metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[tris­­(3,5-di­methyl-1H-pyrazol-1-yl-κN2)meth­yl]sodium tri­fluoro­methane­sulfonate

aDepartment of Chemistry and Physics, Southern Arkansas University, Magnolia, AR 71753, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: GannaLyubartseva@saumag.edu

(Received 21 June 2012; accepted 22 June 2012; online 30 June 2012)

In the title salt, [Na(C16H22N6)2]CF3SO3, the Na+ cation is coordinated by six N atoms from two tridentate tris­(3,5-dimethyl­pyrazol-1-yl)methane ligands in a distorted octa­hedral geometry. The Na—N distances range from 2.427 (3) to 2.507 (3) Å, intra-ligand N—Na—N angles range from 74.71 (8) to 79.31 (9)°, and adjacent inter-ligand N—Na—N angles range between 100.42 (9) and 104.97 (9)°. The structure is twinned by inversion [occupancy factors = 0.50 (9)] and the trifluoro­methane­sulfonate anion is disordered, with two end-over-end orientations of unequal occupancy [0.781 (3) and 0.219 (3)].

Related literature

For ligand synthesis details, see: Reger et al. (2000[Reger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120-128.]). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993[Astley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509-515.]). For details of the refinement strategy for twinned and disordered structures, see: Parkin (2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C16H22N6)2]CF3O3S

  • Mr = 768.85

  • Monoclinic, P c

  • a = 9.0579 (1) Å

  • b = 12.5733 (1) Å

  • c = 16.4386 (2) Å

  • β = 90.5917 (4)°

  • V = 1872.05 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 90 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan [SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and XABS2 (Parkin et al. 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])] Tmin = 0.965, Tmax = 0.981

  • 47745 measured reflections

  • 8385 independent reflections

  • 7036 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.09

  • 8385 reflections

  • 516 parameters

  • 59 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

In an attempt to prepare mononuclear [(tpmMe2)NiIIL3]-1, where tpmMe2 is tris(3,5-dimethylpyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand (Astley et al., 1993), and L is CN-, a mononegative N-donor anion, we isolated a minor product [(C16H22N6)2Na][CF3SO3] as pale yellow crystals. In the crystal, the sodium ion is coordinated by six N atoms from the two tridentate tpmMe2 ligands (average Na—N distance = 2.47 Å) in a distorted octahedral geometry. The average N—Na—N angle between adjacent pyrazole-ring-coordinated N atoms is 77.0° for the six acute angles and 103.0° for the six obtuse angles. The trifluoromethanesulfonate anion is disordered end-over-end, with the two orientations having unequal occupancy factors. The structure is twinned by inversion [occupancy factors 0.50 (9)], but the unequal occupancy of the disorder components effectively ensures the lack of inversion symmetry observed for this structure.

Related literature top

For ligand synthesis details, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For details of the refinement strategy for twinned and disordered structures, see: Parkin (2000); Spek (2009).

Experimental top

Tris(pyrazolyl)methane was synthesized according to the previously published procedure of Reger et al. (2000). Nickel trifluoromethanesulfonate and sodium cyanide were used as received. Ni(OTf)2 (358 mg, 1 mmol) was dissolved in 40 ml methanol. Tris(3,5-dimethylpyrazol-1-yl)methane (298 mg, 1 mmol) was dissolved in 25 ml methanol. The ligand solution was added dropwise to the metal solution with moderate stirring. Once the addition was complete, sodium cyanide (147 mg, 3 mmol) dissolved in 20 ml (1:1) mixture of water and methanol added. The clear solution gave precipitates that were filtered. From the clear filtrate, pale yellow crystals were obtained after 2 weeks (59 mg, 7.67% yield). IR (cm-1): 2924, 1564, 1447, 1414, 1384, 1366, 1319, 1262, 1133, 1031, 974, 888, 860, 809, 789, 750, 705, 635, 570, 517, 478.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 1.00 Å (R3CH), and 0.95 Å (Csp2H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached atom.

To ensure satisfactory refinement of disordered parts of the structure, a combination of constraints and restraints were used. The SHELXL97 constraints EXYZ and EADP were used to make the geometry and displacement parameters of closely proximate disordered atoms equal. The SHELXL97 restraint command DELU was also used to ensure similar displacement parameters for closely proximate, chemically similar groups.

The structure was initially solved and partly refined using space group P21/c. That model seemed to refine quite well but there were a number of indications that something was not quite right. In particular, the difference map was not as flat as would be expected for this kind of structure, and the weighting scheme took on unusual values. The centrosymmetric model forced the disorder of the trifluoromethanesulfonate anion to be exactly 50:50. The non-centrosymmetric model in space group Pc presented here refines better, with the trifluoromethanesulfonate anion disorder occupancies refining to 0.781 (3) and 0.219 (3) for the major and minor components respectively. This lower symmetry model is twinned by inversion, with essentially equal occupancy parts [0.50 (9)]. Additional checks using an R-tensor (Parkin, 2000) and PLATON (Spek, 2009) confirmed that the model using space group Pc is superior to that using P21/c.

Structure description top

In an attempt to prepare mononuclear [(tpmMe2)NiIIL3]-1, where tpmMe2 is tris(3,5-dimethylpyrazol-1-yl)methane, a symmetrical tridentate neutral nitrogen donor ligand (Astley et al., 1993), and L is CN-, a mononegative N-donor anion, we isolated a minor product [(C16H22N6)2Na][CF3SO3] as pale yellow crystals. In the crystal, the sodium ion is coordinated by six N atoms from the two tridentate tpmMe2 ligands (average Na—N distance = 2.47 Å) in a distorted octahedral geometry. The average N—Na—N angle between adjacent pyrazole-ring-coordinated N atoms is 77.0° for the six acute angles and 103.0° for the six obtuse angles. The trifluoromethanesulfonate anion is disordered end-over-end, with the two orientations having unequal occupancy factors. The structure is twinned by inversion [occupancy factors 0.50 (9)], but the unequal occupancy of the disorder components effectively ensures the lack of inversion symmetry observed for this structure.

For ligand synthesis details, see: Reger et al. (2000). For structural, spectroscopic and angular overlap studies of tris(pyrazol-1-yl)methane complexes, see: Astley et al. (1993). For details of the refinement strategy for twinned and disordered structures, see: Parkin (2000); Spek (2009).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 50% probability level.
Bis[tris(3,5-dimethyl-1H-pyrazol-1-yl-κN2)methyl]sodium trifluoromethanesulfonate top
Crystal data top
[Na(C16H22N6)2]CF3O3SF(000) = 808
Mr = 768.85Dx = 1.364 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4496 reflections
a = 9.0579 (1) Åθ = 1.0–27.5°
b = 12.5733 (1) ŵ = 0.17 mm1
c = 16.4386 (2) ÅT = 90 K
β = 90.5917 (4)°Block, pale yellow
V = 1872.05 (3) Å30.22 × 0.18 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
8385 independent reflections
Radiation source: fine-focus sealed tube7036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 9.1 pixels mm-1θmax = 27.5°, θmin = 1.6°
ω scans at fixed χ = 55°h = 1111
Absorption correction: multi-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al. 1995)]
k = 1616
Tmin = 0.965, Tmax = 0.981l = 2121
47745 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.4716P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8385 reflectionsΔρmax = 0.26 e Å3
516 parametersΔρmin = 0.27 e Å3
59 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (9)
Crystal data top
[Na(C16H22N6)2]CF3O3SV = 1872.05 (3) Å3
Mr = 768.85Z = 2
Monoclinic, PcMo Kα radiation
a = 9.0579 (1) ŵ = 0.17 mm1
b = 12.5733 (1) ÅT = 90 K
c = 16.4386 (2) Å0.22 × 0.18 × 0.12 mm
β = 90.5917 (4)°
Data collection top
Nonius KappaCCD
diffractometer
8385 independent reflections
Absorption correction: multi-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al. 1995)]
7036 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.981Rint = 0.043
47745 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.26 e Å3
S = 1.09Δρmin = 0.27 e Å3
8385 reflectionsAbsolute structure: nd
516 parametersAbsolute structure parameter: 0.50 (9)
59 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na11.00452 (13)0.75027 (11)0.49911 (7)0.02050 (15)
N10.9369 (2)0.60685 (18)0.40544 (14)0.0221 (5)
N20.8555 (3)0.63949 (17)0.33939 (14)0.0209 (5)
N31.1108 (3)0.80132 (17)0.36741 (14)0.0228 (5)
N41.0369 (2)0.76747 (18)0.29950 (14)0.0217 (5)
N50.7809 (2)0.82234 (17)0.42687 (13)0.0208 (5)
N60.8017 (3)0.82584 (17)0.34415 (13)0.0203 (5)
N71.2291 (3)0.67937 (17)0.57030 (13)0.0220 (5)
N81.2082 (3)0.67406 (17)0.65249 (13)0.0200 (5)
N90.8992 (3)0.69786 (18)0.63046 (14)0.0249 (5)
N100.9732 (3)0.73381 (19)0.69852 (13)0.0217 (5)
N111.0735 (3)0.89308 (18)0.59129 (14)0.0226 (5)
N121.1548 (3)0.86073 (18)0.65807 (14)0.0222 (5)
C10.9347 (4)0.4552 (2)0.49948 (19)0.0312 (7)
H1A1.03880.43850.49010.047*
H1B0.87900.38900.50610.047*
H1C0.92610.49840.54880.047*
C20.8737 (3)0.5159 (2)0.42806 (17)0.0238 (6)
C30.7522 (4)0.4915 (2)0.37739 (19)0.0287 (6)
H30.68960.43120.38130.034*
C40.7422 (3)0.5713 (2)0.32169 (18)0.0258 (7)
C50.6373 (4)0.5885 (3)0.2528 (2)0.0394 (8)
H5A0.56800.52880.24960.059*
H5B0.69220.59340.20190.059*
H5C0.58250.65470.26150.059*
C61.3664 (4)0.8453 (2)0.4042 (2)0.0334 (7)
H6A1.37840.92260.40030.050*
H6B1.46030.81040.39190.050*
H6C1.33630.82650.45940.050*
C71.2513 (3)0.8096 (2)0.34495 (18)0.0270 (6)
C81.2667 (3)0.7796 (2)0.26251 (19)0.0304 (7)
H81.35570.77800.23240.036*
C91.1288 (3)0.7535 (2)0.23452 (15)0.0258 (6)
C101.0736 (4)0.7178 (3)0.15349 (18)0.0346 (7)
H10A1.02990.64680.15840.052*
H10B1.15590.71520.11530.052*
H10C0.99870.76780.13340.052*
C110.6788 (3)0.9413 (2)0.52994 (17)0.0282 (6)
H11A0.57100.94460.53330.042*
H11B0.72111.00990.54610.042*
H11C0.71610.88550.56640.042*
C120.7221 (3)0.9165 (2)0.44440 (17)0.0222 (6)
C130.7085 (3)0.9811 (2)0.37506 (17)0.0238 (6)
H130.66981.05120.37230.029*
C140.7630 (3)0.9216 (2)0.31187 (18)0.0216 (6)
C150.7818 (4)0.9479 (3)0.22412 (18)0.0361 (8)
H15A0.88610.94090.20970.054*
H15B0.74931.02120.21410.054*
H15C0.72250.89910.19080.054*
C161.3277 (3)0.5600 (2)0.46573 (17)0.0278 (6)
H16A1.26280.59890.42810.042*
H16B1.31790.48350.45600.042*
H16C1.43030.58170.45700.042*
C171.2853 (3)0.5845 (2)0.55116 (17)0.0212 (6)
C181.2962 (3)0.5187 (2)0.62044 (17)0.0230 (6)
H181.33220.44770.62220.028*
C191.2452 (3)0.5763 (2)0.68423 (18)0.0234 (6)
C201.2240 (4)0.5492 (3)0.77164 (17)0.0317 (7)
H20A1.26040.47700.78210.048*
H20B1.11870.55300.78460.048*
H20C1.27890.59980.80570.048*
C210.6434 (4)0.6550 (3)0.5950 (2)0.0360 (7)
H21A0.68560.64930.54050.054*
H21B0.56180.70620.59390.054*
H21C0.60640.58530.61200.054*
C220.7596 (3)0.6920 (2)0.65368 (17)0.0258 (6)
C230.7438 (3)0.7229 (2)0.73555 (19)0.0300 (7)
H230.65500.72480.76580.036*
C240.8825 (3)0.7497 (2)0.76276 (17)0.0260 (6)
C250.9384 (4)0.7873 (3)0.84351 (18)0.0363 (7)
H25A0.85850.78420.88320.054*
H25B0.97340.86080.83870.054*
H25C1.02000.74170.86170.054*
C261.0768 (4)1.0433 (2)0.49665 (19)0.0313 (7)
H26A1.01210.99690.46420.047*
H26B1.15861.06810.46300.047*
H26C1.02031.10450.51600.047*
C271.1367 (3)0.9827 (2)0.56771 (17)0.0233 (6)
C281.2602 (4)1.0071 (2)0.61699 (19)0.0288 (7)
H281.32421.06650.61170.035*
C291.2696 (3)0.9280 (2)0.67423 (19)0.0274 (7)
C301.3762 (4)0.9100 (3)0.7431 (2)0.0443 (9)
H30A1.32290.91000.79470.066*
H30B1.45010.96700.74380.066*
H30C1.42550.84130.73590.066*
C310.8823 (3)0.7424 (2)0.30292 (15)0.0220 (5)
H310.84430.73930.24560.026*
C321.1295 (3)0.7578 (2)0.69449 (15)0.0206 (5)
H321.16860.76060.75160.025*
S1A1.42401 (13)0.23792 (11)0.45046 (7)0.0236 (3)0.781 (3)
O1A1.2874 (5)0.2810 (6)0.4826 (4)0.0341 (8)0.781 (3)
O2A1.4806 (6)0.2936 (4)0.3817 (3)0.0346 (8)0.781 (3)
O3A1.4309 (10)0.1217 (5)0.4462 (4)0.0285 (9)0.781 (3)
C1A1.5571 (9)0.2680 (8)0.5306 (5)0.0315 (13)0.781 (3)
F1A1.6911 (4)0.2312 (5)0.5142 (4)0.0366 (7)0.781 (3)
F2A1.5172 (8)0.2272 (6)0.6019 (3)0.0419 (8)0.781 (3)
F3A1.5720 (9)0.3734 (4)0.5410 (5)0.0337 (9)0.781 (3)
S1A'1.5809 (9)0.2649 (8)0.5447 (4)0.0236 (3)0.219 (3)
O1A'1.719 (2)0.218 (2)0.5171 (19)0.0366 (7)0.219 (3)
O2A'1.521 (4)0.216 (3)0.6152 (15)0.0419 (8)0.219 (3)
O3A'1.583 (5)0.3808 (16)0.552 (2)0.0337 (9)0.219 (3)
C1A'1.452 (2)0.2410 (17)0.4626 (11)0.0315 (13)0.219 (3)
F1A'1.3170 (18)0.2813 (19)0.4720 (14)0.0341 (8)0.219 (3)
F2A'1.504 (2)0.2688 (13)0.3871 (10)0.0346 (8)0.219 (3)
F3A'1.426 (3)0.1342 (15)0.4598 (15)0.0285 (9)0.219 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0208 (3)0.0242 (3)0.0164 (3)0.0025 (2)0.0023 (2)0.0001 (2)
N10.0231 (12)0.0239 (12)0.0193 (11)0.0016 (9)0.0032 (9)0.0026 (9)
N20.0219 (12)0.0209 (11)0.0199 (11)0.0027 (9)0.0027 (9)0.0008 (9)
N30.0234 (12)0.0238 (11)0.0212 (11)0.0023 (9)0.0021 (9)0.0015 (9)
N40.0208 (11)0.0248 (12)0.0197 (10)0.0005 (9)0.0028 (8)0.0005 (9)
N50.0202 (12)0.0267 (12)0.0156 (11)0.0004 (9)0.0008 (9)0.0015 (9)
N60.0213 (12)0.0221 (11)0.0174 (11)0.0014 (9)0.0002 (9)0.0004 (9)
N70.0237 (13)0.0250 (12)0.0173 (11)0.0003 (9)0.0023 (10)0.0000 (9)
N80.0215 (12)0.0207 (11)0.0179 (11)0.0022 (9)0.0001 (9)0.0001 (9)
N90.0249 (13)0.0285 (12)0.0213 (11)0.0047 (10)0.0004 (10)0.0008 (9)
N100.0230 (11)0.0263 (12)0.0158 (10)0.0026 (10)0.0004 (8)0.0007 (9)
N110.0248 (12)0.0225 (12)0.0204 (11)0.0014 (9)0.0045 (10)0.0001 (9)
N120.0272 (13)0.0221 (12)0.0173 (11)0.0007 (9)0.0050 (10)0.0002 (9)
C10.0366 (18)0.0272 (14)0.0298 (16)0.0052 (12)0.0055 (13)0.0071 (12)
C20.0235 (14)0.0226 (13)0.0255 (14)0.0034 (11)0.0007 (11)0.0016 (11)
C30.0331 (17)0.0247 (13)0.0283 (15)0.0062 (12)0.0037 (13)0.0027 (11)
C40.0255 (16)0.0290 (15)0.0226 (16)0.0034 (12)0.0042 (13)0.0040 (12)
C50.0339 (17)0.0418 (19)0.042 (2)0.0102 (14)0.0151 (15)0.0098 (15)
C60.0231 (15)0.0357 (16)0.0415 (18)0.0058 (13)0.0009 (13)0.0017 (14)
C70.0229 (15)0.0250 (14)0.0332 (16)0.0020 (11)0.0046 (12)0.0037 (11)
C80.0266 (15)0.0339 (16)0.0310 (16)0.0042 (12)0.0083 (13)0.0055 (13)
C90.0333 (15)0.0273 (14)0.0169 (12)0.0063 (14)0.0063 (11)0.0015 (12)
C100.0403 (19)0.0402 (17)0.0234 (14)0.0074 (14)0.0048 (13)0.0015 (12)
C110.0305 (16)0.0308 (16)0.0233 (15)0.0034 (12)0.0023 (12)0.0029 (11)
C120.0189 (13)0.0273 (14)0.0204 (14)0.0015 (11)0.0026 (11)0.0042 (10)
C130.0231 (15)0.0252 (14)0.0229 (14)0.0029 (11)0.0006 (12)0.0010 (11)
C140.0188 (13)0.0244 (14)0.0216 (14)0.0004 (11)0.0024 (11)0.0023 (11)
C150.052 (2)0.0308 (16)0.0255 (16)0.0097 (14)0.0038 (15)0.0083 (13)
C160.0324 (17)0.0276 (15)0.0235 (15)0.0049 (13)0.0002 (13)0.0026 (11)
C170.0168 (13)0.0233 (13)0.0236 (14)0.0028 (10)0.0019 (11)0.0023 (10)
C180.0221 (15)0.0201 (14)0.0266 (15)0.0012 (11)0.0007 (12)0.0021 (11)
C190.0240 (14)0.0230 (14)0.0230 (15)0.0009 (11)0.0033 (12)0.0031 (11)
C200.0400 (19)0.0314 (15)0.0238 (15)0.0012 (13)0.0009 (13)0.0043 (12)
C210.0283 (17)0.0371 (17)0.0424 (19)0.0086 (13)0.0004 (14)0.0051 (14)
C220.0238 (15)0.0254 (15)0.0281 (15)0.0037 (11)0.0011 (12)0.0061 (11)
C230.0272 (16)0.0320 (16)0.0309 (16)0.0034 (12)0.0096 (13)0.0050 (12)
C240.0266 (14)0.0271 (14)0.0246 (13)0.0051 (13)0.0065 (11)0.0029 (13)
C250.0431 (19)0.0468 (18)0.0192 (14)0.0087 (14)0.0062 (13)0.0039 (12)
C260.0345 (18)0.0245 (14)0.0347 (17)0.0057 (12)0.0101 (14)0.0040 (13)
C270.0281 (15)0.0196 (13)0.0223 (14)0.0007 (11)0.0039 (12)0.0005 (11)
C280.0269 (15)0.0279 (14)0.0315 (16)0.0100 (12)0.0058 (13)0.0030 (12)
C290.0264 (16)0.0282 (15)0.0275 (17)0.0064 (12)0.0077 (13)0.0013 (12)
C300.050 (2)0.0425 (19)0.039 (2)0.0139 (16)0.0255 (17)0.0067 (15)
C310.0240 (13)0.0274 (14)0.0146 (11)0.0008 (12)0.0024 (10)0.0003 (11)
C320.0196 (12)0.0221 (13)0.0200 (12)0.0007 (12)0.0003 (10)0.0009 (11)
S1A0.0242 (5)0.0246 (4)0.0221 (4)0.0043 (4)0.0023 (3)0.0031 (3)
O1A0.022 (2)0.0380 (11)0.043 (2)0.0014 (18)0.0119 (15)0.0013 (13)
O2A0.036 (2)0.035 (2)0.0327 (14)0.0007 (14)0.0000 (13)0.0048 (15)
O3A0.0367 (12)0.0206 (17)0.028 (3)0.0030 (14)0.0035 (18)0.0111 (14)
C1A0.032 (3)0.027 (2)0.036 (3)0.006 (2)0.0129 (19)0.000 (2)
F1A0.0198 (18)0.0387 (19)0.0514 (13)0.0018 (12)0.0010 (15)0.0025 (12)
F2A0.0480 (14)0.057 (2)0.0211 (19)0.0175 (14)0.0004 (16)0.0044 (14)
F3A0.0349 (18)0.0266 (11)0.039 (3)0.0051 (11)0.0016 (15)0.0125 (11)
S1A'0.0242 (5)0.0246 (4)0.0221 (4)0.0043 (4)0.0023 (3)0.0031 (3)
O1A'0.0198 (18)0.0387 (19)0.0514 (13)0.0018 (12)0.0010 (15)0.0025 (12)
O2A'0.0480 (14)0.057 (2)0.0211 (19)0.0175 (14)0.0004 (16)0.0044 (14)
O3A'0.0349 (18)0.0266 (11)0.039 (3)0.0051 (11)0.0016 (15)0.0125 (11)
C1A'0.032 (3)0.027 (2)0.036 (3)0.006 (2)0.0129 (19)0.000 (2)
F1A'0.022 (2)0.0380 (11)0.043 (2)0.0014 (18)0.0119 (15)0.0013 (13)
F2A'0.036 (2)0.035 (2)0.0327 (14)0.0007 (14)0.0000 (13)0.0048 (15)
F3A'0.0367 (12)0.0206 (17)0.028 (3)0.0030 (14)0.0035 (18)0.0111 (14)
Geometric parameters (Å, º) top
Na1—N112.427 (3)C12—C131.404 (4)
Na1—N12.445 (3)C13—C141.375 (4)
Na1—N92.459 (3)C13—H130.9500
Na1—N32.463 (3)C14—C151.492 (4)
Na1—N72.501 (3)C15—H15A0.9800
Na1—N52.507 (3)C15—H15B0.9800
N1—C21.334 (4)C15—H15C0.9800
N1—N21.369 (3)C16—C171.492 (4)
N2—C41.366 (4)C16—H16A0.9800
N2—C311.447 (4)C16—H16B0.9800
N3—C71.333 (4)C16—H16C0.9800
N3—N41.364 (3)C17—C181.411 (4)
N4—C91.372 (3)C18—C191.359 (4)
N4—C311.437 (3)C18—H180.9500
N5—C121.331 (3)C19—C201.491 (4)
N5—N61.375 (3)C20—H20A0.9800
N6—C141.360 (3)C20—H20B0.9800
N6—C311.450 (3)C20—H20C0.9800
N7—C171.335 (3)C21—C221.495 (4)
N7—N81.368 (3)C21—H21A0.9800
N8—C191.376 (3)C21—H21B0.9800
N8—C321.450 (3)C21—H21C0.9800
N9—C221.327 (4)C22—C231.410 (4)
N9—N101.374 (3)C23—C241.372 (4)
N10—C241.359 (3)C23—H230.9500
N10—C321.449 (3)C24—C251.493 (4)
N11—C271.324 (4)C25—H25A0.9800
N11—N121.377 (3)C25—H25B0.9800
N12—C291.364 (4)C25—H25C0.9800
N12—C321.446 (4)C26—C271.492 (4)
C1—C21.501 (4)C26—H26A0.9800
C1—H1A0.9800C26—H26B0.9800
C1—H1B0.9800C26—H26C0.9800
C1—H1C0.9800C27—C281.408 (4)
C2—C31.407 (4)C28—C291.371 (4)
C3—C41.360 (4)C28—H280.9500
C3—H30.9500C29—C301.498 (4)
C4—C51.487 (4)C30—H30A0.9800
C5—H5A0.9800C30—H30B0.9800
C5—H5B0.9800C30—H30C0.9800
C5—H5C0.9800C31—H311.0000
C6—C71.489 (4)C32—H321.0000
C6—H6A0.9800S1A—O2A1.429 (5)
C6—H6B0.9800S1A—O1A1.455 (4)
C6—H6C0.9800S1A—O3A1.464 (6)
C7—C81.415 (4)S1A—C1A1.816 (7)
C8—C91.367 (4)C1A—F1A1.330 (9)
C8—H80.9500C1A—F2A1.334 (9)
C9—C101.487 (4)C1A—F3A1.344 (10)
C10—H10A0.9800S1A'—O2A'1.424 (16)
C10—H10B0.9800S1A'—O1A'1.459 (15)
C10—H10C0.9800S1A'—O3A'1.462 (18)
C11—C121.496 (4)S1A'—C1A'1.799 (14)
C11—H11A0.9800C1A'—F1A'1.336 (18)
C11—H11B0.9800C1A'—F3A'1.364 (19)
C11—H11C0.9800C1A'—F2A'1.376 (19)
N11—Na1—N1179.48 (12)C13—C14—C15130.9 (3)
N11—Na1—N975.50 (9)C14—C15—H15A109.5
N1—Na1—N9104.97 (9)C14—C15—H15B109.5
N11—Na1—N3104.81 (9)H15A—C15—H15B109.5
N1—Na1—N374.71 (8)C14—C15—H15C109.5
N9—Na1—N3179.54 (12)H15A—C15—H15C109.5
N11—Na1—N776.63 (8)H15B—C15—H15C109.5
N1—Na1—N7103.24 (9)C17—C16—H16A109.5
N9—Na1—N779.31 (9)C17—C16—H16B109.5
N3—Na1—N7100.42 (9)H16A—C16—H16B109.5
N11—Na1—N5103.28 (9)C17—C16—H16C109.5
N1—Na1—N576.84 (8)H16A—C16—H16C109.5
N9—Na1—N5101.18 (9)H16B—C16—H16C109.5
N3—Na1—N579.09 (8)N7—C17—C18111.0 (2)
N7—Na1—N5179.47 (12)N7—C17—C16120.6 (2)
C2—N1—N2104.4 (2)C18—C17—C16128.5 (2)
C2—N1—Na1124.21 (19)C19—C18—C17106.8 (3)
N2—N1—Na1114.06 (16)C19—C18—H18126.6
C4—N2—N1112.2 (2)C17—C18—H18126.6
C4—N2—C31127.0 (2)C18—C19—N8105.5 (3)
N1—N2—C31120.3 (2)C18—C19—C20132.1 (3)
C7—N3—N4105.0 (2)N8—C19—C20122.4 (3)
C7—N3—Na1130.29 (19)C19—C20—H20A109.5
N4—N3—Na1116.44 (17)C19—C20—H20B109.5
N3—N4—C9112.4 (2)H20A—C20—H20B109.5
N3—N4—C31120.4 (2)C19—C20—H20C109.5
C9—N4—C31127.0 (2)H20A—C20—H20C109.5
C12—N5—N6104.2 (2)H20B—C20—H20C109.5
C12—N5—Na1122.83 (17)C22—C21—H21A109.5
N6—N5—Na1111.19 (16)C22—C21—H21B109.5
C14—N6—N5112.1 (2)H21A—C21—H21B109.5
C14—N6—C31125.9 (2)C22—C21—H21C109.5
N5—N6—C31120.9 (2)H21A—C21—H21C109.5
C17—N7—N8104.2 (2)H21B—C21—H21C109.5
C17—N7—Na1121.23 (17)N9—C22—C23111.5 (2)
N8—N7—Na1111.07 (17)N9—C22—C21119.9 (3)
N7—N8—C19112.5 (2)C23—C22—C21128.6 (3)
N7—N8—C32120.57 (19)C24—C23—C22106.1 (3)
C19—N8—C32126.0 (2)C24—C23—H23126.9
C22—N9—N10104.0 (2)C22—C23—H23126.9
C22—N9—Na1130.30 (19)N10—C24—C23105.6 (3)
N10—N9—Na1115.87 (16)N10—C24—C25122.4 (3)
C24—N10—N9112.8 (2)C23—C24—C25132.0 (3)
C24—N10—C32127.1 (2)C24—C25—H25A109.5
N9—N10—C32119.9 (2)C24—C25—H25B109.5
C27—N11—N12104.8 (2)H25A—C25—H25B109.5
C27—N11—Na1123.79 (19)C24—C25—H25C109.5
N12—N11—Na1114.28 (16)H25A—C25—H25C109.5
C29—N12—N11111.9 (2)H25B—C25—H25C109.5
C29—N12—C32126.8 (2)C27—C26—H26A109.5
N11—N12—C32120.6 (2)C27—C26—H26B109.5
C2—C1—H1A109.5H26A—C26—H26B109.5
C2—C1—H1B109.5C27—C26—H26C109.5
H1A—C1—H1B109.5H26A—C26—H26C109.5
C2—C1—H1C109.5H26B—C26—H26C109.5
H1A—C1—H1C109.5N11—C27—C28111.1 (2)
H1B—C1—H1C109.5N11—C27—C26120.5 (2)
N1—C2—C3110.9 (3)C28—C27—C26128.3 (3)
N1—C2—C1119.9 (2)C29—C28—C27106.3 (3)
C3—C2—C1129.2 (3)C29—C28—H28126.9
C4—C3—C2106.5 (3)C27—C28—H28126.9
C4—C3—H3126.7N12—C29—C28105.9 (2)
C2—C3—H3126.7N12—C29—C30122.5 (3)
C3—C4—N2105.9 (2)C28—C29—C30131.5 (3)
C3—C4—C5131.1 (3)C29—C30—H30A109.5
N2—C4—C5122.9 (3)C29—C30—H30B109.5
C4—C5—H5A109.5H30A—C30—H30B109.5
C4—C5—H5B109.5C29—C30—H30C109.5
H5A—C5—H5B109.5H30A—C30—H30C109.5
C4—C5—H5C109.5H30B—C30—H30C109.5
H5A—C5—H5C109.5N4—C31—N2112.3 (2)
H5B—C5—H5C109.5N4—C31—N6110.8 (2)
C7—C6—H6A109.5N2—C31—N6111.4 (2)
C7—C6—H6B109.5N4—C31—H31107.3
H6A—C6—H6B109.5N2—C31—H31107.3
C7—C6—H6C109.5N6—C31—H31107.3
H6A—C6—H6C109.5N12—C32—N10111.4 (2)
H6B—C6—H6C109.5N12—C32—N8111.8 (2)
N3—C7—C8110.4 (3)N10—C32—N8110.9 (2)
N3—C7—C6120.4 (3)N12—C32—H32107.5
C8—C7—C6129.2 (3)N10—C32—H32107.5
C9—C8—C7106.7 (3)N8—C32—H32107.5
C9—C8—H8126.6O2A—S1A—O1A114.7 (3)
C7—C8—H8126.6O2A—S1A—O3A115.8 (3)
C8—C9—N4105.5 (2)O1A—S1A—O3A115.2 (4)
C8—C9—C10132.2 (3)O2A—S1A—C1A103.3 (4)
N4—C9—C10122.3 (3)O1A—S1A—C1A102.7 (4)
C9—C10—H10A109.5O3A—S1A—C1A102.3 (4)
C9—C10—H10B109.5F1A—C1A—F2A107.5 (7)
H10A—C10—H10B109.5F1A—C1A—F3A106.1 (7)
C9—C10—H10C109.5F2A—C1A—F3A107.2 (7)
H10A—C10—H10C109.5F1A—C1A—S1A112.4 (6)
H10B—C10—H10C109.5F2A—C1A—S1A112.0 (6)
C12—C11—H11A109.5F3A—C1A—S1A111.3 (5)
C12—C11—H11B109.5O2A'—S1A'—O1A'114.1 (19)
H11A—C11—H11B109.5O2A'—S1A'—O3A'111 (2)
C12—C11—H11C109.5O1A'—S1A'—O3A'115 (2)
H11A—C11—H11C109.5O2A'—S1A'—C1A'106.9 (15)
H11B—C11—H11C109.5O1A'—S1A'—C1A'104.4 (12)
N5—C12—C13111.7 (3)O3A'—S1A'—C1A'103.9 (14)
N5—C12—C11119.9 (2)F1A'—C1A'—F3A'102.7 (19)
C13—C12—C11128.4 (3)F1A'—C1A'—F2A'109.1 (16)
C14—C13—C12105.7 (2)F3A'—C1A'—F2A'106.3 (18)
C14—C13—H13127.2F1A'—C1A'—S1A'116.0 (16)
C12—C13—H13127.2F3A'—C1A'—S1A'107.4 (15)
N6—C14—C13106.2 (3)F2A'—C1A'—S1A'114.3 (13)
N6—C14—C15122.8 (3)
N11—Na1—N1—C2149 (14)Na1—N3—C7—C633.8 (4)
N9—Na1—N1—C27.8 (2)N3—C7—C8—C90.6 (3)
N3—Na1—N1—C2171.9 (2)C6—C7—C8—C9179.9 (3)
N7—Na1—N1—C274.5 (2)C7—C8—C9—N40.3 (3)
N5—Na1—N1—C2106.0 (2)C7—C8—C9—C10179.0 (3)
N11—Na1—N1—N281 (14)N3—N4—C9—C80.0 (3)
N9—Na1—N1—N2121.47 (18)C31—N4—C9—C8174.7 (3)
N3—Na1—N1—N258.88 (18)N3—N4—C9—C10179.5 (3)
N7—Na1—N1—N2156.25 (17)C31—N4—C9—C105.8 (4)
N5—Na1—N1—N223.21 (18)N6—N5—C12—C131.6 (3)
C2—N1—N2—C40.9 (3)Na1—N5—C12—C13125.8 (2)
Na1—N1—N2—C4137.74 (19)N6—N5—C12—C11178.0 (2)
C2—N1—N2—C31173.5 (2)Na1—N5—C12—C1154.7 (3)
Na1—N1—N2—C3134.9 (3)N5—C12—C13—C140.1 (3)
N11—Na1—N3—C766.8 (2)C11—C12—C13—C14179.6 (3)
N1—Na1—N3—C7113.0 (2)N5—N6—C14—C132.8 (3)
N9—Na1—N3—C766 (15)C31—N6—C14—C13171.2 (2)
N7—Na1—N3—C712.0 (2)N5—N6—C14—C15176.9 (3)
N5—Na1—N3—C7167.8 (2)C31—N6—C14—C158.5 (4)
N11—Na1—N3—N4149.92 (18)C12—C13—C14—N61.7 (3)
N1—Na1—N3—N430.28 (17)C12—C13—C14—C15178.0 (3)
N9—Na1—N3—N477 (15)N8—N7—C17—C181.6 (3)
N7—Na1—N3—N4131.30 (18)Na1—N7—C17—C18124.4 (2)
N5—Na1—N3—N448.90 (18)N8—N7—C17—C16178.3 (2)
C7—N3—N4—C90.4 (3)Na1—N7—C17—C1655.7 (3)
Na1—N3—N4—C9151.37 (19)N7—C17—C18—C190.4 (3)
C7—N3—N4—C31175.5 (2)C16—C17—C18—C19179.5 (3)
Na1—N3—N4—C3123.7 (3)C17—C18—C19—N81.0 (3)
N11—Na1—N5—C122.8 (2)C17—C18—C19—C20177.4 (3)
N1—Na1—N5—C12177.7 (2)N7—N8—C19—C182.1 (3)
N9—Na1—N5—C1274.8 (2)C32—N8—C19—C18170.7 (2)
N3—Na1—N5—C12105.6 (2)N7—N8—C19—C20176.5 (2)
N7—Na1—N5—C1283 (13)C32—N8—C19—C207.9 (4)
N11—Na1—N5—N6121.46 (16)N10—N9—C22—C230.4 (3)
N1—Na1—N5—N658.03 (16)Na1—N9—C22—C23143.7 (2)
N9—Na1—N5—N6160.99 (16)N10—N9—C22—C21179.9 (2)
N3—Na1—N5—N618.63 (16)Na1—N9—C22—C2136.8 (4)
N7—Na1—N5—N641 (13)N9—C22—C23—C240.5 (3)
C12—N5—N6—C142.7 (3)C21—C22—C23—C24179.9 (3)
Na1—N5—N6—C14131.50 (19)N9—N10—C24—C230.1 (3)
C12—N5—N6—C31171.8 (2)C32—N10—C24—C23175.4 (3)
Na1—N5—N6—C3137.6 (3)N9—N10—C24—C25179.2 (3)
N11—Na1—N7—C17177.6 (2)C32—N10—C24—C255.5 (4)
N1—Na1—N7—C171.9 (2)C22—C23—C24—N100.3 (3)
N9—Na1—N7—C17104.9 (2)C22—C23—C24—C25179.3 (3)
N3—Na1—N7—C1774.7 (2)N12—N11—C27—C281.6 (3)
N5—Na1—N7—C1797 (13)Na1—N11—C27—C28131.9 (2)
N11—Na1—N7—N859.55 (16)N12—N11—C27—C26179.0 (3)
N1—Na1—N7—N8120.96 (16)Na1—N11—C27—C2647.5 (4)
N9—Na1—N7—N817.92 (16)N11—C27—C28—C291.0 (4)
N3—Na1—N7—N8162.46 (16)C26—C27—C28—C29179.7 (3)
N5—Na1—N7—N8140 (13)N11—N12—C29—C281.1 (3)
C17—N7—N8—C192.3 (3)C32—N12—C29—C28170.8 (3)
Na1—N7—N8—C19129.9 (2)N11—N12—C29—C30179.2 (3)
C17—N7—N8—C32171.6 (2)C32—N12—C29—C309.4 (5)
Na1—N7—N8—C3239.5 (3)C27—C28—C29—N120.1 (3)
N11—Na1—N9—C22110.9 (2)C27—C28—C29—C30179.8 (4)
N1—Na1—N9—C2269.3 (3)N3—N4—C31—N277.7 (3)
N3—Na1—N9—C22116 (15)C9—N4—C31—N296.6 (3)
N7—Na1—N9—C22170.3 (2)N3—N4—C31—N647.7 (3)
N5—Na1—N9—C229.9 (3)C9—N4—C31—N6138.0 (3)
N11—Na1—N9—N1028.94 (18)C4—N2—C31—N4148.6 (3)
N1—Na1—N9—N10150.86 (18)N1—N2—C31—N439.9 (3)
N3—Na1—N9—N10104 (15)C4—N2—C31—N686.4 (3)
N7—Na1—N9—N1049.86 (18)N1—N2—C31—N685.1 (3)
N5—Na1—N9—N10129.94 (18)C14—N6—C31—N477.0 (3)
C22—N9—N10—C240.2 (3)N5—N6—C31—N490.5 (3)
Na1—N9—N10—C24149.8 (2)C14—N6—C31—N2157.1 (2)
C22—N9—N10—C32175.4 (2)N5—N6—C31—N235.4 (3)
Na1—N9—N10—C3225.9 (3)C29—N12—C32—N10149.7 (3)
N1—Na1—N11—C2731 (14)N11—N12—C32—N1041.3 (3)
N9—Na1—N11—C27172.2 (2)C29—N12—C32—N885.6 (3)
N3—Na1—N11—C278.1 (2)N11—N12—C32—N883.3 (3)
N7—Na1—N11—C27105.5 (2)C24—N10—C32—N1295.4 (3)
N5—Na1—N11—C2773.9 (2)N9—N10—C32—N1279.6 (3)
N1—Na1—N11—N1299 (14)C24—N10—C32—N8139.4 (3)
N9—Na1—N11—N1258.06 (19)N9—N10—C32—N845.6 (3)
N3—Na1—N11—N12121.59 (19)N7—N8—C32—N1233.6 (3)
N7—Na1—N11—N1224.16 (18)C19—N8—C32—N12158.7 (2)
N5—Na1—N11—N12156.38 (18)N7—N8—C32—N1091.4 (3)
C27—N11—N12—C291.7 (3)C19—N8—C32—N1076.4 (3)
Na1—N11—N12—C29136.9 (2)O2A—S1A—C1A—F1A62.6 (7)
C27—N11—N12—C32172.2 (2)O1A—S1A—C1A—F1A177.8 (7)
Na1—N11—N12—C3233.6 (3)O3A—S1A—C1A—F1A58.1 (7)
N2—N1—C2—C30.6 (3)O2A—S1A—C1A—F2A176.2 (7)
Na1—N1—C2—C3132.5 (2)O1A—S1A—C1A—F2A56.6 (7)
N2—N1—C2—C1179.5 (3)O3A—S1A—C1A—F2A63.1 (7)
Na1—N1—C2—C147.4 (3)O2A—S1A—C1A—F3A56.3 (7)
N1—C2—C3—C40.1 (4)O1A—S1A—C1A—F3A63.3 (7)
C1—C2—C3—C4180.0 (3)O3A—S1A—C1A—F3A177.0 (8)
C2—C3—C4—N20.4 (3)O2A'—S1A'—C1A'—F1A'61 (2)
C2—C3—C4—C5179.5 (3)O1A'—S1A'—C1A'—F1A'177 (2)
N1—N2—C4—C30.8 (3)O3A'—S1A'—C1A'—F1A'57 (2)
C31—N2—C4—C3172.9 (3)O2A'—S1A'—C1A'—F3A'53 (2)
N1—N2—C4—C5180.0 (3)O1A'—S1A'—C1A'—F3A'69 (2)
C31—N2—C4—C57.9 (5)O3A'—S1A'—C1A'—F3A'171 (3)
N4—N3—C7—C80.6 (3)O2A'—S1A'—C1A'—F2A'170 (2)
Na1—N3—C7—C8145.7 (2)O1A'—S1A'—C1A'—F2A'49.1 (19)
N4—N3—C7—C6179.9 (2)O3A'—S1A'—C1A'—F2A'72 (2)

Experimental details

Crystal data
Chemical formula[Na(C16H22N6)2]CF3O3S
Mr768.85
Crystal system, space groupMonoclinic, Pc
Temperature (K)90
a, b, c (Å)9.0579 (1), 12.5733 (1), 16.4386 (2)
β (°) 90.5917 (4)
V3)1872.05 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
[SCALEPACK (Otwinowski & Minor, 1997) and XABS2 (Parkin et al. 1995)]
Tmin, Tmax0.965, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
47745, 8385, 7036
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.09
No. of reflections8385
No. of parameters516
No. of restraints59
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.27
Absolute structureNd
Absolute structure parameter0.50 (9)

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

GL gratefully acknowledges Southern Arkansas University for financial support.

References

First citationAstley, T., Gulbis, J. M., Hitchman, M. A. & Tiekink, E. R. T. (1993). J. Chem. Soc. Dalton Trans. pp. 509–515.  CSD CrossRef Web of Science Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationReger, D. L., Grattan, T. C., Brown, K. J., Little, C. A., Lamba, J. J. S., Rheingold, A. L. & Sommer, R. D. (2000). J. Organomet. Chem. 607, 120–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds