organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-4-[(3-chloro-4-methyl­phenyl)­imino­meth­yl]-2-meth­­oxy-3-nitro­phenol

aSchool of Life Sciences, Shandong University of Technology, Zibo 255000, People's Republic of China
*Correspondence e-mail: hailiang_zhu@163.com

(Received 20 March 2012; accepted 25 May 2012; online 13 June 2012)

In the title compound, C15H12BrClN2O4, the configuration of the C=N double bond can be described as trans. The two aromatic rings in this Schiff base are nearly coplanar with a dihedral angle between their mean planes of 15.4 (2)°. In the crystal, molecules are linked via O—H⋯N and C—H⋯O interactions.

Related literature

For Schiff bases in coordination chemistry, see: Shao et al. (2004[Shao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183-o2184.]) and for their biological activity, see: Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); Venugopal & Jayashree (2008[Venugopal, K. N. & Jayashree, B. S. (2008). Indian J. Pharm. Sci. 70, 88-91.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrClN2O4

  • Mr = 399.62

  • Orthorhombic, P b c a

  • a = 18.288 (2) Å

  • b = 8.713 (3) Å

  • c = 19.018 (2) Å

  • V = 3030.4 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.518, Tmax = 0.594

  • 17176 measured reflections

  • 2973 independent reflections

  • 1713 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.149

  • S = 1.06

  • 2973 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 2.15 2.803 (5) 136
C6—H6⋯O2ii 0.93 2.38 3.210 (6) 149
C13—H13⋯O2ii 0.93 2.54 3.295 (6) 138
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases play an important role in the development of coordination chemistry (Shao et al., 2004). Schiff bases have also been shown to exhibit a broad range of biological activities, including antibacterial (Venugopal et al., 2008) and anticancer (Desai et al., 2001) activities. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

The stabilization of the crystal structure is provided by intermolecular hydrogen bonds (Table 1). No π-π interactions are observed in the packing. The compound is weakly twisted, with the dihedral angle between the two benzene rings being 15.4 (2)°. The nitro group makes an angle of 80.7 (3)° withe the best plane through ring C1-C6. All bond lengths are within normal ranges (Allen et al., 1987).

Related literature top

For Schiff bases in coordination chemistry, see: Shao et al. (2004) and for their biological activity, see: Desai et al. (2001); Venugopal & Jayashree (2008). For standard bond lengths, see: Allen et al. (1987);

Experimental top

The title compound was synthetized by reaction between 2-bromo-4-hydroxy-3-methoxy-5-nitro-benzaldehyde (2 mmol) and 3-chloro-4 -methylaniline (2 mmol), dissolved in methanol and mixed together for 4 to 5 h. Large block crystals were precipitated, filtered, washed with ethanol and dried in air (yield 80%).

Refinement top

All H atoms were positioned geometrically (O—H = 0.82 Å,

C—H = 0.93–0.96 Å) and were refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl C).

Structure description top

Schiff bases play an important role in the development of coordination chemistry (Shao et al., 2004). Schiff bases have also been shown to exhibit a broad range of biological activities, including antibacterial (Venugopal et al., 2008) and anticancer (Desai et al., 2001) activities. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

The stabilization of the crystal structure is provided by intermolecular hydrogen bonds (Table 1). No π-π interactions are observed in the packing. The compound is weakly twisted, with the dihedral angle between the two benzene rings being 15.4 (2)°. The nitro group makes an angle of 80.7 (3)° withe the best plane through ring C1-C6. All bond lengths are within normal ranges (Allen et al., 1987).

For Schiff bases in coordination chemistry, see: Shao et al. (2004) and for their biological activity, see: Desai et al. (2001); Venugopal & Jayashree (2008). For standard bond lengths, see: Allen et al. (1987);

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
6-Bromo-4-[(3-chloro-4-methylphenyl)iminomethyl]-2-methoxy-3-nitrophenol top
Crystal data top
C15H12BrClN2O4F(000) = 1600
Mr = 399.62Dx = 1.752 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2396 reflections
a = 18.288 (2) Åθ = 2.4–25.2°
b = 8.713 (3) ŵ = 2.91 mm1
c = 19.018 (2) ÅT = 296 K
V = 3030.4 (11) Å3Block, orange
Z = 80.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2973 independent reflections
Radiation source: fine-focus sealed tube1713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
phi and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1722
Tmin = 0.518, Tmax = 0.594k = 1010
17176 measured reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
2973 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C15H12BrClN2O4V = 3030.4 (11) Å3
Mr = 399.62Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.288 (2) ŵ = 2.91 mm1
b = 8.713 (3) ÅT = 296 K
c = 19.018 (2) Å0.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1713 reflections with I > 2σ(I)
Tmin = 0.518, Tmax = 0.594Rint = 0.088
17176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
2973 reflectionsΔρmin = 0.49 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.55428 (7)0.89623 (17)0.11025 (7)0.0552 (4)
Br11.09270 (3)0.59794 (7)0.22933 (3)0.0560 (3)
N10.7871 (2)0.5746 (5)0.3498 (2)0.0453 (11)
N20.8252 (2)0.8332 (4)0.17064 (18)0.0337 (9)
O10.8983 (2)0.4633 (5)0.4246 (2)0.0673 (12)
O21.03988 (18)0.4585 (4)0.36915 (17)0.0490 (9)
H21.07850.46950.34780.074*
O30.7666 (3)0.6579 (6)0.3947 (3)0.1000 (18)
O40.7493 (3)0.4810 (7)0.3247 (3)0.0949 (16)
C10.9994 (2)0.6004 (5)0.2709 (3)0.0364 (11)
C20.9893 (2)0.5226 (5)0.3358 (2)0.0346 (11)
C30.9157 (3)0.5221 (6)0.3611 (2)0.0370 (12)
C40.8613 (2)0.5872 (5)0.3237 (2)0.0336 (11)
C50.8729 (3)0.6696 (5)0.2597 (2)0.0311 (10)
C60.9444 (2)0.6715 (5)0.2356 (2)0.0348 (11)
H60.95500.72300.19400.042*
C70.8157 (2)0.7392 (5)0.2234 (2)0.0340 (11)
H70.76810.71770.23750.041*
C80.7679 (2)0.9012 (5)0.1301 (2)0.0321 (11)
C90.6953 (2)0.8724 (5)0.1399 (2)0.0338 (11)
H90.67980.80780.17580.041*
C100.6461 (3)0.9398 (5)0.0962 (3)0.0376 (12)
C110.6652 (3)1.0380 (6)0.0428 (3)0.0446 (13)
C120.7383 (3)1.0638 (6)0.0349 (3)0.0505 (14)
H120.75381.12920.00070.061*
C130.7898 (3)0.9972 (6)0.0774 (3)0.0434 (13)
H130.83921.01720.07040.052*
C140.6107 (3)1.1121 (7)0.0045 (3)0.071 (2)
H14A0.58021.17960.02250.106*
H14B0.58111.03460.02630.106*
H14C0.63581.17000.04000.106*
C150.9170 (4)0.3327 (8)0.4458 (3)0.083 (2)
H15A0.93090.27040.40640.124*
H15B0.87670.28540.46980.124*
H15C0.95760.34230.47740.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0268 (7)0.0794 (10)0.0594 (9)0.0022 (7)0.0050 (6)0.0039 (7)
Br10.0303 (3)0.0724 (5)0.0653 (4)0.0062 (3)0.0014 (3)0.0108 (3)
N10.036 (2)0.057 (3)0.044 (3)0.003 (2)0.000 (2)0.007 (2)
N20.032 (2)0.035 (2)0.034 (2)0.0007 (18)0.0099 (17)0.0005 (19)
O10.053 (3)0.091 (3)0.059 (3)0.021 (2)0.004 (2)0.024 (2)
O20.0296 (18)0.070 (2)0.047 (2)0.0113 (18)0.0033 (16)0.0053 (18)
O30.072 (3)0.112 (4)0.116 (4)0.001 (3)0.046 (3)0.039 (3)
O40.050 (3)0.112 (4)0.122 (4)0.034 (3)0.011 (3)0.027 (4)
C10.022 (2)0.042 (3)0.046 (3)0.000 (2)0.002 (2)0.005 (2)
C20.031 (3)0.036 (3)0.036 (3)0.009 (2)0.007 (2)0.005 (2)
C30.038 (3)0.044 (3)0.029 (3)0.001 (2)0.003 (2)0.001 (2)
C40.024 (2)0.035 (3)0.042 (3)0.004 (2)0.003 (2)0.009 (2)
C50.027 (2)0.029 (2)0.037 (3)0.001 (2)0.004 (2)0.001 (2)
C60.030 (3)0.039 (3)0.035 (3)0.003 (2)0.002 (2)0.000 (2)
C70.025 (2)0.036 (3)0.041 (3)0.004 (2)0.004 (2)0.007 (2)
C80.026 (2)0.032 (3)0.037 (3)0.004 (2)0.004 (2)0.004 (2)
C90.034 (3)0.036 (3)0.031 (2)0.001 (2)0.001 (2)0.001 (2)
C100.025 (2)0.044 (3)0.044 (3)0.003 (2)0.005 (2)0.009 (2)
C110.037 (3)0.050 (3)0.047 (3)0.007 (3)0.009 (2)0.001 (3)
C120.042 (3)0.053 (4)0.056 (3)0.005 (3)0.008 (3)0.020 (3)
C130.036 (3)0.049 (3)0.045 (3)0.005 (3)0.007 (2)0.005 (3)
C140.048 (4)0.083 (5)0.080 (5)0.006 (3)0.016 (3)0.030 (4)
C150.111 (6)0.082 (5)0.055 (4)0.013 (4)0.036 (4)0.032 (4)
Geometric parameters (Å, º) top
Cl1—C101.743 (5)C6—H60.9300
Br1—C11.880 (5)C7—H70.9300
N1—O41.171 (5)C8—C91.365 (6)
N1—O31.182 (6)C8—C131.365 (6)
N1—C41.448 (6)C9—C101.358 (6)
N2—C71.307 (5)C9—H90.9300
N2—C81.429 (5)C10—C111.374 (7)
O1—C151.255 (7)C11—C121.362 (7)
O1—C31.350 (6)C11—C141.489 (7)
O2—C21.253 (5)C12—C131.370 (7)
O2—H20.8200C12—H120.9300
C1—C61.360 (6)C13—H130.9300
C1—C21.420 (7)C14—H14A0.9600
C2—C31.429 (6)C14—H14B0.9600
C3—C41.348 (6)C14—H14C0.9600
C4—C51.429 (6)C15—H15A0.9600
C5—C61.386 (6)C15—H15B0.9600
C5—C71.392 (6)C15—H15C0.9600
O4—N1—O3122.3 (5)C13—C8—N2115.9 (4)
O4—N1—C4117.9 (5)C10—C9—C8118.8 (4)
O3—N1—C4119.9 (5)C10—C9—H9120.6
C7—N2—C8125.3 (4)C8—C9—H9120.6
C15—O1—C3124.6 (5)C9—C10—C11123.6 (5)
C2—O2—H2109.5C9—C10—Cl1116.8 (4)
C6—C1—C2123.4 (4)C11—C10—Cl1119.6 (4)
C6—C1—Br1118.0 (4)C12—C11—C10115.6 (5)
C2—C1—Br1118.6 (3)C12—C11—C14121.2 (5)
O2—C2—C1123.8 (4)C10—C11—C14123.1 (5)
O2—C2—C3121.6 (4)C11—C12—C13122.7 (5)
C1—C2—C3114.6 (4)C11—C12—H12118.7
O1—C3—C4117.1 (4)C13—C12—H12118.7
O1—C3—C2121.7 (4)C8—C13—C12119.4 (5)
C4—C3—C2121.1 (4)C8—C13—H13120.3
C3—C4—C5123.4 (4)C12—C13—H13120.3
C3—C4—N1118.7 (4)C11—C14—H14A109.5
C5—C4—N1117.9 (4)C11—C14—H14B109.5
C6—C5—C7122.6 (4)H14A—C14—H14B109.5
C6—C5—C4115.4 (4)C11—C14—H14C109.5
C7—C5—C4122.0 (4)H14A—C14—H14C109.5
C1—C6—C5122.0 (4)H14B—C14—H14C109.5
C1—C6—H6119.0O1—C15—H15A109.5
C5—C6—H6119.0O1—C15—H15B109.5
N2—C7—C5123.7 (4)H15A—C15—H15B109.5
N2—C7—H7118.2O1—C15—H15C109.5
C5—C7—H7118.2H15A—C15—H15C109.5
C9—C8—C13119.8 (4)H15B—C15—H15C109.5
C9—C8—N2124.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.822.152.803 (5)136
C6—H6···O2ii0.932.383.210 (6)149
C13—H13···O2ii0.932.543.295 (6)138
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12BrClN2O4
Mr399.62
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)18.288 (2), 8.713 (3), 19.018 (2)
V3)3030.4 (11)
Z8
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.518, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
17176, 2973, 1713
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.149, 1.06
No. of reflections2973
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.822.152.803 (5)136.1
C6—H6···O2ii0.932.383.210 (6)148.6
C13—H13···O2ii0.932.543.295 (6)137.9
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationShao, S.-C., You, Z.-L., Fan, S.-H., Tang, L.-L., Xiong, Z.-D. & Zhu, H.-L. (2004). Acta Cryst. E60, o2183–o2184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVenugopal, K. N. & Jayashree, B. S. (2008). Indian J. Pharm. Sci. 70, 88–91.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds