metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Discrete water clusters in tetra-μ-cyanido-tetra­cyanidobis(1,4,7-triiso­propyl-1,4,7-tri­aza­cyclo­nona­ne)dicopper(II)dinickel(II) tetra­hydrate

aDepartment of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, Dongying 257097, People's Republic of China, and bDepartment of Basic Science, Liao Ning Institute of Science and Technology, Benxi 117004, People's Republic of China
*Correspondence e-mail: chx1979124@126.com

(Received 9 April 2012; accepted 28 May 2012; online 13 June 2012)

The title tetra­cyanido­nickelate–copper complex, [Cu2Ni2(CN)8(C15H33N3)2]·4H2O, was synthesized by self-assembly using potassium tetracyanidonickelate(II) and dichlorido(1,4,7-triisopropyl-1,4,7-triazacyclononane)copper(II). The asymmetric unit contains half of a complex mol­ecule and two water mol­ecules. The entire complex has -1 symmetry and contains Ni(II) in a slightly distorted square-planar and Cu(II) in a square-pyramidal coordination environment. The crystal packing shows a discrete tetra­mer water cluster. Within the cluster, the four water mol­ecules are fully coplanar and each water monomer acts both as single O—H⋯O and O—H⋯N hydrogen-bond donor and acceptor.

Related literature

For properties and applications of cyanide-bridged coordination complexes, see: Zhao et al. (2009[Zhao, C. C., Ni, W. W., Tao, J., Cui, A. L. & Kou, H. Z. (2009). CrystEngComm, 11, 632-637.]); Dunbar & Heintz (1997[Dunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 282-391.]); Orendac et al. (2002[Orendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51-66.]). For the use of the tetra­cyanido­nickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian et al. (2005[Bozoglian, F., Macpherson, B. P. & Martinez, M. (2005). Coord. Chem. Rev. 249, 1902-1912.]); Maji et al. (2001[Maji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Chaudhuri, N. R. (2001). Chem. Commun. pp. 1368-1369.]); Dunbar & Heintz (1997[Dunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 282-391.]); Černák et al. (1988[Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103-2107.], 1990[Černák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103-2107.]); Černák & Abboud (2000[Černák, J. & Abboud, K. A. (2000). Acta Cryst. C56, 783-785.]). For the influence on water aggregations of the overall structure of their surroundings, see: Long et al. (2004[Long, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798-3800.]); Xantheas (1995[Xantheas, S. S. (1995). J. Chem. Phys. 102, 4505-4517.]). For water clusters, see: Ugalde et al. (2000[Ugalde, J. M., Alkorta, I. & Elguero, J. (2000). Angew. Chem. Int. Ed. 39, 717-721.]); Gregory & Clary (1996[Gregory, J. K. & Clary, D. C. (1996). J. Phys. Chem. 100, 18014-18022.]). For the synthesis of the ligand, see: Hay & Norman (1979[Hay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441-1445.]). Chen et al. (2009[Chen, G. J., Gao, F. X., Huang, F. P., Tian, J. L., Gu, W., Liu, X., Yan, S. P. & Liao, D. Z. (2009). Cryst. Growth Des. 9, 2662-2667.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Ni2(CN)8(C15H33N3)2]·4H2O

  • Mr = 1035.59

  • Monoclinic, P 21 /c

  • a = 8.5896 (17) Å

  • b = 18.092 (4) Å

  • c = 15.615 (3) Å

  • β = 95.61 (3)°

  • V = 2415.1 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 293 K

  • 0.14 × 0.12 × 0.06 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: multi-scan (XSCANS; Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.798, Tmax = 0.906

  • 18582 measured reflections

  • 5622 independent reflections

  • 4475 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.074

  • S = 1.03

  • 5622 reflections

  • 293 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N3i 0.85 (2) 2.02 (2) 2.874 (3) 179 (3)
O1—H1B⋯O2ii 0.85 (2) 1.92 (2) 2.745 (3) 165 (2)
O2—H2A⋯N2 0.86 (2) 1.98 (2) 2.831 (3) 171 (3)
O2—H2B⋯O1iii 0.86 (3) 1.92 (3) 2.775 (3) 174 (2)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x, y, z+1.

Data collection: XSCANS (Bruker, 1999[Bruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been paid to assemble cyanide-bridged coordination complexes because of their promising properties and applications including electronics, magnetism and catalysis (Zhao et al., 2009; Dunbar & Heintz, 1997; Orendac et al., 2002), in which tetracyanonickelate complexes have also become the focus. On the one hand, diamagnetic [Ni(CN)4]2- is an excellent model for magnetic studies which bridge paramagnetic ions, but on the other hand the tetracyanonickelate anion, as a bridging ligand, can be used to construct one-dimensional, two-dimensional and three-dimensional structures (Bozoglian et al., 2005; Maji et al., 2001; Dunbar & Heintz, 1997; Černák et al., 2000; 1988; 1990). Low-dimensional cyanide-bridged complexes based on [Ni(CN)4]2- form a new family of molecular magnetic materials. However, the use of macrocyclic ligands as terminal group to control the low-dimensional structure is still relatively rare. On the other hand, water clusters can play an important role in the stabilization of supramolecular systems both in solution and in the solid state, and there is clearly a need for a better understanding of how such water aggregations are influenced by the overall structure of their surroundings (Long et al., 2004; Xantheas, 1995). In the past several decades, considerable attention has been focused on theoretical and experimental studies of small water clusters to understand the structures and characteristics of liquid water and ice (Ugalde et al., 2000; Gregory et al., 1996).

In this study, we report a complex 1 in which [Ni(CN)4]2- acts as bridging ligand to construct a low-dimensional complex. Complex 1 can be synthesized by the reaction of [Ni(Pr3TACN)]Cl2 with K2[Ni(CN)4], which is a cyanide bridged [2 + 2] type of molecular square. The ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (Pr3TACN) was synthesized according to the literature (Hay et al., 1979; Chen et al., 2009). The structure of the complex 1 is shown in Figure 1. The complex contains two [Ni(CN)4]2- bridges and two cis-[Cu(Pr3TACN)]2+ moieties in cis-positions to form a [2 + 2] type of discrete molecular square. The Cu1—N(macrocycle) distances (2.0686 (17)–2.2153 (18) Å) are close to the Cu1-N(cyano) distances (1.9781 (18) and 1.9929 (17) Å) and they are longer than the Ni1—C(cyano) distances (1.861 (2)–1.871 (2) Å). Furthermore the C—N(coordinated) distances of the cyano groups are close to the C—N(uncoordinated) distances. Interestingly, a cyclic water tetramer is located in between the complexes 1. Within the cluster, the four water molecules are fully coplanar and each water monomer acts as both single hydrogen bond donor and acceptor. The hydrogen bond distances and angles within the water tetramer are as follows: O1—O2i = 2.775 (3) Å, O1—O2ii = 2.745 (3) Å, O1i—O2—O1iii = 100.05 (9)°, O2i—O1—O2ii = 79.95 (8)° (symmetry codes: (i) x, y, -1 + z; (2) 1 - x, 1 -y, 1 -z; (iii) x,y, z + 1). The average hydrogen bond distance within the water tetramer is 2.76 (1) Å, which is slightily shorter than 2.78 Å estimated in the udud water tetramer of (D2O)4 (Ugalde et al., 2000). The most remarkable feature in 1 is that the cyclic water tetramer connects the [2 + 2] molecular square through hydrogen bonds to form a two-dimensional structure (Fig. 2, Table 1).

Related literature top

For properties and applications of cyanide-bridged coordination complexes, see: Zhao et al. (2009); Dunbar & Heintz (1997); Orendac et al. (2002). For the use of the tetracyanonickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian et al. (2005); Maji et al. (2001); Dunbar & Heintz (1997); Černák et al. (1988, 1990); Černák & Abboud (2000). For the influence on water aggregations of the overall structure of their surroundings, see: Long et al. (2004); Xantheas (1995). For water clusters, see: Ugalde et al. (2000); Gregory & Clary (1996). For the synthesis of the ligand, see: Hay & Norman (1979). Chen et al. (2009).

Experimental top

A water solution (25 ml) of potassium tetracyanonickel (0.111 g, 0.4 mmol) was layered with an acetonitrile solution (25 ml) of dichloro-(1,4,7-triisopropyl-1,4,7-triazcyclononane)-copper(II) (0.151 g, 0.4 mmol). After about 3 weeks, prism-shaped blue crystals of 1 formed from the solution. The crystals were collected, washed with water and methanol, and dried in the air. Yield: 45% (based on tetracyanonickelate salts). Anal. Calcd for C19H37N7CuNiO2: C, 44.07; H, 7.20; N, 18.93. Found: C, 44.25; H, 7.25; N, 19.02%. IR (KBr, cm-1): 3455 (s), 2974 (s), 2164 (CN, coordinated) and 2135 (CN, uncoordinated), 1652 (s).

Refinement top

A total of 6 similarity restraints were used for the H atoms of the water molecules which were initially refined with fixed O—H distances of 0.85 Å and 1.2Ueq(O). The other H atoms were placed in calculated positions and refined as riding on the parent C atoms with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq (C).

Structure description top

In recent years, much attention has been paid to assemble cyanide-bridged coordination complexes because of their promising properties and applications including electronics, magnetism and catalysis (Zhao et al., 2009; Dunbar & Heintz, 1997; Orendac et al., 2002), in which tetracyanonickelate complexes have also become the focus. On the one hand, diamagnetic [Ni(CN)4]2- is an excellent model for magnetic studies which bridge paramagnetic ions, but on the other hand the tetracyanonickelate anion, as a bridging ligand, can be used to construct one-dimensional, two-dimensional and three-dimensional structures (Bozoglian et al., 2005; Maji et al., 2001; Dunbar & Heintz, 1997; Černák et al., 2000; 1988; 1990). Low-dimensional cyanide-bridged complexes based on [Ni(CN)4]2- form a new family of molecular magnetic materials. However, the use of macrocyclic ligands as terminal group to control the low-dimensional structure is still relatively rare. On the other hand, water clusters can play an important role in the stabilization of supramolecular systems both in solution and in the solid state, and there is clearly a need for a better understanding of how such water aggregations are influenced by the overall structure of their surroundings (Long et al., 2004; Xantheas, 1995). In the past several decades, considerable attention has been focused on theoretical and experimental studies of small water clusters to understand the structures and characteristics of liquid water and ice (Ugalde et al., 2000; Gregory et al., 1996).

In this study, we report a complex 1 in which [Ni(CN)4]2- acts as bridging ligand to construct a low-dimensional complex. Complex 1 can be synthesized by the reaction of [Ni(Pr3TACN)]Cl2 with K2[Ni(CN)4], which is a cyanide bridged [2 + 2] type of molecular square. The ligand 1,4,7-triisopropyl-1,4,7-triazacyclononane (Pr3TACN) was synthesized according to the literature (Hay et al., 1979; Chen et al., 2009). The structure of the complex 1 is shown in Figure 1. The complex contains two [Ni(CN)4]2- bridges and two cis-[Cu(Pr3TACN)]2+ moieties in cis-positions to form a [2 + 2] type of discrete molecular square. The Cu1—N(macrocycle) distances (2.0686 (17)–2.2153 (18) Å) are close to the Cu1-N(cyano) distances (1.9781 (18) and 1.9929 (17) Å) and they are longer than the Ni1—C(cyano) distances (1.861 (2)–1.871 (2) Å). Furthermore the C—N(coordinated) distances of the cyano groups are close to the C—N(uncoordinated) distances. Interestingly, a cyclic water tetramer is located in between the complexes 1. Within the cluster, the four water molecules are fully coplanar and each water monomer acts as both single hydrogen bond donor and acceptor. The hydrogen bond distances and angles within the water tetramer are as follows: O1—O2i = 2.775 (3) Å, O1—O2ii = 2.745 (3) Å, O1i—O2—O1iii = 100.05 (9)°, O2i—O1—O2ii = 79.95 (8)° (symmetry codes: (i) x, y, -1 + z; (2) 1 - x, 1 -y, 1 -z; (iii) x,y, z + 1). The average hydrogen bond distance within the water tetramer is 2.76 (1) Å, which is slightily shorter than 2.78 Å estimated in the udud water tetramer of (D2O)4 (Ugalde et al., 2000). The most remarkable feature in 1 is that the cyclic water tetramer connects the [2 + 2] molecular square through hydrogen bonds to form a two-dimensional structure (Fig. 2, Table 1).

For properties and applications of cyanide-bridged coordination complexes, see: Zhao et al. (2009); Dunbar & Heintz (1997); Orendac et al. (2002). For the use of the tetracyanonickelate anion as a bridging ligand in the construction of one-, two- and three-dimensional structures, see: Bozoglian et al. (2005); Maji et al. (2001); Dunbar & Heintz (1997); Černák et al. (1988, 1990); Černák & Abboud (2000). For the influence on water aggregations of the overall structure of their surroundings, see: Long et al. (2004); Xantheas (1995). For water clusters, see: Ugalde et al. (2000); Gregory & Clary (1996). For the synthesis of the ligand, see: Hay & Norman (1979). Chen et al. (2009).

Computing details top

Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS (Bruker, 1999); data reduction: XSCANS (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of 1 showing 30% probability displacement ellipsoids for non-H atoms. The second half of the molecule is generated by symmetry code -x, -y - 1, -z - 1.
[Figure 2] Fig. 2. Stacking diagram of 1 and hydrogen bonding in the water cluster (symmetry code A: 1 - x, 1 - y, -z).
tetra-µ-cyanido-1:2κ2C:N;2:3κ2N:C; 3:4κ2C:N;4:1κ2N:C-tetracyanido- 1κ2C,3κ2C-bis(1,4,7-triisopropyl-1,4,7- triazacyclononane)-2κ3N,N',N''; 4κ3N,N',N''-dicopper(II)dinickel(II) tetrahydrate top
Crystal data top
[Cu2Ni2(CN)8(C15H33N3)2]·4H2OF(000) = 1092
Mr = 1035.59Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3989 reflections
a = 8.5896 (17) Åθ = 2.0–25.5°
b = 18.092 (4) ŵ = 1.69 mm1
c = 15.615 (3) ÅT = 293 K
β = 95.61 (3)°Prism, blue
V = 2415.1 (8) Å30.14 × 0.12 × 0.06 mm
Z = 2
Data collection top
Bruker P4
diffractometer
4475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.9°, θmin = 1.7°
ω scansh = 1110
Absorption correction: multi-scan
(XSCANS; Bruker, 1999)
k = 2323
Tmin = 0.798, Tmax = 0.906l = 2012
18582 measured reflections3 standard reflections every 120 min
5622 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
5622 reflections(Δ/σ)max = 0.002
293 parametersΔρmax = 0.52 e Å3
6 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu2Ni2(CN)8(C15H33N3)2]·4H2OV = 2415.1 (8) Å3
Mr = 1035.59Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.5896 (17) ŵ = 1.69 mm1
b = 18.092 (4) ÅT = 293 K
c = 15.615 (3) Å0.14 × 0.12 × 0.06 mm
β = 95.61 (3)°
Data collection top
Bruker P4
diffractometer
4475 reflections with I > 2σ(I)
Absorption correction: multi-scan
(XSCANS; Bruker, 1999)
Rint = 0.039
Tmin = 0.798, Tmax = 0.9063 standard reflections every 120 min
18582 measured reflections intensity decay: 1.0%
5622 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.52 e Å3
5622 reflectionsΔρmin = 0.39 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14378 (3)0.639359 (12)0.659167 (15)0.01450 (7)
Ni10.20048 (3)0.370161 (13)0.612942 (16)0.01552 (8)
N10.12720 (19)0.52998 (9)0.64625 (11)0.0183 (4)
N20.4785 (2)0.39240 (11)0.74309 (12)0.0336 (5)
N30.2998 (2)0.21257 (10)0.58992 (14)0.0358 (5)
N40.0304 (2)0.35220 (9)0.45692 (11)0.0188 (4)
N50.18877 (19)0.63639 (9)0.79170 (10)0.0164 (4)
N60.40058 (19)0.63663 (9)0.65419 (11)0.0200 (4)
N70.16954 (19)0.75278 (9)0.67369 (10)0.0173 (4)
C10.1467 (2)0.46860 (11)0.63196 (13)0.0173 (4)
C20.3701 (3)0.38215 (11)0.69594 (13)0.0220 (5)
C30.2615 (2)0.27259 (12)0.59875 (14)0.0225 (5)
C40.0494 (2)0.35903 (10)0.51975 (13)0.0174 (4)
C50.3626 (2)0.62659 (12)0.81156 (14)0.0226 (5)
H5A0.38150.59250.85940.027*
H5B0.40830.67380.82960.027*
C60.4447 (2)0.59780 (12)0.73657 (13)0.0239 (5)
H6A0.55680.60240.75070.029*
H6B0.42090.54570.72890.029*
C70.4476 (2)0.71567 (12)0.65622 (15)0.0252 (5)
H7A0.53010.72280.61880.030*
H7B0.48910.72870.71430.030*
C80.3109 (3)0.76665 (11)0.62750 (14)0.0234 (5)
H8A0.34380.81750.63700.028*
H8B0.28320.76020.56620.028*
C90.2005 (3)0.77059 (11)0.76740 (13)0.0206 (5)
H9A0.14950.81680.77930.025*
H9B0.31210.77690.78200.025*
C100.1412 (3)0.71016 (11)0.82235 (13)0.0205 (5)
H10A0.18330.71710.88170.025*
H10B0.02810.71270.81980.025*
C110.4573 (2)0.59355 (13)0.58066 (14)0.0256 (5)
H110.40700.54490.58060.031*
C120.4061 (3)0.62923 (13)0.49380 (15)0.0331 (6)
H12A0.29500.63720.48880.050*
H12B0.43220.59720.44840.050*
H12C0.45870.67570.48970.050*
C130.6336 (3)0.58003 (14)0.59072 (17)0.0376 (6)
H13A0.68750.62650.59600.056*
H13B0.66320.55410.54120.056*
H13C0.66100.55090.64140.056*
C140.0316 (2)0.79650 (11)0.63208 (14)0.0219 (5)
H140.02160.78440.57060.026*
C150.0510 (3)0.88029 (11)0.63950 (15)0.0279 (5)
H15A0.04950.89490.69850.042*
H15B0.03310.90420.60510.042*
H15C0.14890.89450.61950.042*
C160.1201 (3)0.77345 (12)0.66699 (14)0.0273 (5)
H16A0.12950.72060.66500.041*
H16B0.20700.79530.63260.041*
H16C0.11990.79000.72540.041*
C170.1007 (3)0.57566 (11)0.83338 (13)0.0215 (5)
H170.14600.52830.81830.026*
C180.0718 (3)0.57506 (12)0.79870 (14)0.0253 (5)
H18A0.12170.61890.81730.038*
H18B0.12170.53230.82010.038*
H18C0.08040.57360.73700.038*
C190.1143 (3)0.58101 (12)0.93095 (13)0.0300 (6)
H19A0.22200.58770.95230.045*
H19B0.07540.53640.95440.045*
H19C0.05400.62230.94780.045*
O10.3097 (2)0.42588 (10)0.00040 (11)0.0420 (5)
O20.5596 (2)0.45720 (11)0.90642 (13)0.0454 (5)
H1A0.308 (3)0.3849 (7)0.0270 (14)0.058 (10)*
H1B0.340 (3)0.4592 (9)0.0362 (12)0.048 (9)*
H2A0.542 (3)0.4407 (18)0.8550 (9)0.095 (14)*
H2B0.481 (3)0.4447 (17)0.9337 (16)0.075 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01485 (13)0.01184 (12)0.01636 (14)0.00097 (10)0.00065 (9)0.00208 (10)
Ni10.01783 (14)0.01198 (13)0.01623 (15)0.00133 (10)0.00106 (10)0.00066 (10)
N10.0188 (9)0.0156 (9)0.0200 (9)0.0002 (7)0.0007 (7)0.0017 (7)
N20.0328 (12)0.0317 (11)0.0337 (12)0.0063 (9)0.0098 (9)0.0029 (9)
N30.0373 (12)0.0190 (10)0.0513 (14)0.0058 (9)0.0058 (10)0.0024 (9)
N40.0203 (9)0.0149 (9)0.0209 (10)0.0008 (7)0.0010 (7)0.0016 (7)
N50.0179 (9)0.0143 (8)0.0168 (9)0.0009 (7)0.0001 (7)0.0013 (7)
N60.0158 (9)0.0192 (9)0.0250 (10)0.0034 (7)0.0026 (7)0.0059 (7)
N70.0194 (9)0.0133 (8)0.0194 (9)0.0004 (7)0.0025 (7)0.0000 (7)
C10.0146 (10)0.0211 (11)0.0155 (10)0.0035 (8)0.0020 (8)0.0003 (8)
C20.0271 (12)0.0169 (11)0.0218 (12)0.0051 (9)0.0018 (9)0.0006 (9)
C30.0234 (12)0.0212 (11)0.0227 (12)0.0000 (9)0.0013 (9)0.0005 (9)
C40.0196 (11)0.0107 (10)0.0222 (12)0.0000 (8)0.0041 (8)0.0009 (8)
C50.0171 (11)0.0240 (12)0.0250 (12)0.0010 (9)0.0067 (9)0.0009 (9)
C60.0149 (11)0.0241 (12)0.0315 (13)0.0002 (9)0.0030 (9)0.0051 (10)
C70.0210 (12)0.0236 (12)0.0317 (13)0.0074 (9)0.0057 (10)0.0072 (10)
C80.0274 (12)0.0198 (11)0.0241 (12)0.0080 (9)0.0083 (9)0.0018 (9)
C90.0242 (11)0.0161 (10)0.0209 (11)0.0013 (9)0.0004 (9)0.0056 (8)
C100.0260 (12)0.0163 (10)0.0188 (11)0.0006 (9)0.0007 (9)0.0027 (8)
C110.0203 (12)0.0266 (12)0.0309 (13)0.0041 (9)0.0071 (9)0.0100 (10)
C120.0297 (14)0.0410 (15)0.0305 (14)0.0048 (11)0.0132 (11)0.0093 (11)
C130.0227 (13)0.0421 (16)0.0498 (17)0.0012 (11)0.0121 (11)0.0172 (13)
C140.0269 (12)0.0171 (10)0.0213 (11)0.0005 (9)0.0003 (9)0.0002 (9)
C150.0400 (14)0.0167 (11)0.0274 (13)0.0031 (10)0.0044 (10)0.0016 (9)
C160.0257 (12)0.0247 (12)0.0309 (13)0.0036 (10)0.0010 (10)0.0021 (10)
C170.0279 (12)0.0158 (11)0.0206 (11)0.0004 (9)0.0023 (9)0.0028 (8)
C180.0282 (13)0.0198 (11)0.0290 (13)0.0021 (9)0.0081 (10)0.0020 (9)
C190.0439 (15)0.0271 (13)0.0193 (12)0.0006 (11)0.0042 (10)0.0052 (9)
O10.0551 (13)0.0261 (10)0.0424 (11)0.0098 (9)0.0069 (9)0.0031 (9)
O20.0513 (14)0.0450 (12)0.0393 (12)0.0076 (10)0.0015 (10)0.0159 (10)
Geometric parameters (Å, º) top
Cu1—N4i1.9781 (18)C9—H9B0.9700
Cu1—N11.9929 (17)C10—H10A0.9700
Cu1—N52.0686 (17)C10—H10B0.9700
Cu1—N72.0740 (17)C11—C131.527 (3)
Cu1—N62.2153 (18)C11—C121.527 (3)
Ni1—C31.861 (2)C11—H110.9800
Ni1—C41.864 (2)C12—H12A0.9600
Ni1—C21.866 (2)C12—H12B0.9600
Ni1—C11.871 (2)C12—H12C0.9600
N1—C11.148 (3)C13—H13A0.9600
N2—C21.144 (3)C13—H13B0.9600
N3—C31.147 (3)C13—H13C0.9600
N4—C41.147 (3)C14—C161.520 (3)
N4—Cu1i1.9781 (18)C14—C151.528 (3)
N5—C101.488 (2)C14—H140.9800
N5—C51.506 (2)C15—H15A0.9600
N5—C171.517 (3)C15—H15B0.9600
N6—C61.482 (3)C15—H15C0.9600
N6—C71.485 (3)C16—H16A0.9600
N6—C111.507 (3)C16—H16B0.9600
N7—C81.493 (3)C16—H16C0.9600
N7—C91.496 (2)C17—C191.520 (3)
N7—C141.517 (3)C17—C181.527 (3)
C5—C61.517 (3)C17—H170.9800
C5—H5A0.9700C18—H18A0.9600
C5—H5B0.9700C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C19—H19A0.9600
C7—C81.526 (3)C19—H19B0.9600
C7—H7A0.9700C19—H19C0.9600
C7—H7B0.9700O1—H1A0.851 (9)
C8—H8A0.9700O1—H1B0.846 (9)
C8—H8B0.9700O2—H2A0.856 (10)
C9—C101.509 (3)O2—H2B0.861 (10)
C9—H9A0.9700
N4i—Cu1—N187.71 (7)C10—C9—H9A109.4
N4i—Cu1—N5161.08 (7)N7—C9—H9B109.4
N1—Cu1—N594.59 (6)C10—C9—H9B109.4
N4i—Cu1—N793.53 (6)H9A—C9—H9B108.0
N1—Cu1—N7177.96 (7)N5—C10—C9110.39 (17)
N5—Cu1—N784.76 (6)N5—C10—H10A109.6
N4i—Cu1—N6111.86 (8)C9—C10—H10A109.6
N1—Cu1—N692.05 (7)N5—C10—H10B109.6
N5—Cu1—N686.86 (7)C9—C10—H10B109.6
N7—Cu1—N685.98 (6)H10A—C10—H10B108.1
C3—Ni1—C489.27 (9)N6—C11—C13113.30 (18)
C3—Ni1—C289.03 (9)N6—C11—C12111.79 (18)
C4—Ni1—C2172.72 (9)C13—C11—C12110.86 (19)
C3—Ni1—C1177.13 (9)N6—C11—H11106.8
C4—Ni1—C193.60 (8)C13—C11—H11106.8
C2—Ni1—C188.13 (9)C12—C11—H11106.8
C1—N1—Cu1165.89 (17)C11—C12—H12A109.5
C4—N4—Cu1i167.12 (16)C11—C12—H12B109.5
C10—N5—C5109.71 (15)H12A—C12—H12B109.5
C10—N5—C17110.33 (16)C11—C12—H12C109.5
C5—N5—C17110.65 (15)H12A—C12—H12C109.5
C10—N5—Cu1105.55 (11)H12B—C12—H12C109.5
C5—N5—Cu1107.08 (13)C11—C13—H13A109.5
C17—N5—Cu1113.32 (12)C11—C13—H13B109.5
C6—N6—C7113.06 (16)H13A—C13—H13B109.5
C6—N6—C11109.99 (16)C11—C13—H13C109.5
C7—N6—C11113.98 (17)H13A—C13—H13C109.5
C6—N6—Cu198.69 (12)H13B—C13—H13C109.5
C7—N6—Cu1104.33 (12)N7—C14—C16111.39 (17)
C11—N6—Cu1115.81 (12)N7—C14—C15114.21 (17)
C8—N7—C9111.17 (16)C16—C14—C15109.64 (18)
C8—N7—C14110.08 (16)N7—C14—H14107.1
C9—N7—C14111.30 (16)C16—C14—H14107.1
C8—N7—Cu1101.33 (12)C15—C14—H14107.1
C9—N7—Cu1109.08 (12)C14—C15—H15A109.5
C14—N7—Cu1113.49 (12)C14—C15—H15B109.5
N1—C1—Ni1173.96 (18)H15A—C15—H15B109.5
N2—C2—Ni1175.5 (2)C14—C15—H15C109.5
N3—C3—Ni1179.7 (2)H15A—C15—H15C109.5
N4—C4—Ni1172.6 (2)H15B—C15—H15C109.5
N5—C5—C6114.07 (17)C14—C16—H16A109.5
N5—C5—H5A108.7C14—C16—H16B109.5
C6—C5—H5A108.7H16A—C16—H16B109.5
N5—C5—H5B108.7C14—C16—H16C109.5
C6—C5—H5B108.7H16A—C16—H16C109.5
H5A—C5—H5B107.6H16B—C16—H16C109.5
N6—C6—C5114.12 (17)N5—C17—C19113.04 (17)
N6—C6—H6A108.7N5—C17—C18111.13 (16)
C5—C6—H6A108.7C19—C17—C18109.45 (18)
N6—C6—H6B108.7N5—C17—H17107.7
C5—C6—H6B108.7C19—C17—H17107.7
H6A—C6—H6B107.6C18—C17—H17107.7
N6—C7—C8112.05 (17)C17—C18—H18A109.5
N6—C7—H7A109.2C17—C18—H18B109.5
C8—C7—H7A109.2H18A—C18—H18B109.5
N6—C7—H7B109.2C17—C18—H18C109.5
C8—C7—H7B109.2H18A—C18—H18C109.5
H7A—C7—H7B107.9H18B—C18—H18C109.5
N7—C8—C7113.29 (17)C17—C19—H19A109.5
N7—C8—H8A108.9C17—C19—H19B109.5
C7—C8—H8A108.9H19A—C19—H19B109.5
N7—C8—H8B108.9C17—C19—H19C109.5
C7—C8—H8B108.9H19A—C19—H19C109.5
H8A—C8—H8B107.7H19B—C19—H19C109.5
N7—C9—C10111.25 (16)H1A—O1—H1B108.6 (15)
N7—C9—H9A109.4H2A—O2—H2B107.6 (15)
N4i—Cu1—N1—C190.8 (7)C4—Ni1—C3—N3117 (40)
N5—Cu1—N1—C1108.0 (7)C2—Ni1—C3—N356 (40)
N7—Cu1—N1—C137 (2)C1—Ni1—C3—N365 (40)
N6—Cu1—N1—C121.0 (7)Cu1i—N4—C4—Ni154.8 (18)
N4i—Cu1—N5—C1060.4 (2)C3—Ni1—C4—N472.1 (13)
N1—Cu1—N5—C10156.75 (13)C2—Ni1—C4—N44.4 (18)
N7—Cu1—N5—C1025.19 (12)C1—Ni1—C4—N4108.0 (13)
N6—Cu1—N5—C10111.44 (13)C10—N5—C5—C6132.57 (18)
N4i—Cu1—N5—C5177.27 (18)C17—N5—C5—C6105.5 (2)
N1—Cu1—N5—C586.39 (12)Cu1—N5—C5—C618.5 (2)
N7—Cu1—N5—C591.67 (12)C7—N6—C6—C564.5 (2)
N6—Cu1—N5—C55.42 (12)C11—N6—C6—C5166.80 (17)
N4i—Cu1—N5—C1760.4 (3)Cu1—N6—C6—C545.18 (18)
N1—Cu1—N5—C1735.91 (14)N5—C5—C6—N647.3 (2)
N7—Cu1—N5—C17146.03 (14)C6—N6—C7—C8127.45 (19)
N6—Cu1—N5—C17127.72 (13)C11—N6—C7—C8106.0 (2)
N4i—Cu1—N6—C6155.83 (11)Cu1—N6—C7—C821.3 (2)
N1—Cu1—N6—C667.47 (12)C9—N7—C8—C765.3 (2)
N5—Cu1—N6—C627.02 (12)C14—N7—C8—C7170.92 (17)
N7—Cu1—N6—C6111.98 (12)Cu1—N7—C8—C750.51 (18)
N4i—Cu1—N6—C787.55 (13)N6—C7—C8—N751.3 (2)
N1—Cu1—N6—C7175.91 (13)C8—N7—C9—C10133.78 (18)
N5—Cu1—N6—C789.60 (13)C14—N7—C9—C10103.11 (19)
N7—Cu1—N6—C74.64 (13)Cu1—N7—C9—C1022.9 (2)
N4i—Cu1—N6—C1138.57 (16)C5—N5—C10—C970.3 (2)
N1—Cu1—N6—C1149.79 (15)C17—N5—C10—C9167.58 (15)
N5—Cu1—N6—C11144.28 (15)Cu1—N5—C10—C944.80 (18)
N7—Cu1—N6—C11130.76 (15)N7—C9—C10—N546.1 (2)
N4i—Cu1—N7—C883.12 (13)C6—N6—C11—C1357.2 (2)
N1—Cu1—N7—C844.1 (19)C7—N6—C11—C1371.0 (2)
N5—Cu1—N7—C8115.77 (13)Cu1—N6—C11—C13167.98 (15)
N6—Cu1—N7—C828.57 (12)C6—N6—C11—C12176.65 (17)
N4i—Cu1—N7—C9159.55 (13)C7—N6—C11—C1255.2 (2)
N1—Cu1—N7—C973.2 (19)Cu1—N6—C11—C1265.9 (2)
N5—Cu1—N7—C91.55 (13)C8—N7—C14—C16169.88 (17)
N6—Cu1—N7—C988.76 (14)C9—N7—C14—C1666.4 (2)
N4i—Cu1—N7—C1434.84 (14)Cu1—N7—C14—C1657.11 (19)
N1—Cu1—N7—C14162.1 (19)C8—N7—C14—C1565.2 (2)
N5—Cu1—N7—C14126.26 (14)C9—N7—C14—C1558.5 (2)
N6—Cu1—N7—C14146.53 (14)Cu1—N7—C14—C15178.02 (14)
Cu1—N1—C1—Ni141 (2)C10—N5—C17—C1953.0 (2)
C3—Ni1—C1—N132 (3)C5—N5—C17—C1968.6 (2)
C4—Ni1—C1—N1149.3 (18)Cu1—N5—C17—C19171.15 (14)
C2—Ni1—C1—N123.7 (18)C10—N5—C17—C1870.5 (2)
C3—Ni1—C2—N2110 (3)C5—N5—C17—C18167.91 (16)
C4—Ni1—C2—N233 (3)Cu1—N5—C17—C1847.63 (19)
C1—Ni1—C2—N271 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3ii0.85 (2)2.02 (2)2.874 (3)179 (3)
O1—H1B···O2iii0.85 (2)1.92 (2)2.745 (3)165 (2)
O2—H2A···N20.86 (2)1.98 (2)2.831 (3)171 (3)
O2—H2B···O1iv0.86 (3)1.92 (3)2.775 (3)174 (2)
Symmetry codes: (ii) x, y+1/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2Ni2(CN)8(C15H33N3)2]·4H2O
Mr1035.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.5896 (17), 18.092 (4), 15.615 (3)
β (°) 95.61 (3)
V3)2415.1 (8)
Z2
Radiation typeMo Kα
µ (mm1)1.69
Crystal size (mm)0.14 × 0.12 × 0.06
Data collection
DiffractometerBruker P4
Absorption correctionMulti-scan
(XSCANS; Bruker, 1999)
Tmin, Tmax0.798, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
18582, 5622, 4475
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.074, 1.03
No. of reflections5622
No. of parameters293
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.39

Computer programs: XSCANS (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N3i0.851 (16)2.023 (15)2.874 (3)179 (3)
O1—H1B···O2ii0.846 (18)1.919 (19)2.745 (3)165 (2)
O2—H2A···N20.856 (17)1.98 (2)2.831 (3)171 (3)
O2—H2B···O1iii0.86 (3)1.92 (3)2.775 (3)174 (2)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors thank the Department of Chemistry and Chemical Engineering, Shengli College, China University of Petroleum, for supporting this work.

References

First citationBozoglian, F., Macpherson, B. P. & Martinez, M. (2005). Coord. Chem. Rev. 249, 1902–1912.  Google Scholar
First citationBruker (1999). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationČernák, J. & Abboud, K. A. (2000). Acta Cryst. C56, 783–785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationČernák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationČernák, J., Chomič, J., Domiano, P., Ori, O. & Andreetti, G. D. (1990). Acta Cryst. C46, 2103–2107.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationChen, G. J., Gao, F. X., Huang, F. P., Tian, J. L., Gu, W., Liu, X., Yan, S. P. & Liao, D. Z. (2009). Cryst. Growth Des. 9, 2662–2667.  Web of Science CSD CrossRef CAS Google Scholar
First citationDunbar, K. R. & Heintz, R. A. (1997). Prog. Inorg. Chem. 45, 282–391.  Google Scholar
First citationGregory, J. K. & Clary, D. C. (1996). J. Phys. Chem. 100, 18014–18022.  CrossRef CAS Web of Science Google Scholar
First citationHay, R. W. & Norman, P. R. (1979). J. Chem. Soc. Dalton Trans. pp. 1441–1445.  CrossRef Web of Science Google Scholar
First citationLong, L. S., Wu, Y. R., Huang, G. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 3798–3800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMaji, T. K., Mukherjee, P. S., Mostafa, G., Zangrando, E. & Chaudhuri, N. R. (2001). Chem. Commun. pp. 1368–1369.  Web of Science CSD CrossRef Google Scholar
First citationOrendac, M., Potocnak, I., Chomic, J., Orendacova, A., Skorsepa, J. & Feher, A. (2002). Coord. Chem. Rev. 224, 51–66.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgalde, J. M., Alkorta, I. & Elguero, J. (2000). Angew. Chem. Int. Ed. 39, 717–721.  CrossRef CAS Google Scholar
First citationXantheas, S. S. (1995). J. Chem. Phys. 102, 4505–4517.  CrossRef CAS Web of Science Google Scholar
First citationZhao, C. C., Ni, W. W., Tao, J., Cui, A. L. & Kou, H. Z. (2009). CrystEngComm, 11, 632–637.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds