organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{4-chloro-2-[5-chloro-2-(2-meth­­oxy-2-oxoeth­­oxy)benz­yl]phen­­oxy}acetate

aInstitute of Physics, AS CR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic, bInstitute of Macromolecular Chemistry, AS CR v.v.i., Heyrovského nám. 2, 16206 Prague 6, Czech Republic, and cFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic
*Correspondence e-mail: pojarova@fzu.cz

(Received 7 May 2012; accepted 5 June 2012; online 13 June 2012)

In the crystal structure of the title compound, C19H18Cl2O6, mol­ecules are connected via weak C—H⋯π inter­actions into closely packed dimers.

Related literature

For the synthesis, see: Ertul et al. (2009[Ertul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878-884.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl2O6

  • Mr = 413.23

  • Triclinic, [P \overline 1]

  • a = 7.4727 (6) Å

  • b = 10.4704 (8) Å

  • c = 12.2796 (8) Å

  • α = 90.384 (6)°

  • β = 100.716 (6)°

  • γ = 94.365 (6)°

  • V = 941.08 (12) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.41 mm−1

  • T = 120 K

  • 0.45 × 0.09 × 0.04 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.258, Tmax = 1.000

  • 8465 measured reflections

  • 3319 independent reflections

  • 2606 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.239

  • S = 1.02

  • 3319 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1i 0.93 2.72 3.500 (3) 142
C17—H17ACg2i 0.97 2.67 3.450 (3) 138
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is an intermediate in the synthesis of cyclic lactams (Ertul et al., 2009). The molecule consists of two phenyl rings substituted with a chlorine atom in para position (Fig. 1). The dihedral angle between the planes of the two aromatic rings is 72.40 (14)°. The arrangement of the molecules is influenced by C—H···π interactions between two neighbouring molecules leading to the formation of closely packed dimers (Table 1, Fig. 2). Due to the presence of aromatic rings, the molecules are also connected via system of ππ interactions (Cg1···Cg2i: 4.7735 (17) Å; Cg1 and Cg2 are the centroids of rings C1-C6 and C8-C13, respectively; symmetry code: (i) 1 -x, 1 - y, 2 - z).

Related literature top

For the synthesis, see: Ertul et al. (2009).

Experimental top

All chemicals used were purchased from Fluka and used without further purification. The title compound was synthesized by means of the method published by Ertul et al. (2009). Crystals were prepared by sublimation (mp. 125 °C, elemental analysis for C19H18Cl2O: calculated C 55.22, H 4.39; found C 55.20, H 4.41).

Refinement top

The H atoms were all located in a difference map and repositioned geometrically. The distance between C and H atoms depends on the carbon atom type and are in a range of 0.93–0.97 Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2Ueq of the parent atom.

Structure description top

The title compound is an intermediate in the synthesis of cyclic lactams (Ertul et al., 2009). The molecule consists of two phenyl rings substituted with a chlorine atom in para position (Fig. 1). The dihedral angle between the planes of the two aromatic rings is 72.40 (14)°. The arrangement of the molecules is influenced by C—H···π interactions between two neighbouring molecules leading to the formation of closely packed dimers (Table 1, Fig. 2). Due to the presence of aromatic rings, the molecules are also connected via system of ππ interactions (Cg1···Cg2i: 4.7735 (17) Å; Cg1 and Cg2 are the centroids of rings C1-C6 and C8-C13, respectively; symmetry code: (i) 1 -x, 1 - y, 2 - z).

For the synthesis, see: Ertul et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound, together with atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection along the c axis with highlighted C—H···π interactions.
Methyl 2-{4-chloro-2-[5-chloro-2-(2-methoxy-2-oxoethoxy)benzyl]phenoxy}acetate top
Crystal data top
C19H18Cl2O6Z = 2
Mr = 413.23F(000) = 428
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.5418 Å
a = 7.4727 (6) ÅCell parameters from 5088 reflections
b = 10.4704 (8) Åθ = 3.7–66.8°
c = 12.2796 (8) ŵ = 3.41 mm1
α = 90.384 (6)°T = 120 K
β = 100.716 (6)°Needle, colourless
γ = 94.365 (6)°0.45 × 0.09 × 0.04 mm
V = 941.08 (12) Å3
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3319 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2606 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.085
Detector resolution: 10.3784 pixels mm-1θmax = 66.9°, θmin = 3.7°
Rotation method data acquisition using ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1112
Tmin = 0.258, Tmax = 1.000l = 1413
8465 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.184P)2]
where P = (Fo2 + 2Fc2)/3
3319 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C19H18Cl2O6γ = 94.365 (6)°
Mr = 413.23V = 941.08 (12) Å3
Triclinic, P1Z = 2
a = 7.4727 (6) ÅCu Kα radiation
b = 10.4704 (8) ŵ = 3.41 mm1
c = 12.2796 (8) ÅT = 120 K
α = 90.384 (6)°0.45 × 0.09 × 0.04 mm
β = 100.716 (6)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
3319 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2606 reflections with I > 2σ(I)
Tmin = 0.258, Tmax = 1.000Rint = 0.085
8465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.239H-atom parameters constrained
S = 1.02Δρmax = 0.92 e Å3
3319 reflectionsΔρmin = 0.64 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The distance between C and H atoms depends on the carbon atom type and are in a range of 0.93–0.97 Å. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom. Unfortunately, the quality of prepared crystals was very low, which lead to the higher R factors.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C160.2502 (6)1.0126 (5)1.4550 (4)0.0432 (11)
H16A0.15711.02101.49840.065*
H16B0.30591.09581.44350.065*
H16C0.34130.96071.49350.065*
Cl10.07945 (13)0.74416 (9)0.62990 (8)0.0353 (4)
Cl20.79884 (14)0.69660 (9)1.38850 (8)0.0377 (4)
O10.3117 (3)0.8580 (2)1.1050 (2)0.0248 (6)
O40.6604 (3)0.6107 (2)0.9064 (2)0.0238 (6)
O50.6164 (4)0.5956 (3)0.6838 (2)0.0384 (7)
O60.7106 (4)0.3966 (3)0.6938 (2)0.0343 (7)
O30.4473 (4)0.9652 (3)1.3038 (3)0.0395 (7)
O20.1699 (4)0.9529 (3)1.3497 (2)0.0361 (7)
C10.2473 (5)0.8278 (3)0.9956 (3)0.0218 (7)
C130.6939 (5)0.6230 (3)1.0194 (3)0.0215 (7)
C50.3291 (5)0.7943 (3)0.8183 (3)0.0254 (8)
H50.41640.78830.77390.030*
C80.6565 (4)0.7415 (3)1.0613 (3)0.0227 (8)
C40.1439 (5)0.7769 (3)0.7713 (3)0.0258 (8)
C150.2866 (5)0.9364 (3)1.2822 (3)0.0281 (8)
C60.3832 (5)0.8203 (3)0.9305 (3)0.0224 (8)
C170.7040 (5)0.4958 (3)0.8609 (3)0.0247 (8)
H17A0.62890.42410.88230.030*
H17B0.83110.48180.88850.030*
C70.5825 (5)0.8440 (3)0.9824 (3)0.0223 (8)
H7A0.60030.92561.02230.027*
H7B0.65330.85090.92370.027*
C30.0112 (5)0.7825 (3)0.8353 (3)0.0255 (8)
H30.11180.76940.80310.031*
C20.0634 (5)0.8080 (3)0.9482 (3)0.0234 (8)
H20.02490.81180.99220.028*
C180.6699 (5)0.5054 (3)0.7362 (3)0.0275 (8)
C100.7594 (5)0.6685 (4)1.2466 (3)0.0279 (8)
C140.1824 (5)0.8784 (3)1.1734 (3)0.0256 (8)
H14A0.11710.79791.18600.031*
H14B0.09450.93601.13810.031*
C110.7946 (5)0.5516 (3)1.2058 (3)0.0275 (8)
H110.83940.48871.25430.033*
C120.7631 (5)0.5283 (3)1.0930 (3)0.0251 (8)
H120.78760.44991.06540.030*
C90.6897 (5)0.7628 (3)1.1747 (3)0.0239 (8)
H90.66540.84081.20330.029*
C190.6900 (7)0.3897 (5)0.5742 (4)0.0423 (10)
H19A0.72220.30760.55220.063*
H19B0.76880.45600.55010.063*
H19C0.56550.40080.54100.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C160.045 (2)0.054 (3)0.033 (2)0.005 (2)0.0143 (19)0.012 (2)
Cl10.0456 (6)0.0380 (6)0.0222 (6)0.0074 (4)0.0048 (4)0.0001 (4)
Cl20.0541 (7)0.0351 (6)0.0231 (6)0.0083 (4)0.0034 (4)0.0029 (4)
O10.0295 (13)0.0248 (13)0.0223 (14)0.0046 (10)0.0094 (10)0.0002 (10)
O40.0349 (13)0.0184 (12)0.0202 (13)0.0044 (10)0.0096 (10)0.0001 (10)
O50.0581 (18)0.0313 (15)0.0285 (16)0.0131 (13)0.0108 (13)0.0047 (12)
O60.0534 (17)0.0296 (14)0.0231 (15)0.0105 (12)0.0127 (12)0.0013 (11)
O30.0335 (16)0.0513 (18)0.0335 (17)0.0050 (13)0.0101 (12)0.0115 (14)
O20.0357 (14)0.0468 (16)0.0280 (16)0.0029 (12)0.0123 (11)0.0084 (12)
C10.0345 (18)0.0108 (15)0.0220 (18)0.0019 (13)0.0098 (14)0.0007 (13)
C130.0274 (16)0.0176 (16)0.0218 (18)0.0018 (13)0.0104 (13)0.0025 (13)
C50.0326 (19)0.0175 (16)0.028 (2)0.0039 (14)0.0109 (15)0.0040 (14)
C80.0233 (16)0.0169 (16)0.030 (2)0.0003 (13)0.0097 (14)0.0040 (14)
C40.040 (2)0.0153 (16)0.0232 (19)0.0047 (14)0.0062 (15)0.0002 (14)
C150.038 (2)0.0222 (18)0.027 (2)0.0056 (15)0.0122 (16)0.0025 (15)
C60.0305 (17)0.0118 (15)0.0266 (19)0.0029 (13)0.0092 (14)0.0021 (13)
C170.0327 (18)0.0186 (16)0.024 (2)0.0036 (14)0.0083 (15)0.0041 (14)
C70.0289 (18)0.0148 (15)0.0255 (19)0.0025 (13)0.0104 (14)0.0029 (14)
C30.0328 (18)0.0183 (16)0.026 (2)0.0039 (14)0.0069 (15)0.0003 (14)
C20.0288 (17)0.0184 (16)0.0246 (19)0.0006 (13)0.0095 (14)0.0005 (14)
C180.0324 (19)0.0209 (18)0.031 (2)0.0004 (14)0.0111 (15)0.0014 (15)
C100.0318 (18)0.0253 (18)0.027 (2)0.0013 (15)0.0075 (15)0.0006 (15)
C140.0319 (18)0.0243 (18)0.0230 (19)0.0023 (14)0.0116 (14)0.0010 (14)
C110.0350 (19)0.0246 (18)0.024 (2)0.0042 (15)0.0068 (15)0.0039 (15)
C120.0323 (18)0.0172 (16)0.027 (2)0.0026 (14)0.0091 (15)0.0004 (14)
C90.0261 (17)0.0204 (16)0.0256 (19)0.0001 (13)0.0070 (14)0.0020 (14)
C190.065 (3)0.042 (2)0.023 (2)0.010 (2)0.0153 (19)0.0062 (18)
Geometric parameters (Å, º) top
C16—O21.437 (6)C8—C71.517 (5)
C16—H16A0.9600C4—C31.380 (5)
C16—H16B0.9600C15—C141.513 (6)
C16—H16C0.9600C6—C71.508 (5)
Cl1—C41.738 (4)C17—C181.510 (5)
Cl2—C101.732 (4)C17—H17A0.9700
O1—C11.367 (4)C17—H17B0.9700
O1—C141.419 (4)C7—H7A0.9700
O4—C131.368 (4)C7—H7B0.9700
O4—C171.409 (4)C3—C21.386 (5)
O5—C181.198 (5)C3—H30.9300
O6—C181.328 (5)C2—H20.9300
O6—C191.449 (5)C10—C111.382 (5)
O3—C151.196 (5)C10—C91.394 (5)
O2—C151.330 (5)C14—H14A0.9700
C1—C21.388 (5)C14—H14B0.9700
C1—C61.411 (5)C11—C121.377 (5)
C13—C81.406 (5)C11—H110.9300
C13—C121.409 (5)C12—H120.9300
C5—C61.381 (5)C9—H90.9300
C5—C41.394 (6)C19—H19A0.9600
C5—H50.9300C19—H19B0.9600
C8—C91.382 (5)C19—H19C0.9600
O2—C16—H16A109.5C6—C7—H7A108.6
O2—C16—H16B109.5C8—C7—H7A108.6
H16A—C16—H16B109.5C6—C7—H7B108.6
O2—C16—H16C109.5C8—C7—H7B108.6
H16A—C16—H16C109.5H7A—C7—H7B107.6
H16B—C16—H16C109.5C4—C3—C2119.2 (3)
C1—O1—C14117.9 (3)C4—C3—H3120.4
C13—O4—C17117.0 (3)C2—C3—H3120.4
C18—O6—C19116.1 (3)C3—C2—C1120.1 (3)
C15—O2—C16114.8 (3)C3—C2—H2119.9
O1—C1—C2124.3 (3)C1—C2—H2119.9
O1—C1—C6114.9 (3)O5—C18—O6125.4 (4)
C2—C1—C6120.8 (3)O5—C18—C17126.2 (3)
O4—C13—C8115.2 (3)O6—C18—C17108.4 (3)
O4—C13—C12124.9 (3)C11—C10—C9120.6 (4)
C8—C13—C12119.9 (3)C11—C10—Cl2119.4 (3)
C6—C5—C4120.2 (3)C9—C10—Cl2119.9 (3)
C6—C5—H5119.9O1—C14—C15107.4 (3)
C4—C5—H5119.9O1—C14—H14A110.2
C9—C8—C13119.0 (3)C15—C14—H14A110.2
C9—C8—C7120.9 (3)O1—C14—H14B110.2
C13—C8—C7120.1 (3)C15—C14—H14B110.2
C3—C4—C5121.3 (4)H14A—C14—H14B108.5
C3—C4—Cl1119.4 (3)C12—C11—C10119.8 (3)
C5—C4—Cl1119.3 (3)C12—C11—H11120.1
O3—C15—O2125.2 (4)C10—C11—H11120.1
O3—C15—C14125.8 (3)C11—C12—C13120.2 (3)
O2—C15—C14109.0 (3)C11—C12—H12119.9
C5—C6—C1118.4 (3)C13—C12—H12119.9
C5—C6—C7121.1 (3)C8—C9—C10120.6 (3)
C1—C6—C7120.4 (3)C8—C9—H9119.7
O4—C17—C18108.6 (3)C10—C9—H9119.7
O4—C17—H17A110.0O6—C19—H19A109.5
C18—C17—H17A110.0O6—C19—H19B109.5
O4—C17—H17B110.0H19A—C19—H19B109.5
C18—C17—H17B110.0O6—C19—H19C109.5
H17A—C17—H17B108.3H19A—C19—H19C109.5
C6—C7—C8114.7 (3)H19B—C19—H19C109.5
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.723.500 (3)142
C17—H17A···Cg2i0.972.673.450 (3)138
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H18Cl2O6
Mr413.23
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)7.4727 (6), 10.4704 (8), 12.2796 (8)
α, β, γ (°)90.384 (6), 100.716 (6), 94.365 (6)
V3)941.08 (12)
Z2
Radiation typeCu Kα
µ (mm1)3.41
Crystal size (mm)0.45 × 0.09 × 0.04
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.258, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8465, 3319, 2606
Rint0.085
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.239, 1.02
No. of reflections3319
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.64

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 aromatic rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.932.723.500 (3)142
C17—H17A···Cg2i0.972.673.450 (3)138
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

This study was supported financially by the Praemium Academiae project of the Academy of Science of the Czech Republic, by the Grant Agency of the Faculty of Environmental Sciences, Czech University of Life Sciences, Prague (project No. 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society") and by the Czech Ministry of Education, Youth and Sports (project ME09058).

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationErtul, S., Tombak, A. H., Bayrakci, M. & Merter, O. (2009). Acta Chim. Slov. 56, 878–884.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds