metal-organic compounds
Discrete water clusters in tetra-μ-cyanido-tetracyanidobis(1,4,7-triisopropyl-1,4,7-triazacyclononane)dicopper(II)dinickel(II) tetrahydrate
aDepartment of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, Dongying 257097, People's Republic of China, and bDepartment of Basic Science, Liao Ning Institute of Science and Technology, Benxi 117004, People's Republic of China
*Correspondence e-mail: chx1979124@126.com
The title tetracyanidonickelate–copper complex, [Cu2Ni2(CN)8(C15H33N3)2]·4H2O, was synthesized by self-assembly using potassium tetracyanidonickelate(II) and dichlorido(1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II). The contains half of a complex molecule and two water molecules. The entire complex has -1 symmetry and contains Ni(II) in a slightly distorted square-planar and Cu(II) in a square-pyramidal coordination environment. The crystal packing shows a discrete tetramer water cluster. Within the cluster, the four water molecules are fully coplanar and each water monomer acts both as single O—H⋯O and O—H⋯N hydrogen-bond donor and acceptor.
Related literature
For properties and applications of cyanide-bridged coordination complexes, see: Zhao et al. (2009); Dunbar & Heintz (1997); Orendac et al. (2002). For the use of the tetracyanidonickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian et al. (2005); Maji et al. (2001); Dunbar & Heintz (1997); Černák et al. (1988, 1990); Černák & Abboud (2000). For the influence on water aggregations of the overall structure of their surroundings, see: Long et al. (2004); Xantheas (1995). For water clusters, see: Ugalde et al. (2000); Gregory & Clary (1996). For the synthesis of the ligand, see: Hay & Norman (1979). Chen et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: XSCANS (Bruker, 1999); cell XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812024282/vm2171sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024282/vm2171Isup2.hkl
A water solution (25 ml) of potassium tetracyanonickel (0.111 g, 0.4 mmol) was layered with an acetonitrile solution (25 ml) of dichloro-(1,4,7-triisopropyl-1,4,7-triazcyclononane)-copper(II) (0.151 g, 0.4 mmol). After about 3 weeks, prism-shaped blue crystals of 1 formed from the solution. The crystals were collected, washed with water and methanol, and dried in the air. Yield: 45% (based on tetracyanonickelate salts). Anal. Calcd for C19H37N7CuNiO2: C, 44.07; H, 7.20; N, 18.93. Found: C, 44.25; H, 7.25; N, 19.02%. IR (KBr, cm-1): 3455 (s), 2974 (s), 2164 (CN, coordinated) and 2135 (CN, uncoordinated), 1652 (s).
A total of 6 similarity restraints were used for the H atoms of the water molecules which were initially refined with fixed O—H distances of 0.85 Å and 1.2Ueq(O). The other H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq (C).
In recent years, much attention has been paid to assemble cyanide-bridged coordination complexes because of their promising properties and applications including electronics, magnetism and catalysis (Zhao et al., 2009; Dunbar & Heintz, 1997; Orendac et al., 2002), in which tetracyanonickelate complexes have also become the focus. On the one hand, diamagnetic [Ni(CN)4]2- is an excellent model for magnetic studies which bridge paramagnetic ions, but on the other hand the tetracyanonickelate anion, as a bridging ligand, can be used to construct one-dimensional, two-dimensional and three-dimensional structures (Bozoglian et al., 2005; Maji et al., 2001; Dunbar & Heintz, 1997; Černák et al., 2000; 1988; 1990). Low-dimensional cyanide-bridged complexes based on [Ni(CN)4]2- form a new family of molecular magnetic materials. However, the use of macrocyclic ligands as terminal group to control the low-dimensional structure is still relatively rare. On the other hand, water clusters can play an important role in the stabilization of supramolecular systems both in solution and in the solid state, and there is clearly a need for a better understanding of how such water aggregations are influenced by the overall structure of their surroundings (Long et al., 2004; Xantheas, 1995). In the past several decades, considerable attention has been focused on theoretical and experimental studies of small water clusters to understand the structures and characteristics of liquid water and ice (Ugalde et al., 2000; Gregory et al., 1996).
In this study, we report a complex 1 in which [Ni(CN)4]2- acts as bridging ligand to construct a low-dimensional complex. Complex 1 can be synthesized by the reaction of [Ni(Pr3TACN)]Cl2 with K2[Ni(CN)4], which is a cyanide bridged [2 + 2] type of molecular square. The ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (Pr3TACN) was synthesized according to the literature (Hay et al., 1979; Chen et al., 2009). The structure of the complex 1 is shown in Figure 1. The complex contains two [Ni(CN)4]2- bridges and two cis-[Cu(Pr3TACN)]2+ moieties in cis-positions to form a [2 + 2] type of discrete molecular square. The Cu1—N(macrocycle) distances (2.0686 (17)–2.2153 (18) Å) are close to the Cu1-N(cyano) distances (1.9781 (18) and 1.9929 (17) Å) and they are longer than the Ni1—C(cyano) distances (1.861 (2)–1.871 (2) Å). Furthermore the C—N(coordinated) distances of the cyano groups are close to the C—N(uncoordinated) distances. Interestingly, a cyclic water tetramer is located in between the complexes 1. Within the cluster, the four water molecules are fully coplanar and each water monomer acts as both single hydrogen bond donor and acceptor. The hydrogen bond distances and angles within the water tetramer are as follows: O1—O2i = 2.775 (3) Å, O1—O2ii = 2.745 (3) Å, O1i—O2—O1iii = 100.05 (9)°, O2i—O1—O2ii = 79.95 (8)° (symmetry codes: (i) x, y, -1 + z; (2) 1 - x, 1 -y, 1 -z; (iii) x,y, z + 1). The average hydrogen bond distance within the water tetramer is 2.76 (1) Å, which is slightily shorter than 2.78 Å estimated in the udud water tetramer of (D2O)4 (Ugalde et al., 2000). The most remarkable feature in 1 is that the cyclic water tetramer connects the [2 + 2] molecular square through hydrogen bonds to form a two-dimensional structure (Fig. 2, Table 1).
For properties and applications of cyanide-bridged coordination complexes, see: Zhao et al. (2009); Dunbar & Heintz (1997); Orendac et al. (2002). For the use of the tetracyanonickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian et al. (2005); Maji et al. (2001); Dunbar & Heintz (1997); Černák et al. (1988, 1990); Černák & Abboud (2000). For the influence on water aggregations of the overall structure of their surroundings, see: Long et al. (2004); Xantheas (1995). For water clusters, see: Ugalde et al. (2000); Gregory & Clary (1996). For the synthesis of the ligand, see: Hay & Norman (1979). Chen et al. (2009).
Data collection: XSCANS (Bruker, 1999); cell
XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu2Ni2(CN)8(C15H33N3)2]·4H2O | F(000) = 1092 |
Mr = 1035.59 | Dx = 1.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3989 reflections |
a = 8.5896 (17) Å | θ = 2.0–25.5° |
b = 18.092 (4) Å | µ = 1.69 mm−1 |
c = 15.615 (3) Å | T = 293 K |
β = 95.61 (3)° | Prism, blue |
V = 2415.1 (8) Å3 | 0.14 × 0.12 × 0.06 mm |
Z = 2 |
Bruker P4 diffractometer | 4475 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.039 |
Graphite monochromator | θmax = 27.9°, θmin = 1.7° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (XSCANS; Bruker, 1999) | k = −23→23 |
Tmin = 0.798, Tmax = 0.906 | l = −20→12 |
18582 measured reflections | 3 standard reflections every 120 min |
5622 independent reflections | intensity decay: 1.0% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0357P)2] where P = (Fo2 + 2Fc2)/3 |
5622 reflections | (Δ/σ)max = 0.002 |
293 parameters | Δρmax = 0.52 e Å−3 |
6 restraints | Δρmin = −0.39 e Å−3 |
[Cu2Ni2(CN)8(C15H33N3)2]·4H2O | V = 2415.1 (8) Å3 |
Mr = 1035.59 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.5896 (17) Å | µ = 1.69 mm−1 |
b = 18.092 (4) Å | T = 293 K |
c = 15.615 (3) Å | 0.14 × 0.12 × 0.06 mm |
β = 95.61 (3)° |
Bruker P4 diffractometer | 4475 reflections with I > 2σ(I) |
Absorption correction: multi-scan (XSCANS; Bruker, 1999) | Rint = 0.039 |
Tmin = 0.798, Tmax = 0.906 | 3 standard reflections every 120 min |
18582 measured reflections | intensity decay: 1.0% |
5622 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 6 restraints |
wR(F2) = 0.074 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.52 e Å−3 |
5622 reflections | Δρmin = −0.39 e Å−3 |
293 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.14378 (3) | 0.639359 (12) | 0.659167 (15) | 0.01450 (7) | |
Ni1 | 0.20048 (3) | 0.370161 (13) | 0.612942 (16) | 0.01552 (8) | |
N1 | 0.12720 (19) | 0.52998 (9) | 0.64625 (11) | 0.0183 (4) | |
N2 | 0.4785 (2) | 0.39240 (11) | 0.74309 (12) | 0.0336 (5) | |
N3 | 0.2998 (2) | 0.21257 (10) | 0.58992 (14) | 0.0358 (5) | |
N4 | −0.0304 (2) | 0.35220 (9) | 0.45692 (11) | 0.0188 (4) | |
N5 | 0.18877 (19) | 0.63639 (9) | 0.79170 (10) | 0.0164 (4) | |
N6 | 0.40058 (19) | 0.63663 (9) | 0.65419 (11) | 0.0200 (4) | |
N7 | 0.16954 (19) | 0.75278 (9) | 0.67369 (10) | 0.0173 (4) | |
C1 | 0.1467 (2) | 0.46860 (11) | 0.63196 (13) | 0.0173 (4) | |
C2 | 0.3701 (3) | 0.38215 (11) | 0.69594 (13) | 0.0220 (5) | |
C3 | 0.2615 (2) | 0.27259 (12) | 0.59875 (14) | 0.0225 (5) | |
C4 | 0.0494 (2) | 0.35903 (10) | 0.51975 (13) | 0.0174 (4) | |
C5 | 0.3626 (2) | 0.62659 (12) | 0.81156 (14) | 0.0226 (5) | |
H5A | 0.3815 | 0.5925 | 0.8594 | 0.027* | |
H5B | 0.4083 | 0.6738 | 0.8296 | 0.027* | |
C6 | 0.4447 (2) | 0.59780 (12) | 0.73657 (13) | 0.0239 (5) | |
H6A | 0.5568 | 0.6024 | 0.7507 | 0.029* | |
H6B | 0.4209 | 0.5457 | 0.7289 | 0.029* | |
C7 | 0.4476 (2) | 0.71567 (12) | 0.65622 (15) | 0.0252 (5) | |
H7A | 0.5301 | 0.7228 | 0.6188 | 0.030* | |
H7B | 0.4891 | 0.7287 | 0.7143 | 0.030* | |
C8 | 0.3109 (3) | 0.76665 (11) | 0.62750 (14) | 0.0234 (5) | |
H8A | 0.3438 | 0.8175 | 0.6370 | 0.028* | |
H8B | 0.2832 | 0.7602 | 0.5662 | 0.028* | |
C9 | 0.2005 (3) | 0.77059 (11) | 0.76740 (13) | 0.0206 (5) | |
H9A | 0.1495 | 0.8168 | 0.7793 | 0.025* | |
H9B | 0.3121 | 0.7769 | 0.7820 | 0.025* | |
C10 | 0.1412 (3) | 0.71016 (11) | 0.82235 (13) | 0.0205 (5) | |
H10A | 0.1833 | 0.7171 | 0.8817 | 0.025* | |
H10B | 0.0281 | 0.7127 | 0.8198 | 0.025* | |
C11 | 0.4573 (2) | 0.59355 (13) | 0.58066 (14) | 0.0256 (5) | |
H11 | 0.4070 | 0.5449 | 0.5806 | 0.031* | |
C12 | 0.4061 (3) | 0.62923 (13) | 0.49380 (15) | 0.0331 (6) | |
H12A | 0.2950 | 0.6372 | 0.4888 | 0.050* | |
H12B | 0.4322 | 0.5972 | 0.4484 | 0.050* | |
H12C | 0.4587 | 0.6757 | 0.4897 | 0.050* | |
C13 | 0.6336 (3) | 0.58003 (14) | 0.59072 (17) | 0.0376 (6) | |
H13A | 0.6875 | 0.6265 | 0.5960 | 0.056* | |
H13B | 0.6632 | 0.5541 | 0.5412 | 0.056* | |
H13C | 0.6610 | 0.5509 | 0.6414 | 0.056* | |
C14 | 0.0316 (2) | 0.79650 (11) | 0.63208 (14) | 0.0219 (5) | |
H14 | 0.0216 | 0.7844 | 0.5706 | 0.026* | |
C15 | 0.0510 (3) | 0.88029 (11) | 0.63950 (15) | 0.0279 (5) | |
H15A | 0.0495 | 0.8949 | 0.6985 | 0.042* | |
H15B | −0.0331 | 0.9042 | 0.6051 | 0.042* | |
H15C | 0.1489 | 0.8945 | 0.6195 | 0.042* | |
C16 | −0.1201 (3) | 0.77345 (12) | 0.66699 (14) | 0.0273 (5) | |
H16A | −0.1295 | 0.7206 | 0.6650 | 0.041* | |
H16B | −0.2070 | 0.7953 | 0.6326 | 0.041* | |
H16C | −0.1199 | 0.7900 | 0.7254 | 0.041* | |
C17 | 0.1007 (3) | 0.57566 (11) | 0.83338 (13) | 0.0215 (5) | |
H17 | 0.1460 | 0.5283 | 0.8183 | 0.026* | |
C18 | −0.0718 (3) | 0.57506 (12) | 0.79870 (14) | 0.0253 (5) | |
H18A | −0.1217 | 0.6189 | 0.8173 | 0.038* | |
H18B | −0.1217 | 0.5323 | 0.8201 | 0.038* | |
H18C | −0.0804 | 0.5736 | 0.7370 | 0.038* | |
C19 | 0.1143 (3) | 0.58101 (12) | 0.93095 (13) | 0.0300 (6) | |
H19A | 0.2220 | 0.5877 | 0.9523 | 0.045* | |
H19B | 0.0754 | 0.5364 | 0.9544 | 0.045* | |
H19C | 0.0540 | 0.6223 | 0.9478 | 0.045* | |
O1 | 0.3097 (2) | 0.42588 (10) | 0.00040 (11) | 0.0420 (5) | |
O2 | 0.5596 (2) | 0.45720 (11) | 0.90642 (13) | 0.0454 (5) | |
H1A | 0.308 (3) | 0.3849 (7) | 0.0270 (14) | 0.058 (10)* | |
H1B | 0.340 (3) | 0.4592 (9) | 0.0362 (12) | 0.048 (9)* | |
H2A | 0.542 (3) | 0.4407 (18) | 0.8550 (9) | 0.095 (14)* | |
H2B | 0.481 (3) | 0.4447 (17) | 0.9337 (16) | 0.075 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01485 (13) | 0.01184 (12) | 0.01636 (14) | −0.00097 (10) | −0.00065 (9) | −0.00208 (10) |
Ni1 | 0.01783 (14) | 0.01198 (13) | 0.01623 (15) | 0.00133 (10) | −0.00106 (10) | −0.00066 (10) |
N1 | 0.0188 (9) | 0.0156 (9) | 0.0200 (9) | −0.0002 (7) | −0.0007 (7) | −0.0017 (7) |
N2 | 0.0328 (12) | 0.0317 (11) | 0.0337 (12) | 0.0063 (9) | −0.0098 (9) | −0.0029 (9) |
N3 | 0.0373 (12) | 0.0190 (10) | 0.0513 (14) | 0.0058 (9) | 0.0058 (10) | −0.0024 (9) |
N4 | 0.0203 (9) | 0.0149 (9) | 0.0209 (10) | −0.0008 (7) | 0.0010 (7) | −0.0016 (7) |
N5 | 0.0179 (9) | 0.0143 (8) | 0.0168 (9) | 0.0009 (7) | −0.0001 (7) | −0.0013 (7) |
N6 | 0.0158 (9) | 0.0192 (9) | 0.0250 (10) | −0.0034 (7) | 0.0026 (7) | −0.0059 (7) |
N7 | 0.0194 (9) | 0.0133 (8) | 0.0194 (9) | −0.0004 (7) | 0.0025 (7) | 0.0000 (7) |
C1 | 0.0146 (10) | 0.0211 (11) | 0.0155 (10) | −0.0035 (8) | −0.0020 (8) | −0.0003 (8) |
C2 | 0.0271 (12) | 0.0169 (11) | 0.0218 (12) | 0.0051 (9) | 0.0018 (9) | 0.0006 (9) |
C3 | 0.0234 (12) | 0.0212 (11) | 0.0227 (12) | 0.0000 (9) | 0.0013 (9) | 0.0005 (9) |
C4 | 0.0196 (11) | 0.0107 (10) | 0.0222 (12) | 0.0000 (8) | 0.0041 (8) | −0.0009 (8) |
C5 | 0.0171 (11) | 0.0240 (12) | 0.0250 (12) | 0.0010 (9) | −0.0067 (9) | −0.0009 (9) |
C6 | 0.0149 (11) | 0.0241 (12) | 0.0315 (13) | 0.0002 (9) | −0.0030 (9) | −0.0051 (10) |
C7 | 0.0210 (12) | 0.0236 (12) | 0.0317 (13) | −0.0074 (9) | 0.0057 (10) | −0.0072 (10) |
C8 | 0.0274 (12) | 0.0198 (11) | 0.0241 (12) | −0.0080 (9) | 0.0083 (9) | −0.0018 (9) |
C9 | 0.0242 (11) | 0.0161 (10) | 0.0209 (11) | −0.0013 (9) | −0.0004 (9) | −0.0056 (8) |
C10 | 0.0260 (12) | 0.0163 (10) | 0.0188 (11) | −0.0006 (9) | 0.0007 (9) | −0.0027 (8) |
C11 | 0.0203 (12) | 0.0266 (12) | 0.0309 (13) | −0.0041 (9) | 0.0071 (9) | −0.0100 (10) |
C12 | 0.0297 (14) | 0.0410 (15) | 0.0305 (14) | −0.0048 (11) | 0.0132 (11) | −0.0093 (11) |
C13 | 0.0227 (13) | 0.0421 (16) | 0.0498 (17) | −0.0012 (11) | 0.0121 (11) | −0.0172 (13) |
C14 | 0.0269 (12) | 0.0171 (10) | 0.0213 (11) | 0.0005 (9) | 0.0003 (9) | −0.0002 (9) |
C15 | 0.0400 (14) | 0.0167 (11) | 0.0274 (13) | 0.0031 (10) | 0.0044 (10) | 0.0016 (9) |
C16 | 0.0257 (12) | 0.0247 (12) | 0.0309 (13) | 0.0036 (10) | 0.0010 (10) | 0.0021 (10) |
C17 | 0.0279 (12) | 0.0158 (11) | 0.0206 (11) | −0.0004 (9) | 0.0023 (9) | 0.0028 (8) |
C18 | 0.0282 (13) | 0.0198 (11) | 0.0290 (13) | −0.0021 (9) | 0.0081 (10) | 0.0020 (9) |
C19 | 0.0439 (15) | 0.0271 (13) | 0.0193 (12) | 0.0006 (11) | 0.0042 (10) | 0.0052 (9) |
O1 | 0.0551 (13) | 0.0261 (10) | 0.0424 (11) | −0.0098 (9) | −0.0069 (9) | 0.0031 (9) |
O2 | 0.0513 (14) | 0.0450 (12) | 0.0393 (12) | −0.0076 (10) | 0.0015 (10) | −0.0159 (10) |
Cu1—N4i | 1.9781 (18) | C9—H9B | 0.9700 |
Cu1—N1 | 1.9929 (17) | C10—H10A | 0.9700 |
Cu1—N5 | 2.0686 (17) | C10—H10B | 0.9700 |
Cu1—N7 | 2.0740 (17) | C11—C13 | 1.527 (3) |
Cu1—N6 | 2.2153 (18) | C11—C12 | 1.527 (3) |
Ni1—C3 | 1.861 (2) | C11—H11 | 0.9800 |
Ni1—C4 | 1.864 (2) | C12—H12A | 0.9600 |
Ni1—C2 | 1.866 (2) | C12—H12B | 0.9600 |
Ni1—C1 | 1.871 (2) | C12—H12C | 0.9600 |
N1—C1 | 1.148 (3) | C13—H13A | 0.9600 |
N2—C2 | 1.144 (3) | C13—H13B | 0.9600 |
N3—C3 | 1.147 (3) | C13—H13C | 0.9600 |
N4—C4 | 1.147 (3) | C14—C16 | 1.520 (3) |
N4—Cu1i | 1.9781 (18) | C14—C15 | 1.528 (3) |
N5—C10 | 1.488 (2) | C14—H14 | 0.9800 |
N5—C5 | 1.506 (2) | C15—H15A | 0.9600 |
N5—C17 | 1.517 (3) | C15—H15B | 0.9600 |
N6—C6 | 1.482 (3) | C15—H15C | 0.9600 |
N6—C7 | 1.485 (3) | C16—H16A | 0.9600 |
N6—C11 | 1.507 (3) | C16—H16B | 0.9600 |
N7—C8 | 1.493 (3) | C16—H16C | 0.9600 |
N7—C9 | 1.496 (2) | C17—C19 | 1.520 (3) |
N7—C14 | 1.517 (3) | C17—C18 | 1.527 (3) |
C5—C6 | 1.517 (3) | C17—H17 | 0.9800 |
C5—H5A | 0.9700 | C18—H18A | 0.9600 |
C5—H5B | 0.9700 | C18—H18B | 0.9600 |
C6—H6A | 0.9700 | C18—H18C | 0.9600 |
C6—H6B | 0.9700 | C19—H19A | 0.9600 |
C7—C8 | 1.526 (3) | C19—H19B | 0.9600 |
C7—H7A | 0.9700 | C19—H19C | 0.9600 |
C7—H7B | 0.9700 | O1—H1A | 0.851 (9) |
C8—H8A | 0.9700 | O1—H1B | 0.846 (9) |
C8—H8B | 0.9700 | O2—H2A | 0.856 (10) |
C9—C10 | 1.509 (3) | O2—H2B | 0.861 (10) |
C9—H9A | 0.9700 | ||
N4i—Cu1—N1 | 87.71 (7) | C10—C9—H9A | 109.4 |
N4i—Cu1—N5 | 161.08 (7) | N7—C9—H9B | 109.4 |
N1—Cu1—N5 | 94.59 (6) | C10—C9—H9B | 109.4 |
N4i—Cu1—N7 | 93.53 (6) | H9A—C9—H9B | 108.0 |
N1—Cu1—N7 | 177.96 (7) | N5—C10—C9 | 110.39 (17) |
N5—Cu1—N7 | 84.76 (6) | N5—C10—H10A | 109.6 |
N4i—Cu1—N6 | 111.86 (8) | C9—C10—H10A | 109.6 |
N1—Cu1—N6 | 92.05 (7) | N5—C10—H10B | 109.6 |
N5—Cu1—N6 | 86.86 (7) | C9—C10—H10B | 109.6 |
N7—Cu1—N6 | 85.98 (6) | H10A—C10—H10B | 108.1 |
C3—Ni1—C4 | 89.27 (9) | N6—C11—C13 | 113.30 (18) |
C3—Ni1—C2 | 89.03 (9) | N6—C11—C12 | 111.79 (18) |
C4—Ni1—C2 | 172.72 (9) | C13—C11—C12 | 110.86 (19) |
C3—Ni1—C1 | 177.13 (9) | N6—C11—H11 | 106.8 |
C4—Ni1—C1 | 93.60 (8) | C13—C11—H11 | 106.8 |
C2—Ni1—C1 | 88.13 (9) | C12—C11—H11 | 106.8 |
C1—N1—Cu1 | 165.89 (17) | C11—C12—H12A | 109.5 |
C4—N4—Cu1i | 167.12 (16) | C11—C12—H12B | 109.5 |
C10—N5—C5 | 109.71 (15) | H12A—C12—H12B | 109.5 |
C10—N5—C17 | 110.33 (16) | C11—C12—H12C | 109.5 |
C5—N5—C17 | 110.65 (15) | H12A—C12—H12C | 109.5 |
C10—N5—Cu1 | 105.55 (11) | H12B—C12—H12C | 109.5 |
C5—N5—Cu1 | 107.08 (13) | C11—C13—H13A | 109.5 |
C17—N5—Cu1 | 113.32 (12) | C11—C13—H13B | 109.5 |
C6—N6—C7 | 113.06 (16) | H13A—C13—H13B | 109.5 |
C6—N6—C11 | 109.99 (16) | C11—C13—H13C | 109.5 |
C7—N6—C11 | 113.98 (17) | H13A—C13—H13C | 109.5 |
C6—N6—Cu1 | 98.69 (12) | H13B—C13—H13C | 109.5 |
C7—N6—Cu1 | 104.33 (12) | N7—C14—C16 | 111.39 (17) |
C11—N6—Cu1 | 115.81 (12) | N7—C14—C15 | 114.21 (17) |
C8—N7—C9 | 111.17 (16) | C16—C14—C15 | 109.64 (18) |
C8—N7—C14 | 110.08 (16) | N7—C14—H14 | 107.1 |
C9—N7—C14 | 111.30 (16) | C16—C14—H14 | 107.1 |
C8—N7—Cu1 | 101.33 (12) | C15—C14—H14 | 107.1 |
C9—N7—Cu1 | 109.08 (12) | C14—C15—H15A | 109.5 |
C14—N7—Cu1 | 113.49 (12) | C14—C15—H15B | 109.5 |
N1—C1—Ni1 | 173.96 (18) | H15A—C15—H15B | 109.5 |
N2—C2—Ni1 | 175.5 (2) | C14—C15—H15C | 109.5 |
N3—C3—Ni1 | 179.7 (2) | H15A—C15—H15C | 109.5 |
N4—C4—Ni1 | 172.6 (2) | H15B—C15—H15C | 109.5 |
N5—C5—C6 | 114.07 (17) | C14—C16—H16A | 109.5 |
N5—C5—H5A | 108.7 | C14—C16—H16B | 109.5 |
C6—C5—H5A | 108.7 | H16A—C16—H16B | 109.5 |
N5—C5—H5B | 108.7 | C14—C16—H16C | 109.5 |
C6—C5—H5B | 108.7 | H16A—C16—H16C | 109.5 |
H5A—C5—H5B | 107.6 | H16B—C16—H16C | 109.5 |
N6—C6—C5 | 114.12 (17) | N5—C17—C19 | 113.04 (17) |
N6—C6—H6A | 108.7 | N5—C17—C18 | 111.13 (16) |
C5—C6—H6A | 108.7 | C19—C17—C18 | 109.45 (18) |
N6—C6—H6B | 108.7 | N5—C17—H17 | 107.7 |
C5—C6—H6B | 108.7 | C19—C17—H17 | 107.7 |
H6A—C6—H6B | 107.6 | C18—C17—H17 | 107.7 |
N6—C7—C8 | 112.05 (17) | C17—C18—H18A | 109.5 |
N6—C7—H7A | 109.2 | C17—C18—H18B | 109.5 |
C8—C7—H7A | 109.2 | H18A—C18—H18B | 109.5 |
N6—C7—H7B | 109.2 | C17—C18—H18C | 109.5 |
C8—C7—H7B | 109.2 | H18A—C18—H18C | 109.5 |
H7A—C7—H7B | 107.9 | H18B—C18—H18C | 109.5 |
N7—C8—C7 | 113.29 (17) | C17—C19—H19A | 109.5 |
N7—C8—H8A | 108.9 | C17—C19—H19B | 109.5 |
C7—C8—H8A | 108.9 | H19A—C19—H19B | 109.5 |
N7—C8—H8B | 108.9 | C17—C19—H19C | 109.5 |
C7—C8—H8B | 108.9 | H19A—C19—H19C | 109.5 |
H8A—C8—H8B | 107.7 | H19B—C19—H19C | 109.5 |
N7—C9—C10 | 111.25 (16) | H1A—O1—H1B | 108.6 (15) |
N7—C9—H9A | 109.4 | H2A—O2—H2B | 107.6 (15) |
N4i—Cu1—N1—C1 | 90.8 (7) | C4—Ni1—C3—N3 | 117 (40) |
N5—Cu1—N1—C1 | −108.0 (7) | C2—Ni1—C3—N3 | −56 (40) |
N7—Cu1—N1—C1 | −37 (2) | C1—Ni1—C3—N3 | −65 (40) |
N6—Cu1—N1—C1 | −21.0 (7) | Cu1i—N4—C4—Ni1 | −54.8 (18) |
N4i—Cu1—N5—C10 | −60.4 (2) | C3—Ni1—C4—N4 | −72.1 (13) |
N1—Cu1—N5—C10 | −156.75 (13) | C2—Ni1—C4—N4 | 4.4 (18) |
N7—Cu1—N5—C10 | 25.19 (12) | C1—Ni1—C4—N4 | 108.0 (13) |
N6—Cu1—N5—C10 | 111.44 (13) | C10—N5—C5—C6 | −132.57 (18) |
N4i—Cu1—N5—C5 | −177.27 (18) | C17—N5—C5—C6 | 105.5 (2) |
N1—Cu1—N5—C5 | 86.39 (12) | Cu1—N5—C5—C6 | −18.5 (2) |
N7—Cu1—N5—C5 | −91.67 (12) | C7—N6—C6—C5 | 64.5 (2) |
N6—Cu1—N5—C5 | −5.42 (12) | C11—N6—C6—C5 | −166.80 (17) |
N4i—Cu1—N5—C17 | 60.4 (3) | Cu1—N6—C6—C5 | −45.18 (18) |
N1—Cu1—N5—C17 | −35.91 (14) | N5—C5—C6—N6 | 47.3 (2) |
N7—Cu1—N5—C17 | 146.03 (14) | C6—N6—C7—C8 | −127.45 (19) |
N6—Cu1—N5—C17 | −127.72 (13) | C11—N6—C7—C8 | 106.0 (2) |
N4i—Cu1—N6—C6 | −155.83 (11) | Cu1—N6—C7—C8 | −21.3 (2) |
N1—Cu1—N6—C6 | −67.47 (12) | C9—N7—C8—C7 | 65.3 (2) |
N5—Cu1—N6—C6 | 27.02 (12) | C14—N7—C8—C7 | −170.92 (17) |
N7—Cu1—N6—C6 | 111.98 (12) | Cu1—N7—C8—C7 | −50.51 (18) |
N4i—Cu1—N6—C7 | 87.55 (13) | N6—C7—C8—N7 | 51.3 (2) |
N1—Cu1—N6—C7 | 175.91 (13) | C8—N7—C9—C10 | −133.78 (18) |
N5—Cu1—N6—C7 | −89.60 (13) | C14—N7—C9—C10 | 103.11 (19) |
N7—Cu1—N6—C7 | −4.64 (13) | Cu1—N7—C9—C10 | −22.9 (2) |
N4i—Cu1—N6—C11 | −38.57 (16) | C5—N5—C10—C9 | 70.3 (2) |
N1—Cu1—N6—C11 | 49.79 (15) | C17—N5—C10—C9 | −167.58 (15) |
N5—Cu1—N6—C11 | 144.28 (15) | Cu1—N5—C10—C9 | −44.80 (18) |
N7—Cu1—N6—C11 | −130.76 (15) | N7—C9—C10—N5 | 46.1 (2) |
N4i—Cu1—N7—C8 | −83.12 (13) | C6—N6—C11—C13 | −57.2 (2) |
N1—Cu1—N7—C8 | 44.1 (19) | C7—N6—C11—C13 | 71.0 (2) |
N5—Cu1—N7—C8 | 115.77 (13) | Cu1—N6—C11—C13 | −167.98 (15) |
N6—Cu1—N7—C8 | 28.57 (12) | C6—N6—C11—C12 | 176.65 (17) |
N4i—Cu1—N7—C9 | 159.55 (13) | C7—N6—C11—C12 | −55.2 (2) |
N1—Cu1—N7—C9 | −73.2 (19) | Cu1—N6—C11—C12 | 65.9 (2) |
N5—Cu1—N7—C9 | −1.55 (13) | C8—N7—C14—C16 | 169.88 (17) |
N6—Cu1—N7—C9 | −88.76 (14) | C9—N7—C14—C16 | −66.4 (2) |
N4i—Cu1—N7—C14 | 34.84 (14) | Cu1—N7—C14—C16 | 57.11 (19) |
N1—Cu1—N7—C14 | 162.1 (19) | C8—N7—C14—C15 | −65.2 (2) |
N5—Cu1—N7—C14 | −126.26 (14) | C9—N7—C14—C15 | 58.5 (2) |
N6—Cu1—N7—C14 | 146.53 (14) | Cu1—N7—C14—C15 | −178.02 (14) |
Cu1—N1—C1—Ni1 | 41 (2) | C10—N5—C17—C19 | −53.0 (2) |
C3—Ni1—C1—N1 | 32 (3) | C5—N5—C17—C19 | 68.6 (2) |
C4—Ni1—C1—N1 | −149.3 (18) | Cu1—N5—C17—C19 | −171.15 (14) |
C2—Ni1—C1—N1 | 23.7 (18) | C10—N5—C17—C18 | 70.5 (2) |
C3—Ni1—C2—N2 | 110 (3) | C5—N5—C17—C18 | −167.91 (16) |
C4—Ni1—C2—N2 | 33 (3) | Cu1—N5—C17—C18 | −47.63 (19) |
C1—Ni1—C2—N2 | −71 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3ii | 0.85 (2) | 2.02 (2) | 2.874 (3) | 179 (3) |
O1—H1B···O2iii | 0.85 (2) | 1.92 (2) | 2.745 (3) | 165 (2) |
O2—H2A···N2 | 0.86 (2) | 1.98 (2) | 2.831 (3) | 171 (3) |
O2—H2B···O1iv | 0.86 (3) | 1.92 (3) | 2.775 (3) | 174 (2) |
Symmetry codes: (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2Ni2(CN)8(C15H33N3)2]·4H2O |
Mr | 1035.59 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 8.5896 (17), 18.092 (4), 15.615 (3) |
β (°) | 95.61 (3) |
V (Å3) | 2415.1 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.69 |
Crystal size (mm) | 0.14 × 0.12 × 0.06 |
Data collection | |
Diffractometer | Bruker P4 |
Absorption correction | Multi-scan (XSCANS; Bruker, 1999) |
Tmin, Tmax | 0.798, 0.906 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18582, 5622, 4475 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.074, 1.03 |
No. of reflections | 5622 |
No. of parameters | 293 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.52, −0.39 |
Computer programs: XSCANS (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N3i | 0.851 (16) | 2.023 (15) | 2.874 (3) | 179 (3) |
O1—H1B···O2ii | 0.846 (18) | 1.919 (19) | 2.745 (3) | 165 (2) |
O2—H2A···N2 | 0.856 (17) | 1.98 (2) | 2.831 (3) | 171 (3) |
O2—H2B···O1iii | 0.86 (3) | 1.92 (3) | 2.775 (3) | 174 (2) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1. |
Acknowledgements
The authors thank the Department of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, for supporting this work.
References
Bozoglian, F., Macpherson, B. P. & Martinez, M. (2005). Coord. Chem. Rev. 249, 1902–1912. Google Scholar
Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Černák, J. & Abboud, K. A. (2000). Acta Cryst. C56, 783–785. Web of Science CSD CrossRef IUCr Journals Google Scholar
Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107. CSD CrossRef Web of Science IUCr Journals Google Scholar
Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107. CSD CrossRef Web of Science IUCr Journals Google Scholar
Chen, G. J., Gao, F. X., Huang, F. P., Tian, J. L., Gu, W., Liu, X., Yan, S. P. & Liao, D. Z. (2009). Cryst. Growth Des. 9, 2662–2667. Web of Science CSD CrossRef CAS Google Scholar
Dunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 282–391. Google Scholar
Gregory, J. K. & Clary, D. C. (1996). J. Phys. Chem. 100, 18014–18022. CrossRef CAS Web of Science Google Scholar
Hay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441–1445. CrossRef Web of Science Google Scholar
Long, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800. Web of Science CSD CrossRef PubMed CAS Google Scholar
Maji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Chaudhuri, N. R. (2001). Chem. Commun. pp. 1368–1369. Web of Science CSD CrossRef Google Scholar
Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ugalde, J. M., Alkorta, I. & Elguero, J. (2000). Angew. Chem. Int. Ed. 39, 717–721. CrossRef CAS Google Scholar
Xantheas, S. S. (1995). J. Chem. Phys. 102, 4505–4517. CrossRef CAS Web of Science Google Scholar
Zhao, C. C., Ni, W. W., Tao, J., Cui, A. L. & Kou, H. Z. (2009). CrystEngComm, 11, 632–637. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, much attention has been paid to assemble cyanide-bridged coordination complexes because of their promising properties and applications including electronics, magnetism and catalysis (Zhao et al., 2009; Dunbar & Heintz, 1997; Orendac et al., 2002), in which tetracyanonickelate complexes have also become the focus. On the one hand, diamagnetic [Ni(CN)4]2- is an excellent model for magnetic studies which bridge paramagnetic ions, but on the other hand the tetracyanonickelate anion, as a bridging ligand, can be used to construct one-dimensional, two-dimensional and three-dimensional structures (Bozoglian et al., 2005; Maji et al., 2001; Dunbar & Heintz, 1997; Černák et al., 2000; 1988; 1990). Low-dimensional cyanide-bridged complexes based on [Ni(CN)4]2- form a new family of molecular magnetic materials. However, the use of macrocyclic ligands as terminal group to control the low-dimensional structure is still relatively rare. On the other hand, water clusters can play an important role in the stabilization of supramolecular systems both in solution and in the solid state, and there is clearly a need for a better understanding of how such water aggregations are influenced by the overall structure of their surroundings (Long et al., 2004; Xantheas, 1995). In the past several decades, considerable attention has been focused on theoretical and experimental studies of small water clusters to understand the structures and characteristics of liquid water and ice (Ugalde et al., 2000; Gregory et al., 1996).
In this study, we report a complex 1 in which [Ni(CN)4]2- acts as bridging ligand to construct a low-dimensional complex. Complex 1 can be synthesized by the reaction of [Ni(Pr3TACN)]Cl2 with K2[Ni(CN)4], which is a cyanide bridged [2 + 2] type of molecular square. The ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (Pr3TACN) was synthesized according to the literature (Hay et al., 1979; Chen et al., 2009). The structure of the complex 1 is shown in Figure 1. The complex contains two [Ni(CN)4]2- bridges and two cis-[Cu(Pr3TACN)]2+ moieties in cis-positions to form a [2 + 2] type of discrete molecular square. The Cu1—N(macrocycle) distances (2.0686 (17)–2.2153 (18) Å) are close to the Cu1-N(cyano) distances (1.9781 (18) and 1.9929 (17) Å) and they are longer than the Ni1—C(cyano) distances (1.861 (2)–1.871 (2) Å). Furthermore the C—N(coordinated) distances of the cyano groups are close to the C—N(uncoordinated) distances. Interestingly, a cyclic water tetramer is located in between the complexes 1. Within the cluster, the four water molecules are fully coplanar and each water monomer acts as both single hydrogen bond donor and acceptor. The hydrogen bond distances and angles within the water tetramer are as follows: O1—O2i = 2.775 (3) Å, O1—O2ii = 2.745 (3) Å, O1i—O2—O1iii = 100.05 (9)°, O2i—O1—O2ii = 79.95 (8)° (symmetry codes: (i) x, y, -1 + z; (2) 1 - x, 1 -y, 1 -z; (iii) x,y, z + 1). The average hydrogen bond distance within the water tetramer is 2.76 (1) Å, which is slightily shorter than 2.78 Å estimated in the udud water tetramer of (D2O)4 (Ugalde et al., 2000). The most remarkable feature in 1 is that the cyclic water tetramer connects the [2 + 2] molecular square through hydrogen bonds to form a two-dimensional structure (Fig. 2, Table 1).