organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­cyclo­hexyl­cyclo­hexa­ne­carboxamide

aChemistry Department, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan, and cDepartment of Chemistry, Keene State College, 220 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: sohail262001@yahoo.com

(Received 18 June 2012; accepted 19 June 2012; online 27 June 2012)

In the title compound, C19H33NO, all three cyclo­hexane rings adopt chair conformations. The crystal packing features weak C—H⋯O inter­actions, forming a supra­molecular chain along the c axis.

Related literature

For related studies of N-substituted benzamides, see: Saeed et al. (2011a[Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.],b[Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.]). For a related structure, see: Saeed et al. (2012[Saeed, S., Rashid, N., Hussain, R. & Wong, W.-T. (2012). Acta Cryst. E68, o26.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H33NO

  • Mr = 291.46

  • Monoclinic, P 21 /c

  • a = 9.8237 (3) Å

  • b = 16.8736 (5) Å

  • c = 10.8886 (3) Å

  • β = 102.890 (3)°

  • V = 1759.42 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.50 mm−1

  • T = 173 K

  • 0.44 × 0.38 × 0.18 mm

Data collection
  • Agilent Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.940, Tmax = 1.000

  • 10594 measured reflections

  • 3369 independent reflections

  • 3023 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.05

  • 3369 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.98 2.44 3.3861 (13) 163
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a; Saeed et al., 2011b), we recently determined the crystal structure of N-(4-bromophenyl)-3,5-dinitrobenzamide (Saeed et al., 2012). In this paper we present the crystal structure of the title compound, (I).

In (I), Fig. 1, all three cyclohexane groups adopt a chair conformation with puckering parameters Q, θ and φ of 0.5850 (14) Å, 0.00 (14)°, and 320 (10)° (C2–C7); 0.517 (13) Å, 178.40 (13)° and 237 (4)° (C8–C13); 0.5747 (15) Å, 0.54 (15)°, and 120 (14)° (C14–C19), respectively (Cremer & Pople, 1975). Crystal packing is stabilized by weak C—H···O intermolecular interactions (Table 1) forming a 1-D supramolecular chain along the c axis (Fig. 2).

Related literature top

For related studies of N-substituted benzamides, see: Saeed et al. (2011a,b). For a related structure, see: Saeed et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

To a 250 ml round bottom flask fitted with a condenser was added dicyclohexyl amine (0.01 mol), dichloromethane (15 ml) and triethylamine (0.5 ml) with magnetic stirring. Cyclohexanoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as white powder, which was washed three times with water. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.98 Å (CH) or 0.97 Å (CH2). The isotropic displacement parameters for these atoms were set to 1.20–1.21 (CH) or 1.18–1.20 (CH2) times Ueq of the parent atom.

Structure description top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a; Saeed et al., 2011b), we recently determined the crystal structure of N-(4-bromophenyl)-3,5-dinitrobenzamide (Saeed et al., 2012). In this paper we present the crystal structure of the title compound, (I).

In (I), Fig. 1, all three cyclohexane groups adopt a chair conformation with puckering parameters Q, θ and φ of 0.5850 (14) Å, 0.00 (14)°, and 320 (10)° (C2–C7); 0.517 (13) Å, 178.40 (13)° and 237 (4)° (C8–C13); 0.5747 (15) Å, 0.54 (15)°, and 120 (14)° (C14–C19), respectively (Cremer & Pople, 1975). Crystal packing is stabilized by weak C—H···O intermolecular interactions (Table 1) forming a 1-D supramolecular chain along the c axis (Fig. 2).

For related studies of N-substituted benzamides, see: Saeed et al. (2011a,b). For a related structure, see: Saeed et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate weak C—H···O interactions forming a 1-D chain along the c axis. Remaining H atoms have been removed for clarity.
N,N-Dicyclohexylcyclohexanecarboxamide top
Crystal data top
C19H33NOF(000) = 648
Mr = 291.46Dx = 1.100 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5299 reflections
a = 9.8237 (3) Åθ = 4.2–71.1°
b = 16.8736 (5) ŵ = 0.50 mm1
c = 10.8886 (3) ÅT = 173 K
β = 102.890 (3)°Chunk, colourless
V = 1759.42 (10) Å30.44 × 0.38 × 0.18 mm
Z = 4
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3369 independent reflections
Radiation source: Enhance (Cu) X-ray Source3023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.1500 pixels mm-1θmax = 71.3°, θmin = 4.6°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2018
Tmin = 0.940, Tmax = 1.000l = 1313
10594 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.073P)2 + 0.3063P]
where P = (Fo2 + 2Fc2)/3
3369 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C19H33NOV = 1759.42 (10) Å3
Mr = 291.46Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.8237 (3) ŵ = 0.50 mm1
b = 16.8736 (5) ÅT = 173 K
c = 10.8886 (3) Å0.44 × 0.38 × 0.18 mm
β = 102.890 (3)°
Data collection top
Agilent Xcalibur Eos Gemini
diffractometer
3369 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3023 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 1.000Rint = 0.028
10594 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
3369 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Experimental. Agilent Technologies, (2012). CrysAlisPro, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.32349 (9)0.15353 (5)0.74526 (8)0.0246 (2)
O10.41858 (10)0.24422 (5)0.89266 (8)0.0357 (2)
C10.41307 (11)0.21416 (6)0.78858 (10)0.0248 (2)
C20.51580 (11)0.24121 (6)0.71036 (10)0.0247 (2)
H20.46830.24120.62110.030*
C30.63773 (12)0.18184 (7)0.73050 (12)0.0316 (3)
H3A0.68140.17890.81950.038*
H3B0.60210.12960.70320.038*
C40.74652 (13)0.20629 (8)0.65716 (13)0.0383 (3)
H4A0.82400.16930.67470.046*
H4B0.70530.20440.56750.046*
C50.80004 (13)0.28975 (8)0.69353 (13)0.0395 (3)
H5A0.84900.29050.78140.047*
H5B0.86540.30520.64300.047*
C60.67966 (14)0.34838 (7)0.67307 (12)0.0371 (3)
H6A0.63550.35060.58410.045*
H6B0.71540.40080.69920.045*
C70.57121 (13)0.32470 (7)0.74771 (11)0.0307 (3)
H7A0.49450.36220.73120.037*
H7B0.61340.32610.83720.037*
C80.29903 (11)0.12078 (6)0.61624 (10)0.0233 (2)
H80.35930.15000.57150.028*
C90.33861 (12)0.03328 (7)0.61448 (11)0.0292 (3)
H9A0.28050.00240.65780.035*
H9B0.43520.02630.65860.035*
C100.31939 (13)0.00374 (7)0.47898 (12)0.0340 (3)
H10A0.38210.03230.43740.041*
H10B0.34300.05210.47950.041*
C110.16953 (14)0.01560 (8)0.40628 (12)0.0369 (3)
H11A0.10760.01670.44340.044*
H11B0.16060.00140.31970.044*
C120.12716 (15)0.10224 (8)0.40858 (12)0.0381 (3)
H12A0.02980.10790.36620.046*
H12B0.18250.13370.36320.046*
C130.14821 (12)0.13330 (7)0.54369 (11)0.0286 (3)
H13A0.12590.18930.54190.034*
H13B0.08530.10580.58640.034*
C140.23915 (12)0.11819 (6)0.82848 (10)0.0257 (3)
H140.18550.07500.78040.031*
C150.13228 (13)0.17564 (7)0.86046 (12)0.0334 (3)
H15A0.07380.19630.78330.040*
H15B0.18030.21990.90820.040*
C160.04124 (15)0.13386 (9)0.93748 (13)0.0417 (3)
H16A0.02310.17170.96040.050*
H16B0.01320.09280.88660.050*
C170.12985 (17)0.09710 (9)1.05623 (13)0.0473 (4)
H17A0.06990.06921.10150.057*
H17B0.17800.13871.11060.057*
C180.23659 (16)0.03963 (9)1.02435 (13)0.0445 (3)
H18A0.18830.00470.97690.053*
H18B0.29470.01901.10170.053*
C190.32894 (13)0.08035 (8)0.94690 (12)0.0342 (3)
H19A0.38520.12080.99760.041*
H19B0.39150.04170.92300.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0262 (5)0.0280 (5)0.0215 (5)0.0046 (4)0.0095 (4)0.0030 (3)
O10.0446 (5)0.0404 (5)0.0246 (4)0.0135 (4)0.0129 (4)0.0098 (3)
C10.0266 (5)0.0262 (5)0.0217 (5)0.0017 (4)0.0054 (4)0.0009 (4)
C20.0260 (5)0.0269 (5)0.0213 (5)0.0051 (4)0.0053 (4)0.0025 (4)
C30.0292 (6)0.0282 (6)0.0379 (6)0.0031 (5)0.0087 (5)0.0028 (5)
C40.0292 (6)0.0391 (7)0.0497 (8)0.0049 (5)0.0151 (5)0.0089 (6)
C50.0312 (6)0.0454 (7)0.0439 (7)0.0142 (5)0.0129 (5)0.0067 (6)
C60.0437 (7)0.0309 (6)0.0386 (7)0.0138 (5)0.0133 (5)0.0035 (5)
C70.0360 (6)0.0265 (6)0.0309 (6)0.0062 (5)0.0104 (5)0.0038 (4)
C80.0249 (5)0.0251 (5)0.0214 (5)0.0045 (4)0.0083 (4)0.0027 (4)
C90.0288 (6)0.0295 (6)0.0291 (6)0.0023 (4)0.0059 (4)0.0039 (4)
C100.0374 (7)0.0314 (6)0.0344 (7)0.0002 (5)0.0109 (5)0.0101 (5)
C110.0402 (7)0.0367 (7)0.0319 (6)0.0079 (5)0.0039 (5)0.0111 (5)
C120.0425 (7)0.0395 (7)0.0276 (6)0.0021 (5)0.0022 (5)0.0024 (5)
C130.0301 (6)0.0276 (6)0.0273 (6)0.0012 (4)0.0050 (5)0.0001 (4)
C140.0279 (6)0.0278 (5)0.0233 (5)0.0041 (4)0.0101 (4)0.0010 (4)
C150.0339 (6)0.0362 (6)0.0345 (6)0.0019 (5)0.0171 (5)0.0011 (5)
C160.0394 (7)0.0505 (8)0.0424 (7)0.0029 (6)0.0245 (6)0.0021 (6)
C170.0567 (9)0.0587 (9)0.0332 (7)0.0126 (7)0.0242 (6)0.0014 (6)
C180.0524 (8)0.0470 (8)0.0359 (7)0.0061 (6)0.0132 (6)0.0137 (6)
C190.0342 (6)0.0383 (7)0.0307 (6)0.0018 (5)0.0085 (5)0.0064 (5)
Geometric parameters (Å, º) top
N1—C11.3634 (14)C10—C111.5212 (18)
N1—C81.4785 (13)C10—H10A0.9700
N1—C141.4826 (13)C10—H10B0.9700
O1—C11.2317 (13)C11—C121.5218 (18)
C1—C21.5283 (15)C11—H11A0.9700
C2—C71.5322 (14)C11—H11B0.9700
C2—C31.5392 (16)C12—C131.5316 (16)
C2—H20.9800C12—H12A0.9700
C3—C41.5267 (17)C12—H12B0.9700
C3—H3A0.9700C13—H13A0.9700
C3—H3B0.9700C13—H13B0.9700
C4—C51.5243 (18)C14—C151.5252 (16)
C4—H4A0.9700C14—C191.5300 (16)
C4—H4B0.9700C14—H140.9800
C5—C61.520 (2)C15—C161.5279 (16)
C5—H5A0.9700C15—H15A0.9700
C5—H5B0.9700C15—H15B0.9700
C6—C71.5302 (17)C16—C171.521 (2)
C6—H6A0.9700C16—H16A0.9700
C6—H6B0.9700C16—H16B0.9700
C7—H7A0.9700C17—C181.524 (2)
C7—H7B0.9700C17—H17A0.9700
C8—C91.5279 (15)C17—H17B0.9700
C8—C131.5302 (15)C18—C191.5323 (17)
C8—H80.9800C18—H18A0.9700
C9—C101.5286 (16)C18—H18B0.9700
C9—H9A0.9700C19—H19A0.9700
C9—H9B0.9700C19—H19B0.9700
C1—N1—C8124.39 (9)C11—C10—H10B109.5
C1—N1—C14119.73 (9)C9—C10—H10B109.5
C8—N1—C14115.84 (8)H10A—C10—H10B108.1
O1—C1—N1121.32 (10)C10—C11—C12110.75 (10)
O1—C1—C2119.40 (10)C10—C11—H11A109.5
N1—C1—C2119.13 (9)C12—C11—H11A109.5
C1—C2—C7111.49 (9)C10—C11—H11B109.5
C1—C2—C3108.41 (9)C12—C11—H11B109.5
C7—C2—C3109.97 (9)H11A—C11—H11B108.1
C1—C2—H2109.0C11—C12—C13111.45 (10)
C7—C2—H2109.0C11—C12—H12A109.3
C3—C2—H2109.0C13—C12—H12A109.3
C4—C3—C2111.28 (10)C11—C12—H12B109.3
C4—C3—H3A109.4C13—C12—H12B109.3
C2—C3—H3A109.4H12A—C12—H12B108.0
C4—C3—H3B109.4C8—C13—C12110.87 (10)
C2—C3—H3B109.4C8—C13—H13A109.5
H3A—C3—H3B108.0C12—C13—H13A109.5
C5—C4—C3110.79 (10)C8—C13—H13B109.5
C5—C4—H4A109.5C12—C13—H13B109.5
C3—C4—H4A109.5H13A—C13—H13B108.1
C5—C4—H4B109.5N1—C14—C15113.01 (9)
C3—C4—H4B109.5N1—C14—C19112.78 (9)
H4A—C4—H4B108.1C15—C14—C19111.69 (10)
C6—C5—C4110.57 (10)N1—C14—H14106.2
C6—C5—H5A109.5C15—C14—H14106.2
C4—C5—H5A109.5C19—C14—H14106.2
C6—C5—H5B109.5C14—C15—C16110.43 (10)
C4—C5—H5B109.5C14—C15—H15A109.6
H5A—C5—H5B108.1C16—C15—H15A109.6
C5—C6—C7111.31 (10)C14—C15—H15B109.6
C5—C6—H6A109.4C16—C15—H15B109.6
C7—C6—H6A109.4H15A—C15—H15B108.1
C5—C6—H6B109.4C17—C16—C15111.15 (11)
C7—C6—H6B109.4C17—C16—H16A109.4
H6A—C6—H6B108.0C15—C16—H16A109.4
C6—C7—C2110.33 (10)C17—C16—H16B109.4
C6—C7—H7A109.6C15—C16—H16B109.4
C2—C7—H7A109.6H16A—C16—H16B108.0
C6—C7—H7B109.6C16—C17—C18111.00 (11)
C2—C7—H7B109.6C16—C17—H17A109.4
H7A—C7—H7B108.1C18—C17—H17A109.4
N1—C8—C9112.66 (9)C16—C17—H17B109.4
N1—C8—C13111.86 (9)C18—C17—H17B109.4
C9—C8—C13110.29 (9)H17A—C17—H17B108.0
N1—C8—H8107.2C17—C18—C19111.22 (11)
C9—C8—H8107.2C17—C18—H18A109.4
C13—C8—H8107.2C19—C18—H18A109.4
C8—C9—C10110.50 (9)C17—C18—H18B109.4
C8—C9—H9A109.6C19—C18—H18B109.4
C10—C9—H9A109.6H18A—C18—H18B108.0
C8—C9—H9B109.6C14—C19—C18110.50 (10)
C10—C9—H9B109.6C14—C19—H19A109.6
H9A—C9—H9B108.1C18—C19—H19A109.6
C11—C10—C9110.87 (10)C14—C19—H19B109.6
C11—C10—H10A109.5C18—C19—H19B109.6
C9—C10—H10A109.5H19A—C19—H19B108.1
C8—N1—C1—O1172.53 (10)N1—C8—C9—C10176.70 (9)
C14—N1—C1—O15.19 (16)C13—C8—C9—C1057.54 (12)
C8—N1—C1—C211.91 (16)C8—C9—C10—C1157.93 (13)
C14—N1—C1—C2170.37 (9)C9—C10—C11—C1256.68 (14)
O1—C1—C2—C723.63 (15)C10—C11—C12—C1355.58 (15)
N1—C1—C2—C7160.73 (10)N1—C8—C13—C12177.46 (9)
O1—C1—C2—C397.56 (12)C9—C8—C13—C1256.32 (12)
N1—C1—C2—C378.08 (12)C11—C12—C13—C855.60 (14)
C1—C2—C3—C4178.71 (9)C1—N1—C14—C1565.94 (13)
C7—C2—C3—C456.59 (12)C8—N1—C14—C15111.97 (11)
C2—C3—C4—C556.50 (14)C1—N1—C14—C1961.92 (13)
C3—C4—C5—C656.37 (15)C8—N1—C14—C19120.17 (10)
C4—C5—C6—C757.27 (14)N1—C14—C15—C16175.50 (10)
C5—C6—C7—C257.68 (13)C19—C14—C15—C1656.07 (14)
C1—C2—C7—C6176.91 (9)C14—C15—C16—C1756.40 (15)
C3—C2—C7—C656.63 (12)C15—C16—C17—C1856.75 (16)
C1—N1—C8—C9118.68 (11)C16—C17—C18—C1956.23 (16)
C14—N1—C8—C963.52 (12)N1—C14—C19—C18175.89 (10)
C1—N1—C8—C13116.41 (11)C15—C14—C19—C1855.56 (14)
C14—N1—C8—C1361.39 (12)C17—C18—C19—C1455.32 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.443.3861 (13)163
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H33NO
Mr291.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.8237 (3), 16.8736 (5), 10.8886 (3)
β (°) 102.890 (3)
V3)1759.42 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.50
Crystal size (mm)0.44 × 0.38 × 0.18
Data collection
DiffractometerAgilent Xcalibur Eos Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.940, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10594, 3369, 3023
Rint0.028
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.05
No. of reflections3369
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.443.3861 (13)163
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSaeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R. & Wong, W.-T. (2012). Acta Cryst. E68, o26.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds