)1.0441 (3)0.0305 (9)
C151.0415 (3)0.9078 (3)1.1071 (3)0.0401 (10)
C161.1350 (4)0.9951 (3)1.2242 (3)0.0485 (11)
C171.2510 (4)0.9514 (3)1.2807 (3)0.0499 (11)
C181.2741 (4)0.8212 (4)1.2207 (4)0.0511 (11)
C191.1817 (3)0.7334 (3)1.1023 (3)0.0381 (10)
O210.2250 (2)0.3996 (2)0.3395 (2)0.0471 (8)
O220.3981 (2)0.4656 (2)0.2568 (2)0.0441 (7)
N210.2214 (3)0.4049 (2)0.0103 (3)0.0397 (8)
N220.3342 (3)0.3547 (3)0.0129 (3)0.0413 (9)
N230.4348 (4)0.3164 (3)0.0464 (3)0.0681 (11)
C210.2724 (3)0.4189 (3)0.2494 (3)0.0314 (9)
C220.1623 (3)0.3814 (3)0.1162 (3)0.0324 (9)
C230.0814 (3)0.2439 (3)0.0665 (3)0.0396 (10)
C240.0451 (3)0.2037 (3)0.0512 (3)0.0346 (9)
C250.0806 (4)0.0706 (3)0.1401 (3)0.0511 (11)
C260.2041 (5)0.0315 (4)0.2444 (4)0.0657 (14)
C270.2891 (4)0.1231 (4)0.2599 (4)0.0645 (14)
C280.2552 (4)0.2537 (4)0.1757 (3)0.0520 (11)
C290.1342 (3)0.2933 (3)0.0713 (3)0.0393 (10)
H3A0.690100.518100.475700.0330*
H3B0.582400.479400.360600.0330*
H310.727000.538700.249800.0330*
H32A0.602300.701600.366000.0400*
H32B0.714700.737000.498500.0400*
H33A0.761400.896000.421600.0500*
H33B0.763900.788700.280400.0500*
H34A0.998400.874900.389000.0540*
H34B0.976000.845500.510800.0540*
H35A1.095500.682300.379500.0480*
H35B0.971700.650200.255400.0480*
H36A0.942500.493200.341900.0390*
H36B0.940400.604300.481100.0390*
H410.803000.343800.388000.0350*
H42A0.753800.314100.167500.0480*
H42B0.591000.273000.155300.0480*
H43A0.695800.082200.063100.0630*
H43B0.812500.124800.194300.0630*
H44A0.642900.032800.189700.0670*
H44B0.520100.050000.170200.0670*
H45A0.572400.083100.393100.0530*
H45B0.734400.126100.403700.0530*
H46A0.626400.314600.497200.0440*
H46B0.509800.271400.365900.0440*
H5A0.421700.509000.640200.0330*
H5B0.315600.472000.524100.0330*
H510.271700.454500.749400.0330*
H52A0.392100.285800.632300.0430*
H52B0.277900.251400.501100.0430*
H53A0.229100.097200.582700.0530*
H53B0.229000.207600.722800.0530*
H54A0.008300.126700.615400.0530*
H54B0.016700.150900.491400.0530*
H55A0.099000.320000.617900.0460*
H55B0.022600.352300.743700.0460*
H56A0.060500.504200.652100.0370*
H56B0.062400.389400.515200.0370*
H610.205300.649300.613400.0350*
H62A0.262000.681800.835200.0440*
H62B0.423800.721300.842000.0440*
H63A0.320000.912600.933800.0640*
H63B0.201400.868200.803600.0640*
H64A0.370601.023000.802100.0670*
H64B0.493400.940500.822300.0670*
H65A0.440000.902600.598500.0590*
H65B0.277600.863200.589400.0590*
H66A0.378500.671900.497100.0440*
H66B0.498500.714900.626000.0440*
H120.782900.764700.930100.0380*
H13A0.990500.711800.843800.0430*
H13B0.994800.597000.891100.0430*
H150.960300.938601.069000.0480*
H161.118701.087001.265000.0600*
H171.315301.011001.360800.0610*
H181.354400.791301.260400.0610*
H191.200100.644501.060900.0460*
H220.091600.440400.137100.0390*
H23A0.045700.238100.139000.0470*
H23B0.148700.182500.040700.0470*
H250.022100.007000.130200.0610*
H260.226600.059200.305000.0790*
H270.372600.095000.330200.0780*
H280.313500.317200.188500.0630*
H290.111400.384800.012200.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0237 (13)0.0331 (12)0.0233 (12)0.0025 (9)0.0043 (10)0.0110 (9)
C310.0284 (16)0.0303 (14)0.0259 (15)0.0057 (11)0.0044 (12)0.0134 (11)
C320.0329 (18)0.0336 (15)0.0323 (17)0.0068 (12)0.0052 (13)0.0119 (12)
C330.059 (2)0.0333 (16)0.0360 (18)0.0120 (14)0.0115 (15)0.0168 (13)
C340.054 (2)0.0369 (17)0.045 (2)0.0037 (14)0.0142 (16)0.0176 (14)
C350.0359 (18)0.0426 (17)0.047 (2)0.0028 (13)0.0146 (15)0.0223 (15)
C360.0290 (17)0.0353 (15)0.0366 (17)0.0059 (11)0.0081 (13)0.0178 (12)
C410.0255 (16)0.0281 (14)0.0343 (16)0.0063 (11)0.0046 (12)0.0135 (12)
C420.0438 (19)0.0365 (16)0.0362 (18)0.0057 (13)0.0121 (14)0.0113 (13)
C430.065 (3)0.0351 (17)0.052 (2)0.0122 (15)0.0177 (18)0.0091 (15)
C440.061 (2)0.0345 (17)0.062 (2)0.0024 (15)0.0063 (19)0.0148 (16)
C450.040 (2)0.0352 (16)0.060 (2)0.0022 (13)0.0048 (16)0.0254 (15)
C460.0305 (18)0.0421 (16)0.0374 (18)0.0009 (12)0.0064 (13)0.0181 (13)
N50.0223 (13)0.0294 (12)0.0256 (13)0.0032 (9)0.0025 (10)0.0072 (9)
C510.0305 (16)0.0278 (14)0.0223 (14)0.0010 (11)0.0044 (12)0.0094 (11)
C520.0336 (17)0.0315 (14)0.0377 (18)0.0078 (12)0.0008 (14)0.0128 (12)
C530.060 (2)0.0287 (16)0.0411 (19)0.0034 (14)0.0078 (16)0.0133 (13)
C540.051 (2)0.0375 (17)0.043 (2)0.0063 (14)0.0086 (16)0.0179 (14)
C550.0343 (18)0.0430 (17)0.0341 (17)0.0029 (12)0.0074 (13)0.0155 (13)
C560.0285 (17)0.0341 (15)0.0303 (16)0.0048 (12)0.0071 (13)0.0123 (12)
C610.0229 (15)0.0276 (14)0.0329 (16)0.0014 (10)0.0018 (12)0.0104 (11)
C620.0392 (19)0.0336 (15)0.0347 (17)0.0061 (12)0.0116 (14)0.0090 (12)
C630.061 (2)0.0354 (17)0.052 (2)0.0081 (15)0.0157 (18)0.0044 (15)
C640.066 (3)0.0242 (16)0.064 (2)0.0044 (15)0.003 (2)0.0070 (15)
C650.052 (2)0.0368 (17)0.056 (2)0.0075 (14)0.0006 (17)0.0234 (15)
C660.0337 (18)0.0362 (16)0.0357 (17)0.0028 (12)0.0026 (13)0.0137 (13)
O110.0470 (15)0.0621 (14)0.0296 (13)0.0084 (10)0.0006 (10)0.0146 (10)
O120.0277 (12)0.0475 (11)0.0348 (12)0.0011 (9)0.0002 (9)0.0135 (9)
N110.0335 (16)0.0633 (16)0.0313 (14)0.0057 (11)0.0038 (12)0.0214 (12)
N120.0406 (18)0.0622 (17)0.0338 (15)0.0010 (12)0.0054 (13)0.0216 (12)
N130.046 (2)0.119 (3)0.066 (2)0.0054 (17)0.0227 (16)0.051 (2)
C110.0289 (17)0.0361 (15)0.0250 (16)0.0086 (12)0.0033 (13)0.0094 (12)
C120.0291 (15)0.0352 (14)0.0267 (14)0.0051 (11)0.0053 (11)0.0079 (11)
C130.0290 (15)0.0387 (15)0.0314 (15)0.0051 (11)0.0064 (12)0.0065 (12)
C140.0272 (15)0.0356 (15)0.0283 (15)0.0015 (11)0.0104 (12)0.0111 (12)
C150.0409 (19)0.0384 (16)0.0367 (17)0.0076 (13)0.0053 (14)0.0119 (13)
C160.054 (2)0.0409 (17)0.0399 (18)0.0009 (14)0.0090 (16)0.0064 (13)
C170.042 (2)0.054 (2)0.0346 (18)0.0097 (15)0.0011 (15)0.0028 (15)
C180.0332 (19)0.072 (2)0.049 (2)0.0100 (16)0.0033 (15)0.0276 (17)
C190.0335 (18)0.0418 (16)0.0377 (17)0.0096 (13)0.0079 (14)0.0141 (13)
O210.0435 (14)0.0676 (14)0.0264 (12)0.0018 (10)0.0035 (10)0.0178 (10)
O220.0272 (12)0.0612 (13)0.0365 (13)0.0024 (9)0.0020 (9)0.0161 (10)
N210.0338 (15)0.0503 (14)0.0363 (14)0.0057 (11)0.0060 (11)0.0195 (11)
N220.0362 (16)0.0554 (16)0.0290 (14)0.0072 (12)0.0063 (12)0.0140 (11)
N230.052 (2)0.107 (2)0.0491 (19)0.0277 (18)0.0226 (15)0.0289 (17)
C210.0283 (17)0.0319 (14)0.0288 (16)0.0083 (11)0.0049 (13)0.0068 (12)
C220.0266 (16)0.0398 (15)0.0281 (14)0.0046 (11)0.0049 (11)0.0114 (12)
C230.0413 (18)0.0367 (15)0.0386 (17)0.0017 (12)0.0013 (14)0.0164 (13)
C240.0322 (17)0.0389 (16)0.0279 (16)0.0076 (12)0.0060 (12)0.0102 (12)
C250.057 (2)0.0448 (18)0.040 (2)0.0065 (15)0.0159 (17)0.0045 (15)
C260.074 (3)0.058 (2)0.0340 (19)0.031 (2)0.0090 (19)0.0081 (16)
C270.043 (2)0.094 (3)0.046 (2)0.023 (2)0.0047 (17)0.027 (2)
C280.0344 (19)0.080 (2)0.0446 (19)0.0069 (16)0.0025 (15)0.0325 (18)
C290.0322 (17)0.0500 (17)0.0338 (16)0.0036 (13)0.0020 (13)0.0181 (13)
Geometric parameters (Å, º) top
O11—C111.247 (4)C62—C631.525 (5)
O12—C111.249 (4)C63—C641.511 (5)
O21—C211.247 (4)C64—C651.527 (6)
O22—C211.249 (4)C65—C661.516 (5)
N3—C411.503 (4)C51—H510.9500
N3—C311.503 (4)C52—H52B0.9500
N3—H3A0.8500C52—H52A0.9500
N3—H3B0.8500C53—H53B0.9500
N5—C611.504 (4)C53—H53A0.9500
N5—C511.500 (4)C54—H54B0.9500
N5—H5A0.8500C54—H54A0.9400
N5—H5B0.8500C55—H55A0.9500
N11—C121.477 (4)C55—H55B0.9500
N11—N121.242 (4)C56—H56B0.9500
N12—N131.129 (5)C56—H56A0.9500
N21—N221.246 (4)C61—H610.9500
N21—C221.485 (4)C62—H62A0.9400
N22—N231.122 (5)C62—H62B0.9500
C31—C321.525 (4)C63—H63A0.9500
C31—C361.515 (4)C63—H63B0.9500
C32—C331.531 (5)C64—H64A0.9500
C33—C341.516 (5)C64—H64B0.9500
C34—C351.517 (5)C65—H65A0.9500
C35—C361.526 (5)C65—H65B0.9500
C41—C461.524 (4)C66—H66B0.9500
C41—C421.516 (4)C66—H66A0.9500
C42—C431.528 (5)C11—C121.555 (4)
C43—C441.512 (5)C12—C131.516 (4)
C44—C451.518 (6)C13—C141.516 (4)
C45—C461.523 (5)C14—C151.394 (5)
C31—H310.9500C14—C191.384 (4)
C32—H32B0.9500C15—C161.389 (4)
C32—H32A0.9500C16—C171.372 (5)
C33—H33A0.9500C17—C181.375 (6)
C33—H33B0.9500C18—C191.394 (5)
C34—H34B0.9500C12—H120.9500
C34—H34A0.9600C13—H13B0.9500
C35—H35A0.9500C13—H13A0.9600
C35—H35B0.9500C15—H150.9500
C36—H36A0.9500C16—H160.9700
C36—H36B0.9500C17—H170.9500
C41—H410.9500C18—H180.9500
C42—H42A0.9600C19—H190.9500
C42—H42B0.9500C21—C221.542 (4)
C43—H43B0.9500C22—C231.511 (5)
C43—H43A0.9500C23—C241.510 (4)
C44—H44B0.9500C24—C251.395 (5)
C44—H44A0.9500C24—C291.390 (5)
C45—H45A0.9400C25—C261.406 (6)
C45—H45B0.9500C26—C271.368 (7)
C46—H46A0.9500C27—C281.360 (6)
C46—H46B0.9500C28—C291.391 (4)
C51—C521.527 (4)C22—H220.9500
C51—C561.516 (4)C23—H23A0.9500
C52—C531.521 (5)C23—H23B0.9500
C53—C541.524 (5)C25—H250.9400
C54—C551.518 (5)C26—H260.9500
C55—C561.526 (5)C27—H270.9500
C61—C661.532 (4)C28—H280.9500
C61—C621.515 (4)C29—H290.9500
O11···C323.419 (4)H15···H122.3100
O11···N32.765 (3)H17···H45Avii2.4400
O11···C313.369 (4)H17···H53Avii2.5600
O12···N52.741 (3)H17···H52Bvii2.5800
O12···C513.395 (3)H19···H13B2.3300
O12···N112.739 (4)H19···N21i2.5100
O12···N122.724 (4)H22···C35ii3.0700
O21···C563.416 (4)H22···H292.1900
O21···N52.725 (3)H22···C292.7400
O21···C513.370 (4)H23A···O212.5100
O21···C613.390 (4)H23B···H252.3900
O22···N32.712 (3)H23B···N222.8200
O22···N212.751 (4)H25···H23B2.3900
O22···C313.337 (3)H26···H32Bviii2.3900
O22···N233.195 (4)H27···H65Aviii2.4700
O22···N222.685 (4)H28···O12iv2.7400
O11···H13A2.4800H29···N11iv2.8700
O11···H32B2.7000H29···C222.7400
O11···H66B2.8700H29···H222.1900
O11···H36B2.8000H31···H35B2.5500
O11···H3A1.9300H31···H42A2.3300
O12···H5A1.9000H31···C422.7800
O12···H46A2.8000H32A···H3B2.4300
O12···H28i2.7400H32A···O222.8700
O12···H62B2.8900H32B···H26vii2.3900
O21···H36Aii2.9100H32B···O112.7000
O21···H23A2.5100H32B···H3A2.3300
O21···H52B2.8700H33B···N12v2.7600
O21···H56B2.7100H33B···H35B2.5400
O21···H5B1.9000H34A···C17v3.0700
O22···H3B1.8800H34A···C16v3.0500
O22···H32A2.8700H34B···H36B2.5500
O22···H42B2.8900H35B···H312.5500
O22···H66A2.7800H35B···H33B2.5400
N3···O222.712 (3)H36A···O21vi2.9100
N3···O112.765 (3)H36A···C412.7600
N5···O212.725 (3)H36A···H412.3300
N5···O122.741 (3)H36A···C423.0800
N11···O122.739 (4)H36A···H42A2.5100
N12···O122.724 (4)H36B···H3A2.4900
N13···N23iii3.217 (6)H36B···O112.8000
N13···N22iii3.265 (6)H36B···H61vi2.5900
N21···C293.364 (4)H36B···H34B2.5500
N21···O222.751 (4)H41···H36A2.3300
N21···C19iv3.424 (4)H41···H43B2.5400
N22···N13v3.265 (6)H41···H45B2.5400
N22···O222.685 (4)H41···C362.7500
N23···O223.195 (4)H41···H56Bvi2.5300
N23···N13v3.217 (6)H42A···H312.3300
N11···H29i2.8700H42A···C29vi2.9500
N12···H33Biii2.7600H42A···C312.7500
N13···H62B2.8800H42A···H36A2.5100
N21···H19iv2.5100H42A···C363.0700
N22···H23B2.8200H42B···O222.8900
N22···H53Bv2.7000H42B···N232.6800
N23···H53Bv2.7200H42B···H3B2.5300
N23···H42B2.6800H42B···H44B2.6000
C19···N21i3.424 (4)H42B···H46B2.5800
C28···C55v3.582 (5)H43B···H412.5400
C29···N213.364 (4)H43B···H45B2.5500
C31···O223.337 (3)H44B···H42B2.6000
C31···O113.369 (4)H44B···H46B2.5700
C32···O113.419 (4)H45A···H17viii2.4400
C36···C423.567 (5)H45B···H43B2.5500
C42···C363.567 (5)H45B···H412.5400
C51···O123.395 (3)H46A···O122.8000
C51···O213.370 (4)H46A···H3A2.4100
C55···C28iii3.582 (5)H46B···H3B2.3900
C56···O213.416 (4)H46B···H44B2.5700
C61···O213.390 (4)H46B···H42B2.5800
C11···H66B3.0000H51···H55B2.5400
C11···H3A2.8300H51···H62A2.3200
C11···H5A2.8400H51···C622.7900
C12···H152.8900H52A···H5A2.4400
C13···H62Avi3.0200H52B···H5B2.3500
C13···H56Avi3.0700H52B···O212.8700
C15···H122.8000H52B···H56B2.5900
C16···H34Aiii3.0500H52B···H17viii2.5800
C17···H34Aiii3.0700H53A···H17viii2.5600
C19···H62Avi3.0200H53B···N23iii2.7200
C21···H3B2.9100H53B···N22iii2.7000
C21···H66A3.0100H53B···H55B2.5700
C21···H5B2.8100H54A···C26iii3.0100
C22···H292.7400H54B···H56B2.5500
C26···H54Av3.0100H55B···H53B2.5700
C29···H42Aii2.9500H55B···C29iii2.9700
C29···H222.7400H55B···H512.5400
C29···H55Bv2.9700H56A···C13ii3.0700
C31···H42A2.7500H56A···C612.7400
C35···H22vi3.0700H56A···H612.2700
C36···H42A3.0700H56B···O212.7100
C36···H412.7500H56B···H54B2.5500
C41···H36A2.7600H56B···H52B2.5900
C42···H312.7800H56B···H41ii2.5300
C42···H36A3.0800H56B···H5B2.4900
C51···H62A2.7800H61···H63B2.5100
C56···H612.7400H61···H56A2.2700
C61···H56A2.7400H61···H36Bii2.5900
C62···H512.7900H61···H65B2.5600
H3A···H46A2.4100H61···C562.7400
H3A···H36B2.4900H62A···C13ii3.0200
H3A···O111.9300H62A···C19ii3.0200
H3A···C112.8300H62A···C512.7800
H3A···H32B2.3300H62A···H512.3200
H3B···H46B2.3900H62B···H66B2.5800
H3B···C212.9100H62B···H5A2.5200
H3B···H32A2.4300H62B···H64B2.5800
H3B···O221.8800H62B···O122.8900
H3B···H42B2.5300H62B···N132.8800
H5A···H52A2.4400H63B···H612.5100
H5A···H62B2.5200H63B···H65B2.5800
H5A···C112.8400H64B···H66B2.5900
H5A···O121.9000H64B···H62B2.5800
H5A···H66B2.4300H65A···H27vii2.4700
H5B···H66A2.4000H65B···H63B2.5800
H5B···O211.9000H65B···H612.5600
H5B···C212.8100H66A···O222.7800
H5B···H52B2.3500H66A···C213.0100
H5B···H56B2.4900H66A···H5B2.4000
H12···C152.8000H66B···H64B2.5900
H12···H152.3100H66B···H5A2.4300
H13A···O112.4800H66B···H62B2.5800
H13B···H192.3300H66B···O112.8700
H15···C122.8900H66B···C113.0000
C31—N3—C41118.1 (2)H53A—C53—H53B110.00
C41—N3—H3A108.00C52—C53—H53A109.00
C31—N3—H3A107.00C54—C53—H53A109.00
C31—N3—H3B107.00C54—C53—H53B109.00
C41—N3—H3B107.00H54A—C54—H54B110.00
H3A—N3—H3B110.00C55—C54—H54A109.00
C51—N5—C61117.9 (2)C55—C54—H54B109.00
C51—N5—H5B108.00C53—C54—H54A109.00
C51—N5—H5A108.00C53—C54—H54B109.00
C61—N5—H5B107.00C56—C55—H55A109.00
H5A—N5—H5B109.00C54—C55—H55B109.00
C61—N5—H5A107.00C54—C55—H55A109.00
N12—N11—C12115.4 (3)H55A—C55—H55B110.00
N11—N12—N13172.1 (4)C56—C55—H55B109.00
N22—N21—C22114.4 (3)C51—C56—H56B109.00
N21—N22—N23170.7 (4)H56A—C56—H56B109.00
N3—C31—C36111.2 (2)C51—C56—H56A109.00
C32—C31—C36112.1 (2)C55—C56—H56A110.00
N3—C31—C32107.5 (2)C55—C56—H56B109.00
C31—C32—C33111.6 (2)C66—C61—H61108.00
C32—C33—C34112.3 (3)C62—C61—H61108.00
C33—C34—C35110.2 (3)N5—C61—H61108.00
C34—C35—C36111.1 (3)C63—C62—H62A109.00
C31—C36—C35110.5 (3)C61—C62—H62A109.00
N3—C41—C42112.2 (2)C61—C62—H62B109.00
N3—C41—C46108.4 (2)H62A—C62—H62B110.00
C42—C41—C46111.4 (2)C63—C62—H62B109.00
C41—C42—C43110.4 (3)C62—C63—H63B109.00
C42—C43—C44111.9 (3)H63A—C63—H63B110.00
C43—C44—C45110.7 (3)C62—C63—H63A109.00
C44—C45—C46111.2 (3)C64—C63—H63B109.00
C41—C46—C45110.6 (2)C64—C63—H63A109.00
N3—C31—H31109.00C65—C64—H64B109.00
C36—C31—H31109.00C65—C64—H64A109.00
C32—C31—H31108.00C63—C64—H64B110.00
H32A—C32—H32B109.00C63—C64—H64A109.00
C31—C32—H32A109.00H64A—C64—H64B109.00
C33—C32—H32A109.00C66—C65—H65A109.00
C33—C32—H32B109.00C64—C65—H65A109.00
C31—C32—H32B109.00C64—C65—H65B109.00
C34—C33—H33B109.00H65A—C65—H65B109.00
C32—C33—H33A109.00C66—C65—H65B109.00
C32—C33—H33B109.00C61—C66—H66B110.00
H33A—C33—H33B109.00H66A—C66—H66B109.00
C34—C33—H33A109.00C61—C66—H66A109.00
H34A—C34—H34B109.00C65—C66—H66B109.00
C33—C34—H34B109.00C65—C66—H66A109.00
C35—C34—H34B110.00O11—C11—C12116.1 (3)
C33—C34—H34A109.00O11—C11—O12126.7 (3)
C35—C34—H34A109.00O12—C11—C12117.1 (3)
C34—C35—H35A109.00C11—C12—C13111.9 (2)
C36—C35—H35B109.00N11—C12—C11112.8 (2)
C36—C35—H35A109.00N11—C12—C13107.7 (2)
C34—C35—H35B109.00C12—C13—C14116.4 (2)
H35A—C35—H35B109.00C13—C14—C15121.3 (3)
C31—C36—H36B109.00C13—C14—C19120.5 (3)
H36A—C36—H36B110.00C15—C14—C19118.1 (3)
C35—C36—H36B109.00C14—C15—C16121.2 (3)
C31—C36—H36A109.00C15—C16—C17120.0 (3)
C35—C36—H36A109.00C16—C17—C18119.7 (3)
C46—C41—H41109.00C17—C18—C19120.7 (4)
N3—C41—H41108.00C14—C19—C18120.4 (3)
C42—C41—H41108.00C13—C12—H12108.00
C43—C42—H42A109.00N11—C12—H12108.00
C41—C42—H42B109.00C11—C12—H12108.00
H42A—C42—H42B109.00C14—C13—H13A108.00
C43—C42—H42B110.00C14—C13—H13B108.00
C41—C42—H42A109.00H13A—C13—H13B110.00
C42—C43—H43A109.00C12—C13—H13A108.00
H43A—C43—H43B109.00C12—C13—H13B108.00
C42—C43—H43B109.00C14—C15—H15119.00
C44—C43—H43B109.00C16—C15—H15120.00
C44—C43—H43A109.00C15—C16—H16120.00
C45—C44—H44A110.00C17—C16—H16120.00
C43—C44—H44B109.00C18—C17—H17120.00
C45—C44—H44B109.00C16—C17—H17120.00
H44A—C44—H44B110.00C17—C18—H18119.00
C43—C44—H44A109.00C19—C18—H18120.00
C46—C45—H45A109.00C18—C19—H19120.00
C46—C45—H45B109.00C14—C19—H19120.00
H45A—C45—H45B110.00O21—C21—O22126.8 (3)
C44—C45—H45B109.00O21—C21—C22115.7 (3)
C44—C45—H45A109.00O22—C21—C22117.6 (3)
C41—C46—H46A109.00N21—C22—C21114.7 (2)
C41—C46—H46B109.00N21—C22—C23112.9 (2)
C45—C46—H46A110.00C21—C22—C23112.2 (3)
C45—C46—H46B109.00C22—C23—C24117.1 (3)
H46A—C46—H46B110.00C23—C24—C25119.6 (3)
N5—C51—C52108.1 (2)C23—C24—C29122.6 (3)
C52—C51—C56111.2 (2)C25—C24—C29117.7 (3)
N5—C51—C56111.3 (2)C24—C25—C26119.7 (3)
C51—C52—C53111.8 (2)C25—C26—C27120.5 (4)
C52—C53—C54111.9 (3)C26—C27—C28120.7 (4)
C53—C54—C55110.5 (3)C27—C28—C29119.2 (4)
C54—C55—C56111.0 (3)C24—C29—C28122.1 (3)
C51—C56—C55110.7 (3)N21—C22—H22105.00
N5—C61—C66108.5 (2)C21—C22—H22106.00
N5—C61—C62112.3 (2)C23—C22—H22106.00
C62—C61—C66111.1 (2)C22—C23—H23A107.00
C61—C62—C63110.1 (3)C22—C23—H23B107.00
C62—C63—C64111.5 (3)C24—C23—H23A107.00
C63—C64—C65111.2 (3)C24—C23—H23B107.00
C64—C65—C66111.0 (3)H23A—C23—H23B110.00
C61—C66—C65110.9 (3)C24—C25—H25120.00
C56—C51—H51109.00C26—C25—H25120.00
C52—C51—H51109.00C25—C26—H26119.00
N5—C51—H51108.00C27—C26—H26120.00
C53—C52—H52A109.00C26—C27—H27119.00
C51—C52—H52B109.00C28—C27—H27120.00
C51—C52—H52A109.00C27—C28—H28120.00
H52A—C52—H52B109.00C29—C28—H28121.00
C53—C52—H52B109.00C24—C29—H29119.00
C52—C53—H53B108.00C28—C29—H29119.00
C41—N3—C31—C32178.6 (2)C66—C61—C62—C6356.8 (3)
C41—N3—C31—C3655.6 (3)N5—C61—C62—C63178.5 (2)
C31—N3—C41—C4255.0 (3)C61—C62—C63—C6456.8 (4)
C31—N3—C41—C46178.4 (2)C62—C63—C64—C6556.1 (4)
C51—N5—C61—C66179.0 (2)C63—C64—C65—C6655.2 (4)
C51—N5—C61—C6257.8 (3)C64—C65—C66—C6155.2 (4)
C61—N5—C51—C5655.8 (3)O11—C11—C12—C1342.0 (4)
C61—N5—C51—C52178.1 (2)O11—C11—C12—N11163.7 (3)
N12—N11—C12—C13171.8 (3)O12—C11—C12—C13140.6 (3)
N12—N11—C12—C1164.3 (4)O12—C11—C12—N1119.0 (4)
N22—N21—C22—C2152.0 (4)C11—C12—C13—C14172.1 (3)
N22—N21—C22—C2378.2 (3)N11—C12—C13—C1463.4 (4)
C32—C31—C36—C3555.0 (3)C12—C13—C14—C1551.7 (4)
N3—C31—C36—C35175.3 (2)C12—C13—C14—C19132.8 (3)
N3—C31—C32—C33174.8 (2)C13—C14—C15—C16175.0 (3)
C36—C31—C32—C3352.3 (3)C19—C14—C15—C160.7 (5)
C31—C32—C33—C3452.4 (3)C13—C14—C19—C18175.8 (3)
C32—C33—C34—C3555.2 (3)C15—C14—C19—C180.1 (5)
C33—C34—C35—C3658.0 (3)C14—C15—C16—C170.8 (5)
C34—C35—C36—C3158.1 (3)C15—C16—C17—C180.1 (5)
N3—C41—C42—C43177.3 (2)C16—C17—C18—C190.6 (6)
C42—C41—C46—C4556.3 (3)C17—C18—C19—C140.8 (6)
N3—C41—C46—C45179.8 (2)O21—C21—C22—N21179.8 (3)
C46—C41—C42—C4355.6 (3)O22—C21—C22—N210.6 (4)
C41—C42—C43—C4455.7 (4)O22—C21—C22—C23131.1 (3)
C42—C43—C44—C4556.0 (4)O21—C21—C22—C2349.3 (4)
C43—C44—C45—C4656.2 (4)N21—C22—C23—C2457.7 (3)
C44—C45—C46—C4156.4 (3)C21—C22—C23—C24170.9 (2)
N5—C51—C56—C55176.5 (2)C22—C23—C24—C2933.7 (4)
C52—C51—C56—C5556.0 (3)C22—C23—C24—C25150.0 (3)
C56—C51—C52—C5353.9 (3)C23—C24—C25—C26175.7 (3)
N5—C51—C52—C53176.3 (2)C23—C24—C29—C28176.3 (3)
C51—C52—C53—C5453.4 (3)C25—C24—C29—C280.1 (5)
C52—C53—C54—C5554.8 (3)C29—C24—C25—C260.8 (5)
C53—C54—C55—C5657.0 (3)C24—C25—C26—C270.5 (6)
C54—C55—C56—C5158.0 (3)C25—C26—C27—C280.6 (6)
N5—C61—C66—C65179.4 (2)C26—C27—C28—C291.3 (6)
C62—C61—C66—C6556.7 (3)C27—C28—C29—C241.0 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z; (iii) x, y, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x1, y1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O110.851.932.765 (3)168
N3—H3B···O220.851.882.712 (3)167
N5—H5A···O120.851.902.741 (3)168
N5—H5B···O210.851.902.725 (3)164

Experimental details

Crystal data
Chemical formulaC12H24N+·C9H8N3O2
Mr372.51
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)9.4557 (7), 11.0580 (6), 11.0715 (8)
α, β, γ (°)113.187 (6), 99.919 (6), 92.815 (5)
V3)1039.46 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.41 × 0.37
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.964, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6774, 4986, 4410
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.06
No. of reflections4986
No. of parameters487
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.15

Computer programs: CrysAlis PRO (Agilent, 2012), SIR97 (Altomare et al., 1999), TEXSAN (Molecular Structure Corporation, 2001) and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O110.851.932.765 (3)168
N3—H3B···O220.851.882.712 (3)167
N5—H5A···O120.851.902.741 (3)168
N5—H5B···O210.851.902.725 (3)164
 

Acknowledgements

We acknowledge financial support of this work by Griffith University, the Queensland University of Technology, the Eskitis Institute for Cell and Mol­ecular Therapies, and the Queensland Micro and Nanotechnology Research Centre.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGardiner, D. L., Skinner-Adams, T. S., Brown, C. L., Andrews, K. T., Stack, C. M., McCarthy, J. S., Dalton, J. P. & Trenholme, K. R. (2009). Exp. Rev. Anti-infective Ther. 7, 1087–1098.  Web of Science CrossRef CAS Google Scholar
First citationGoddard-Borger, E. D. & Stick, R. J. (2007). Org. Lett. 9, 3797–3800.  Web of Science PubMed CAS Google Scholar
First citationJudaš, N. & Portada, T. (2008). Acta Cryst. E64, o774–o775.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation. (2001). TEXSAN for Windows. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNg, S. W., Chantrapromma, S., Razak, I. A. & Fun, H.-K. (2001). Acta Cryst. C57, 291–292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZain, S. M. & Ng, S. W. (2007). Acta Cryst. E63, o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds