metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Amino­pyridinium trans-di­aqua­dioxalato­chromate(III)

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, bClermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France, and cCNRS, UMR 6296, ICCF, BP 80026, 63171 Aubière, France
*Correspondence e-mail: cherif.ichraf@yahoo.fr

(Received 11 May 2012; accepted 1 June 2012; online 13 June 2012)

In the structure of the title compound, (C5H7N2)[Cr(C2O4)2(H2O)2], two crystallographically independent formula units are present. Both chromium atoms are six-coordinated in a distorted octa­hedral geometry by two chelating equatorial oxalato ligands and two axial water mol­ecules. The [Cr(C2O4)2(H2O)2] anions and C5H7N2+ cations are linked through a complex three-dimensional hydrogen-bonding network consisting of N—H⋯O and O—H⋯O inter­actions.

Related literature

For the versatility of the oxalato ligand, see: Hernández-Molina et al. (2001[Hernández-Molina, M., Lorenzo-Luis, P. A. & Ruiz-Pénez, C. (2001). CrystEngComm, 16, 1-4.]); Martak et al. (2009[Martak, F., Onggo, D., Ismunandar, I., Nugroho, A. A., Mufti, N. & Yamin, B. M. (2009). Curr. Res. Chem. 1, 1-7.]); Marinescu et al. (2011[Marinescu, G., Andruh, M., Lloret, F. & Julve, M. (2011). Coord. Chem. Rev. 255, 161-185.]). For magnetic studies of oxalatochromium (III) complexes, see: Chen et al. (2005[Chen, X. F., Liu, L., Ma, J. G., Yi, L., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2005). J. Mol. Struct. 750, 94-100.]); Marinescu et al. (2011[Marinescu, G., Andruh, M., Lloret, F. & Julve, M. (2011). Coord. Chem. Rev. 255, 161-185.]). For complexes containing the [Cr(C2O4)2(H2O)2] motif com­pleted by various uncoordinated cations including quinolin­ium, 4-dimethyl­amino­pyridinium and 4-amino­pyridinium, see: Bélombé et al. (2009[Bélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239-240.]); Nenwa et al. (2010[Nenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.]); Chérif et al. (2011[Chérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648-m1649.]).

[Scheme 1]

Experimental

Crystal data
  • (C5H7N2)[Cr(C2O4)2(H2O)2]

  • Mr = 359.20

  • Monoclinic, P 21 /c

  • a = 7.3901 (15) Å

  • b = 17.586 (4) Å

  • c = 20.995 (5) Å

  • β = 107.941 (11)°

  • V = 2596.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.53 × 0.33 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.695, Tmax = 0.835

  • 22038 measured reflections

  • 5865 independent reflections

  • 4091 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.04

  • 5865 reflections

  • 421 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cr1—O11 2.0223 (18)
Cr1—O12 2.0017 (17)
Cr1—O13 1.9421 (17)
Cr1—O14 1.9690 (18)
Cr1—O15 1.9771 (18)
Cr1—O16 1.9517 (18)
Cr2—O21 2.006 (2)
Cr2—O22 2.007 (2)
Cr2—O23 1.9604 (17)
Cr2—O24 1.9846 (18)
Cr2—O25 1.9429 (17)
Cr2—O26 1.9793 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O25i 0.86 2.22 3.047 (4) 161
N11—H11B⋯O22ii 0.86 2.46 3.139 (4) 136
N12—H12⋯O18iii 0.86 2.30 2.998 (3) 139
N12—H12⋯O20iii 0.86 2.16 2.896 (3) 144
N21—H21A⋯O13iv 0.86 2.31 3.142 (3) 163
N21—H21B⋯O11v 0.86 2.42 3.201 (4) 151
N22—H22⋯O28vi 0.86 2.38 3.121 (3) 145
N22—H22⋯O30vi 0.86 2.05 2.755 (3) 138
O11—H111⋯O27vii 0.84 (3) 2.30 (3) 3.103 (3) 161 (2)
O11—H111⋯O29vii 0.84 (3) 2.19 (2) 2.749 (3) 123 (2)
O11—H211⋯O18viii 0.84 (1) 1.95 (2) 2.777 (3) 173 (3)
O12—H112⋯O27 0.84 (2) 1.85 (2) 2.684 (3) 176 (2)
O12—H212⋯O28ii 0.84 (1) 1.78 (1) 2.619 (2) 172 (3)
O21—H121⋯O20iii 0.84 (2) 1.85 (1) 2.682 (3) 176 (3)
O21—H221⋯O17v 0.84 (2) 1.85 (2) 2.681 (3) 177 (2)
O22—H122⋯O23ix 0.85 (2) 1.94 (2) 2.780 (2) 173 (3)
O22—H222⋯O19 0.84 (2) 1.85 (2) 2.646 (3) 157 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) x, y+1, z; (vii) x+1, y, z; (viii) -x+2, -y+1, -z+1; (ix) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, much work has been focused on the great versatility of the oxalato ligand which affords a wide number of homo and heteropolynuclear complexes with various dimensionalities and network architectures (Marinescu et al., 2011; Martak et al., 2009; Hernández-Molina et al., 2001). This exceptional versatility of the oxalato ligands offers possibilities for the tuning of magnetic properties and thus makes them very useful for obtaining materials with potential applications in magnetism (Chen et al., 2005; Marinescu et al., 2011). The present investigation deals with the new oxalato chromium (III) salt: (C5H7N2)[Cr(C2O4)2(H2O)2].

The structure is made up of two crystallographically independent entities of formula (C5H7N2)[Cr(C2O4)2(H2O)2] (Fig. 1). The two chromium atoms Cr1 and Cr2 exhibit a distorted octahedral environment with bond lengths and angles very close to each other. The Cr—O(ox) bonds ranges from 1.9421 (17) to 1.9771 (18) Å for Cr1—O(ox) and from 1.9429 (17) to 1.9846 (18) Å for Cr2—O(ox), values which are shorter than the Cr—O(water) bonds [2.0017 (17) - 2.0223 (18) Å for Cr1—O(water) and 2.006 (2) - 2.007 (2) Å for Cr2—O(water)]. Such type of coordination was already observed in complexes containing the [Cr(C2O4)2(H2O)2]- motif completed with various uncoordinated cations including quinolinium, 4-dimethylaminopyridinium and 4-aminopyridinium with similar geometric parameters (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011). The charge balance of the mononuclear anion is provided by an uncoordinated 3-aminopyridinium cation.

In the crystal structure intermolecular hydrogen bonds and very weak ππ contacts established between the 3-aminopyridinium cations connect the ionic entities generating layers parallel to (001) (Fig. 2). These layers are further connected by O—H···O [O11—H211···O18 / O12—H212···O28 / O21—H121···O20 / O22—H122···O23] and N—H···O [N11—H11A···O25 / N21—H21···O13] hydrogen bonds (Fig. 3). The shortest interlayer chromium (III) ion separations are: Cr1—Cr1: 5.808 (2) Å, Cr2—Cr2: 5.226 (2) Å and Cr1—Cr2: 6.301 (2) Å.

Related literature top

For the versatility of the oxalato ligand, see: Hernández-Molina et al. (2001); Martak et al. (2009); Marinescu et al. (2011). For magnetic studies of oxalatochromium (III) complexes, see: Chen et al. (2005); Marinescu et al. (2011). For complexes containing the [Cr(C2O4)2(H2O)2]- motif completed by various uncoordinated cations including quinolinium, 4-dimethylaminopyridinium and 4-aminopyridinium, see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011).

Experimental top

To 10 cm3 of a solution of chromium chloride CrCl3.6H2O (1 mmol) was added under stirring at room temperature previously prepared solutions of 3-aminopyridine C5H6N2 (1 mmol, 10 cm3) and oxalic acid H2C2O4.2H2O (2 mmol, 10 cm3) in water. The obtained solution was stirred for 3 h at 323 K and prismatic violet single crystals were grown by slow evaporation at room temperature.

Refinement top

All non hydrogen atoms were refined anisotropically. The hydrogen atoms of the water molecules were located in a difference Fourier map and refined with restraints: d(O—H) = 0.85 (1) Å, d(H···H) = 1.387 (2) Å and Uiso(H) = 1.5Ueq(O), whereas those of the 3-aminopyridinium cation were set in calculated positions and refined as riding atoms with d(C—H) = 0.93 Å, d(N—H) = 0.86 Å and Uiso(H) = 1.2Ueq(C or N). The highest residual peak in the final Fourier map was located at 0.97 Å from the C4 atom and the deepest hole was located at 0.62 Å from the Cr2 atom.

Structure description top

In recent years, much work has been focused on the great versatility of the oxalato ligand which affords a wide number of homo and heteropolynuclear complexes with various dimensionalities and network architectures (Marinescu et al., 2011; Martak et al., 2009; Hernández-Molina et al., 2001). This exceptional versatility of the oxalato ligands offers possibilities for the tuning of magnetic properties and thus makes them very useful for obtaining materials with potential applications in magnetism (Chen et al., 2005; Marinescu et al., 2011). The present investigation deals with the new oxalato chromium (III) salt: (C5H7N2)[Cr(C2O4)2(H2O)2].

The structure is made up of two crystallographically independent entities of formula (C5H7N2)[Cr(C2O4)2(H2O)2] (Fig. 1). The two chromium atoms Cr1 and Cr2 exhibit a distorted octahedral environment with bond lengths and angles very close to each other. The Cr—O(ox) bonds ranges from 1.9421 (17) to 1.9771 (18) Å for Cr1—O(ox) and from 1.9429 (17) to 1.9846 (18) Å for Cr2—O(ox), values which are shorter than the Cr—O(water) bonds [2.0017 (17) - 2.0223 (18) Å for Cr1—O(water) and 2.006 (2) - 2.007 (2) Å for Cr2—O(water)]. Such type of coordination was already observed in complexes containing the [Cr(C2O4)2(H2O)2]- motif completed with various uncoordinated cations including quinolinium, 4-dimethylaminopyridinium and 4-aminopyridinium with similar geometric parameters (Bélombé et al., 2009; Nenwa et al., 2010; Chérif et al., 2011). The charge balance of the mononuclear anion is provided by an uncoordinated 3-aminopyridinium cation.

In the crystal structure intermolecular hydrogen bonds and very weak ππ contacts established between the 3-aminopyridinium cations connect the ionic entities generating layers parallel to (001) (Fig. 2). These layers are further connected by O—H···O [O11—H211···O18 / O12—H212···O28 / O21—H121···O20 / O22—H122···O23] and N—H···O [N11—H11A···O25 / N21—H21···O13] hydrogen bonds (Fig. 3). The shortest interlayer chromium (III) ion separations are: Cr1—Cr1: 5.808 (2) Å, Cr2—Cr2: 5.226 (2) Å and Cr1—Cr2: 6.301 (2) Å.

For the versatility of the oxalato ligand, see: Hernández-Molina et al. (2001); Martak et al. (2009); Marinescu et al. (2011). For magnetic studies of oxalatochromium (III) complexes, see: Chen et al. (2005); Marinescu et al. (2011). For complexes containing the [Cr(C2O4)2(H2O)2]- motif completed by various uncoordinated cations including quinolinium, 4-dimethylaminopyridinium and 4-aminopyridinium, see: Bélombé et al. (2009); Nenwa et al. (2010); Chérif et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom-numbering scheme. Thermal ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the hydrogen bonding system (dashed lines) and ππ stacking interactions between pairs of 3-aminopyridinium cations showing the layered structure.
[Figure 3] Fig. 3. Structure projection along a axis showing connection between layers via hydrogen bonds (dashed lines).
3-Aminopyridinium trans-diaquadioxalatochromate(III) top
Crystal data top
(C5H7N2)[Cr(C2O4)2(H2O)2]F(000) = 1464
Mr = 359.20Dx = 1.838 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5082 reflections
a = 7.3901 (15) Åθ = 3.0–27.3°
b = 17.586 (4) ŵ = 0.94 mm1
c = 20.995 (5) ÅT = 296 K
β = 107.941 (11)°Prism, violet
V = 2596.0 (10) Å30.53 × 0.33 × 0.19 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
5865 independent reflections
Radiation source: fine-focus sealed tube4091 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.695, Tmax = 0.835k = 2222
22038 measured reflectionsl = 2427
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0522P)2 + 1.1562P]
where P = (Fo2 + 2Fc2)/3
5865 reflections(Δ/σ)max = 0.001
421 parametersΔρmax = 0.68 e Å3
12 restraintsΔρmin = 0.42 e Å3
Crystal data top
(C5H7N2)[Cr(C2O4)2(H2O)2]V = 2596.0 (10) Å3
Mr = 359.20Z = 8
Monoclinic, P21/cMo Kα radiation
a = 7.3901 (15) ŵ = 0.94 mm1
b = 17.586 (4) ÅT = 296 K
c = 20.995 (5) Å0.53 × 0.33 × 0.19 mm
β = 107.941 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
5865 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4091 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.835Rint = 0.036
22038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.68 e Å3
5865 reflectionsΔρmin = 0.42 e Å3
421 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.86991 (5)0.39632 (2)0.387432 (18)0.02059 (12)
O111.1473 (2)0.39735 (10)0.44297 (9)0.0262 (4)
H1111.205 (4)0.3619 (12)0.4303 (12)0.039*
H2111.160 (4)0.3939 (15)0.4838 (6)0.039*
O120.5955 (2)0.39686 (10)0.33227 (8)0.0265 (4)
H1120.531 (3)0.3644 (13)0.3449 (12)0.040*
H2120.575 (4)0.3931 (16)0.2906 (5)0.040*
O130.8080 (2)0.33173 (10)0.45283 (8)0.0252 (4)
O140.9080 (2)0.29864 (10)0.34754 (8)0.0276 (4)
O150.9201 (2)0.46853 (10)0.32268 (8)0.0255 (4)
O160.8323 (2)0.48926 (10)0.43257 (8)0.0252 (4)
O170.8865 (3)0.17386 (11)0.36410 (10)0.0379 (5)
O180.8431 (3)0.61488 (10)0.42415 (9)0.0320 (4)
O190.7775 (3)0.21093 (10)0.47675 (9)0.0359 (5)
O200.9095 (3)0.59268 (10)0.30172 (9)0.0304 (4)
C110.8736 (3)0.24077 (15)0.37920 (12)0.0252 (6)
C120.8138 (3)0.26020 (14)0.44180 (12)0.0228 (5)
C130.8984 (3)0.53796 (14)0.33634 (12)0.0223 (5)
C140.8543 (3)0.55075 (14)0.40331 (12)0.0228 (5)
Cr20.37874 (5)0.07363 (2)0.386675 (19)0.02155 (12)
O210.1084 (3)0.07383 (10)0.32683 (9)0.0272 (4)
H1210.103 (4)0.0772 (16)0.2865 (6)0.041*
H2210.036 (3)0.1047 (13)0.3372 (12)0.041*
O220.6505 (3)0.07089 (10)0.44535 (8)0.0259 (4)
H1220.663 (4)0.0556 (14)0.4848 (7)0.039*
H2220.704 (4)0.1132 (9)0.4470 (13)0.039*
O230.3433 (2)0.02304 (9)0.42779 (8)0.0258 (4)
O240.4379 (2)0.00638 (10)0.31981 (8)0.0270 (4)
O250.3026 (2)0.13247 (10)0.45248 (8)0.0263 (4)
O260.4174 (2)0.17523 (10)0.35243 (9)0.0288 (4)
O270.3779 (3)0.29802 (11)0.37330 (10)0.0385 (5)
O280.4338 (3)0.11727 (10)0.29469 (8)0.0315 (4)
O290.2676 (3)0.25175 (11)0.48140 (10)0.0375 (5)
O300.3577 (3)0.14718 (10)0.41233 (9)0.0404 (5)
C210.3098 (3)0.20509 (15)0.44561 (13)0.0252 (6)
C220.3738 (3)0.22954 (15)0.38542 (13)0.0267 (6)
C230.4178 (3)0.06459 (15)0.33022 (11)0.0227 (5)
C240.3688 (3)0.08241 (14)0.39500 (12)0.0246 (6)
N110.1544 (4)0.41533 (17)0.06676 (15)0.0610 (8)
H11A0.17250.39510.03190.073*
H11B0.15200.46400.07040.073*
N120.1098 (3)0.24902 (15)0.15746 (14)0.0446 (6)
H120.11310.20060.15240.053*
C10.1011 (4)0.39996 (18)0.17377 (15)0.0418 (8)
H10.09670.45220.17990.050*
C20.0795 (5)0.3528 (2)0.22143 (17)0.0523 (9)
H20.06360.37320.26020.063*
C30.0805 (4)0.27507 (19)0.21400 (16)0.0485 (8)
H30.06190.24230.24620.058*
C40.1338 (4)0.29243 (18)0.10945 (16)0.0402 (8)
H40.15320.27020.07190.048*
C50.1303 (4)0.37163 (18)0.11460 (15)0.0396 (7)
N210.3221 (4)0.56454 (17)0.44750 (14)0.0603 (8)
H21A0.30770.58870.48120.072*
H21B0.31700.51570.44640.072*
N220.3907 (3)0.71990 (14)0.34738 (13)0.0405 (6)
H220.39520.76870.34990.049*
C60.3605 (4)0.68177 (17)0.39823 (15)0.0359 (7)
H60.34500.70800.43460.043*
C70.4141 (4)0.68807 (19)0.29359 (16)0.0454 (8)
H70.43400.71730.25950.055*
C80.4078 (4)0.6097 (2)0.28982 (15)0.0464 (8)
H80.42360.58530.25260.056*
C90.3789 (4)0.56839 (17)0.34007 (16)0.0412 (7)
H90.37670.51560.33700.049*
C100.3523 (4)0.60299 (17)0.39666 (15)0.0350 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0306 (2)0.0155 (2)0.0179 (2)0.00071 (16)0.01067 (16)0.00029 (15)
O110.0333 (10)0.0199 (10)0.0251 (9)0.0027 (8)0.0085 (8)0.0015 (7)
O120.0326 (10)0.0269 (10)0.0212 (9)0.0032 (8)0.0100 (8)0.0025 (8)
O130.0388 (10)0.0196 (9)0.0211 (9)0.0010 (8)0.0149 (8)0.0010 (7)
O140.0389 (10)0.0231 (10)0.0253 (9)0.0014 (8)0.0163 (8)0.0023 (8)
O150.0373 (10)0.0200 (10)0.0227 (9)0.0000 (8)0.0144 (8)0.0008 (7)
O160.0383 (10)0.0201 (9)0.0206 (9)0.0001 (8)0.0142 (8)0.0006 (7)
O170.0400 (11)0.0233 (11)0.0496 (12)0.0021 (9)0.0129 (9)0.0104 (9)
O180.0489 (11)0.0189 (10)0.0288 (10)0.0010 (8)0.0128 (9)0.0030 (8)
O190.0536 (12)0.0226 (10)0.0324 (11)0.0083 (9)0.0148 (9)0.0037 (8)
O200.0459 (11)0.0210 (10)0.0247 (10)0.0048 (8)0.0116 (8)0.0041 (8)
C110.0212 (13)0.0257 (15)0.0268 (13)0.0005 (11)0.0043 (10)0.0032 (11)
C120.0237 (12)0.0203 (14)0.0224 (12)0.0013 (10)0.0041 (10)0.0004 (10)
C130.0232 (12)0.0211 (13)0.0210 (12)0.0027 (10)0.0046 (10)0.0002 (10)
C140.0247 (13)0.0206 (14)0.0204 (12)0.0005 (10)0.0030 (10)0.0001 (10)
Cr20.0317 (2)0.0164 (2)0.0186 (2)0.00061 (16)0.01077 (17)0.00100 (15)
O210.0335 (10)0.0263 (10)0.0230 (9)0.0036 (8)0.0102 (8)0.0026 (8)
O220.0352 (10)0.0178 (9)0.0247 (9)0.0015 (8)0.0092 (8)0.0025 (7)
O230.0392 (10)0.0200 (10)0.0212 (9)0.0015 (8)0.0139 (8)0.0004 (7)
O240.0387 (10)0.0258 (10)0.0208 (9)0.0008 (8)0.0157 (8)0.0000 (7)
O250.0385 (10)0.0197 (9)0.0233 (9)0.0011 (8)0.0133 (8)0.0005 (7)
O260.0370 (10)0.0247 (10)0.0273 (10)0.0011 (8)0.0138 (8)0.0069 (8)
O270.0391 (11)0.0206 (10)0.0539 (13)0.0015 (9)0.0114 (10)0.0111 (9)
O280.0457 (11)0.0267 (11)0.0231 (9)0.0063 (8)0.0119 (8)0.0056 (8)
O290.0495 (12)0.0260 (11)0.0393 (11)0.0064 (9)0.0168 (9)0.0068 (9)
O300.0722 (14)0.0195 (11)0.0342 (11)0.0016 (10)0.0234 (10)0.0006 (8)
C210.0230 (13)0.0220 (14)0.0275 (13)0.0017 (11)0.0032 (10)0.0010 (11)
C220.0233 (13)0.0239 (14)0.0298 (14)0.0007 (11)0.0037 (11)0.0053 (11)
C230.0256 (13)0.0244 (14)0.0168 (12)0.0034 (10)0.0045 (10)0.0009 (10)
C240.0312 (14)0.0198 (14)0.0224 (13)0.0002 (11)0.0077 (11)0.0013 (10)
N110.091 (2)0.0408 (17)0.063 (2)0.0057 (16)0.0408 (18)0.0036 (15)
N120.0458 (15)0.0305 (14)0.0538 (17)0.0036 (12)0.0100 (13)0.0005 (13)
C10.0465 (18)0.0302 (16)0.0490 (19)0.0060 (14)0.0154 (15)0.0161 (14)
C20.057 (2)0.058 (2)0.047 (2)0.0019 (18)0.0239 (16)0.0090 (17)
C30.0514 (19)0.045 (2)0.047 (2)0.0028 (16)0.0122 (16)0.0084 (16)
C40.0322 (15)0.0386 (19)0.0459 (18)0.0040 (13)0.0063 (13)0.0226 (15)
C50.0374 (16)0.0363 (18)0.0443 (18)0.0008 (13)0.0113 (14)0.0005 (14)
N210.087 (2)0.0436 (18)0.065 (2)0.0002 (15)0.0444 (17)0.0071 (15)
N220.0423 (14)0.0288 (14)0.0484 (16)0.0035 (11)0.0108 (12)0.0017 (12)
C60.0349 (15)0.0326 (17)0.0402 (17)0.0000 (13)0.0114 (13)0.0127 (13)
C70.0472 (18)0.051 (2)0.0379 (18)0.0001 (16)0.0129 (15)0.0033 (15)
C80.0449 (18)0.060 (2)0.0375 (18)0.0007 (16)0.0169 (14)0.0205 (16)
C90.0388 (17)0.0286 (16)0.056 (2)0.0046 (13)0.0140 (15)0.0146 (15)
C100.0307 (15)0.0317 (16)0.0446 (18)0.0006 (12)0.0143 (13)0.0036 (13)
Geometric parameters (Å, º) top
Cr1—O112.0223 (18)O22—H1220.848 (16)
Cr1—O122.0017 (17)O22—H2220.84 (2)
Cr1—O131.9421 (17)N11—C51.320 (4)
Cr1—O141.9690 (18)N12—C31.351 (4)
Cr1—O151.9771 (18)N12—C41.319 (4)
Cr1—O161.9517 (18)N11—H11B0.8600
Cr2—O212.006 (2)N11—H11A0.8600
Cr2—O222.007 (2)N12—H120.8600
Cr2—O231.9604 (17)N21—C101.339 (4)
Cr2—O241.9846 (18)N22—C61.336 (4)
Cr2—O251.9429 (17)N22—C71.319 (4)
Cr2—O261.9793 (18)N21—H21A0.8600
O13—C121.282 (3)N21—H21B0.8600
O14—C111.283 (3)N22—H220.8600
O15—C131.276 (3)C11—C121.548 (3)
O16—C141.279 (3)C13—C141.554 (3)
O17—C111.230 (3)C21—C221.541 (4)
O18—C141.222 (3)C23—C241.544 (3)
O19—C121.218 (3)C1—C21.347 (5)
O20—C131.224 (3)C1—C51.415 (4)
O11—H2110.835 (13)C2—C31.376 (5)
O11—H1110.84 (3)C4—C51.398 (4)
O12—H2120.843 (11)C1—H10.9300
O12—H1120.84 (2)C2—H20.9300
O23—C241.296 (3)C3—H30.9300
O24—C231.284 (3)C4—H40.9300
O25—C211.288 (3)C6—C101.387 (4)
O26—C221.278 (3)C7—C81.380 (5)
O27—C221.233 (3)C8—C91.351 (4)
O28—C231.218 (3)C9—C101.402 (4)
O29—C211.216 (3)C6—H60.9300
O30—C241.206 (3)C7—H70.9300
O21—H1210.837 (15)C8—H80.9300
O21—H2210.84 (2)C9—H90.9300
Cr1···O28i3.7984 (19)O19···H1222.88 (3)
Cr2···O193.829 (2)O19···H6ii2.7100
Cr1···H21Aii3.4100O19···H2221.852 (18)
Cr1···H2iii3.4200O19···H4vi2.9000
O11···O142.824 (3)O20···H12i2.1600
O11···O152.855 (2)O20···H121i1.846 (15)
O11···O132.825 (2)O20···H3i2.8500
O11···O27iii3.103 (3)O21···H1xi2.6000
O11···O29iii2.749 (3)O22···H11Bv2.4600
O11···N21iii3.201 (4)O23···H1222.68 (3)
O11···C143.398 (3)O23···H122vii1.937 (17)
O11···O162.787 (2)O24···H8v2.5000
O11···O18iv2.777 (3)O24···H1212.66 (3)
O11···C14iv3.358 (3)O25···H11Aix2.2200
O12···O272.684 (3)O25···H1222.88 (3)
O12···O142.822 (2)O25···H2212.65 (2)
O12···O152.772 (2)O26···H1212.88 (3)
O12···O132.781 (2)O26···H2222.65 (3)
O12···O28i2.619 (2)O27···H1121.85 (2)
O12···C113.389 (3)O27···H111viii2.30 (3)
O12···C123.374 (3)O28···H212v1.781 (13)
O12···C133.325 (3)O28···H22x2.3800
O12···C143.384 (3)O29···H211viii2.63 (3)
O12···O162.805 (2)O29···H4ix2.3400
O13···C112.376 (3)O29···H111viii2.19 (2)
O13···O122.781 (2)O30···H22x2.0500
O13···O18iv3.178 (3)O30···H6x2.6000
O13···O142.603 (2)O30···H122vii2.74 (2)
O13···O162.817 (3)N11···O22i3.139 (4)
O13···O273.158 (3)N11···C23i3.254 (4)
O13···N21ii3.142 (3)N11···C24i3.364 (4)
O13···O112.825 (2)N11···O25xii3.047 (4)
O14···O132.603 (2)N12···O20v2.896 (3)
O14···C122.389 (3)N12···O18v2.998 (3)
O14···O122.822 (2)N21···O11viii3.201 (4)
O14···O153.039 (3)N21···C13viii3.312 (4)
O14···O112.824 (3)N21···C14viii3.301 (4)
O14···C2iii3.405 (4)N21···O13ii3.142 (3)
O15···C2iii3.405 (4)N21···O16ii3.211 (3)
O15···O122.772 (2)N22···O30xiii2.755 (3)
O15···O112.855 (2)N22···O28xiii3.121 (3)
O15···C142.388 (3)C1···O28i3.308 (4)
O15···O162.608 (2)C1···O30xiv3.417 (4)
O15···O143.039 (3)C1···C24xiv3.339 (4)
O16···C132.380 (3)C2···O273.410 (4)
O16···O112.787 (2)C2···O15viii3.405 (4)
O16···N21ii3.211 (3)C2···O14viii3.405 (4)
O16···O122.805 (2)C3···O273.413 (4)
O16···O16iv3.159 (2)C3···O20v3.228 (4)
O16···O152.608 (2)C4···O18v3.217 (4)
O16···O132.817 (3)C4···O19xv3.191 (4)
O17···O25iii3.149 (3)C4···O29xii3.232 (4)
O17···O21iii2.681 (3)C5···O28i3.204 (4)
O17···O192.800 (3)C5···C23i3.372 (4)
O17···C21iii3.117 (3)C6···O30xiii3.023 (4)
O17···C7v3.380 (4)C6···O29ii3.321 (4)
O18···O13iv3.178 (3)C7···O17i3.380 (4)
O18···O11iv2.777 (3)C8···O24i3.394 (4)
O18···O202.789 (3)C8···C143.577 (4)
O18···C4i3.217 (4)C9···C143.366 (4)
O18···N12i2.998 (3)C9···C13viii3.568 (4)
O19···O263.164 (3)C9···O20viii3.338 (4)
O19···O222.646 (3)C10···O20viii3.270 (4)
O19···C223.027 (3)C10···C13viii3.398 (4)
O19···C213.315 (3)C11···O29iii3.045 (3)
O19···C4vi3.191 (4)C11···C21iii3.156 (3)
O19···O172.800 (3)C12···C223.145 (3)
O19···O30vii3.019 (3)C12···O263.309 (3)
O19···Cr23.829 (2)C12···O29iii3.200 (3)
O20···N12i2.896 (3)C12···O273.168 (3)
O20···O21i2.682 (3)C13···N21iii3.312 (4)
O20···C3i3.228 (4)C13···C10iii3.398 (4)
O20···O182.789 (3)C13···C9iii3.568 (4)
O20···C10iii3.270 (4)C14···O11iv3.358 (3)
O20···C9iii3.338 (4)C14···C93.366 (4)
O21···C243.407 (3)C14···C83.577 (4)
O21···O20v2.682 (3)C14···N21iii3.301 (4)
O21···C233.325 (3)C21···C11viii3.156 (3)
O21···O17viii2.681 (3)C21···O30vii3.385 (3)
O21···O252.784 (3)C21···O193.315 (3)
O21···O242.753 (3)C21···O17viii3.117 (3)
O21···O232.853 (3)C22···C123.145 (3)
O21···C213.388 (3)C22···O193.027 (3)
O21···O262.816 (3)C23···C5v3.372 (4)
O21···C223.372 (3)C23···N11v3.254 (4)
O22···O232.739 (3)C24···C1xi3.339 (4)
O22···C243.371 (3)C24···N11v3.364 (4)
O22···O262.841 (3)C24···O22vii3.405 (3)
O22···C24vii3.405 (3)C11···H221iii2.93 (2)
O22···N11v3.139 (4)C12···H1123.04 (2)
O22···O192.646 (3)C12···H2222.722 (18)
O22···O252.836 (3)C13···H121i2.667 (16)
O22···O23vii2.780 (2)C13···H12i2.8700
O22···O242.855 (2)C14···H12i2.9200
O23···O242.622 (2)C14···H211iv2.594 (17)
O23···O22vii2.780 (2)C21···H2213.09 (2)
O23···O222.739 (3)C21···H11Aix2.9200
O23···C232.393 (3)C21···H111viii2.86 (2)
O23···O252.817 (2)C22···H1122.88 (2)
O23···O212.853 (3)C22···H111viii2.93 (2)
O24···O212.753 (3)C23···H22x2.9700
O24···O263.062 (3)C23···H212v2.660 (15)
O24···C242.385 (3)C24···H122vii2.648 (18)
O24···C8v3.394 (4)C24···H22x2.8100
O24···O232.622 (2)H1···H11B2.4600
O24···O222.855 (2)H1···O21xiv2.6000
O25···N11ix3.047 (4)H2···O15viii2.5500
O25···O212.784 (3)H2···O14viii2.7800
O25···O30vii3.168 (3)H2···Cr1viii3.4200
O25···O232.817 (2)H3···O20v2.8500
O25···O222.836 (3)H3···O14viii2.8800
O25···O262.607 (2)H4···O18v2.7300
O25···O17viii3.149 (3)H4···H11A2.3700
O25···C222.373 (3)H4···O29xii2.3400
O26···O222.841 (3)H4···O19xv2.9000
O26···O252.607 (2)H6···H21A2.3700
O26···O243.062 (3)H6···O30xiii2.6000
O26···C212.386 (3)H6···O19ii2.7100
O26···O193.164 (3)H8···O24i2.5000
O26···O212.816 (3)H9···H21B2.4700
O26···C123.309 (3)H9···O122.6600
O27···C33.413 (4)H11A···H42.3700
O27···C123.168 (3)H11A···O25xii2.2200
O27···O133.158 (3)H11A···C21xii2.9200
O27···O292.760 (3)H11B···O22i2.4600
O27···O122.684 (3)H11B···H12.4600
O27···C23.410 (4)H12···C13v2.8700
O27···O11viii3.103 (3)H12···C14v2.9200
O28···O302.748 (3)H12···O18v2.3000
O28···C5v3.204 (4)H12···O20v2.1600
O28···O12v2.619 (2)H21A···Cr1ii3.4100
O28···N22x3.121 (3)H21A···O16ii2.7200
O28···Cr1v3.7984 (19)H21A···O13ii2.3100
O28···C1v3.308 (4)H21A···H62.3700
O29···C6ii3.321 (4)H21B···H92.4700
O29···C12viii3.200 (3)H21B···O11viii2.4200
O29···C11viii3.045 (3)H22···O30xiii2.0500
O29···C4ix3.232 (4)H22···C23xiii2.9700
O29···O272.760 (3)H22···O28xiii2.3800
O29···O11viii2.749 (3)H22···C24xiii2.8100
O30···O19vii3.019 (3)H111···C21iii2.86 (2)
O30···O282.748 (3)H111···C22iii2.93 (2)
O30···C1xi3.417 (4)H111···O29iii2.19 (2)
O30···N22x2.755 (3)H111···O27iii2.30 (3)
O30···C21vii3.385 (3)H112···O271.85 (2)
O30···O25vii3.168 (3)H112···C123.04 (2)
O30···C6x3.023 (4)H112···C222.88 (2)
O11···H21Biii2.4200H121···O20v1.846 (14)
O12···H92.6600H121···C13v2.667 (16)
O13···H21Aii2.3100H122···O30vii2.74 (2)
O13···H2112.71 (3)H122···C24vii2.648 (18)
O13···H1122.61 (2)H122···O192.88 (3)
O14···H2122.90 (3)H122···O23vii1.937 (18)
O14···H1112.59 (3)H211···C14iv2.594 (17)
O14···H3iii2.8800H211···O29iii2.63 (3)
O14···H2iii2.7800H211···O18iv1.946 (15)
O15···H2122.77 (3)H211···O16iv2.69 (2)
O15···H2iii2.5500H212···O28i1.781 (13)
O16···H2112.87 (3)H212···C23i2.660 (15)
O16···H211iv2.69 (2)H221···C11viii2.93 (2)
O16···H21Aii2.7200H221···C213.09 (2)
O17···H221iii1.85 (2)H221···O17viii1.85 (2)
O17···H2222.73 (3)H222···C122.722 (18)
O18···H12i2.3000H222···O172.73 (3)
O18···H211iv1.946 (15)H222···O191.852 (18)
O18···H4i2.7300
O11—Cr1—O12179.21 (7)H21A—N21—H21B120.00
O11—Cr1—O1390.88 (7)C10—N21—H21A120.00
O11—Cr1—O1490.04 (7)C7—N22—H22118.00
O11—Cr1—O1591.10 (7)C6—N22—H22118.00
O11—Cr1—O1689.04 (7)O17—C11—C12119.7 (2)
O12—Cr1—O1389.69 (7)O14—C11—O17125.6 (2)
O12—Cr1—O1490.58 (7)O14—C11—C12114.8 (2)
O12—Cr1—O1588.30 (7)O13—C12—C11113.8 (2)
O12—Cr1—O1690.37 (7)O19—C12—C11121.9 (2)
O13—Cr1—O1483.46 (7)O13—C12—O19124.3 (2)
O13—Cr1—O15175.36 (7)O15—C13—C14114.7 (2)
O13—Cr1—O1692.68 (7)O15—C13—O20125.7 (2)
O14—Cr1—O15100.73 (7)O20—C13—C14119.6 (2)
O14—Cr1—O16176.02 (7)O16—C14—C13113.9 (2)
O15—Cr1—O1683.16 (7)O16—C14—O18125.2 (2)
O23—Cr2—O2483.29 (7)O18—C14—C13120.9 (2)
O23—Cr2—O2592.38 (7)O25—C21—C22113.7 (2)
O23—Cr2—O26175.27 (7)O25—C21—O29124.9 (2)
O24—Cr2—O25174.57 (7)O29—C21—C22121.4 (2)
O24—Cr2—O26101.13 (7)O27—C22—C21118.4 (2)
O25—Cr2—O2683.30 (7)O26—C22—O27126.3 (2)
O22—Cr2—O2491.32 (7)O26—C22—C21115.4 (2)
O21—Cr2—O22178.47 (8)O28—C23—C24118.6 (2)
O21—Cr2—O2392.00 (7)O24—C23—C24114.7 (2)
O21—Cr2—O2487.24 (7)O24—C23—O28126.7 (2)
O21—Cr2—O2589.64 (7)O23—C24—C23114.6 (2)
O21—Cr2—O2689.90 (7)O23—C24—O30124.5 (2)
O22—Cr2—O2387.31 (7)O30—C24—C23120.9 (2)
O22—Cr2—O2591.75 (7)C2—C1—C5121.4 (3)
O22—Cr2—O2690.89 (7)C1—C2—C3121.4 (3)
Cr1—O13—C12114.70 (15)N12—C3—C2116.4 (3)
Cr1—O14—C11113.24 (15)N12—C4—C5120.5 (3)
Cr1—O15—C13113.39 (15)C1—C5—C4115.5 (3)
Cr1—O16—C14114.63 (15)N11—C5—C1123.8 (3)
Cr1—O11—H211111 (2)N11—C5—C4120.8 (3)
H111—O11—H211111 (3)C2—C1—H1119.00
Cr1—O11—H111109.4 (18)C5—C1—H1119.00
H112—O12—H212110 (3)C1—C2—H2119.00
Cr1—O12—H212115 (2)C3—C2—H2119.00
Cr1—O12—H112112.8 (16)C2—C3—H3122.00
Cr2—O23—C24113.81 (15)N12—C3—H3122.00
Cr2—O24—C23113.37 (14)C5—C4—H4120.00
Cr2—O25—C21114.67 (15)N12—C4—H4120.00
Cr2—O26—C22112.90 (16)N22—C6—C10119.9 (3)
H121—O21—H221113 (3)N22—C7—C8117.5 (3)
Cr2—O21—H221115.6 (16)C7—C8—C9120.2 (3)
Cr2—O21—H121111 (2)C8—C9—C10121.7 (3)
H122—O22—H222109 (2)N21—C10—C9123.9 (3)
Cr2—O22—H122113 (2)C6—C10—C9115.9 (3)
Cr2—O22—H222112.0 (18)N21—C10—C6120.2 (3)
C3—N12—C4124.8 (3)N22—C6—H6120.00
H11A—N11—H11B120.00C10—C6—H6120.00
C5—N11—H11A120.00N22—C7—H7121.00
C5—N11—H11B120.00C8—C7—H7121.00
C4—N12—H12118.00C7—C8—H8120.00
C3—N12—H12118.00C9—C8—H8120.00
C6—N22—C7124.7 (3)C8—C9—H9119.00
C10—N21—H21B120.00C10—C9—H9119.00
O11—Cr1—O13—C1291.40 (16)Cr2—O23—C24—C231.1 (2)
O12—Cr1—O13—C1289.16 (16)Cr2—O23—C24—O30178.4 (2)
O14—Cr1—O13—C121.46 (16)Cr2—O24—C23—O28175.3 (2)
O16—Cr1—O13—C12179.52 (16)Cr2—O24—C23—C244.8 (2)
O11—Cr1—O14—C1192.22 (16)Cr2—O25—C21—C221.2 (2)
O12—Cr1—O14—C1188.28 (16)Cr2—O25—C21—O29179.8 (2)
O13—Cr1—O14—C111.34 (16)Cr2—O26—C22—C212.5 (3)
O15—Cr1—O14—C11176.66 (15)Cr2—O26—C22—O27177.3 (2)
O11—Cr1—O15—C1391.84 (16)C3—N12—C4—C50.1 (5)
O12—Cr1—O15—C1387.64 (16)C4—N12—C3—C21.2 (5)
O14—Cr1—O15—C13177.91 (15)C7—N22—C6—C100.1 (5)
O16—Cr1—O15—C132.94 (16)C6—N22—C7—C80.3 (5)
O11—Cr1—O16—C1491.27 (16)O17—C11—C12—O190.5 (4)
O12—Cr1—O16—C1488.20 (16)O14—C11—C12—O130.2 (3)
O13—Cr1—O16—C14177.90 (16)O17—C11—C12—O13179.1 (2)
O15—Cr1—O16—C140.05 (16)O14—C11—C12—O19179.7 (2)
O25—Cr2—O26—C221.51 (16)O15—C13—C14—O18175.1 (2)
O21—Cr2—O23—C2485.88 (16)O20—C13—C14—O184.9 (4)
O22—Cr2—O23—C2492.75 (16)O15—C13—C14—O164.9 (3)
O24—Cr2—O23—C241.11 (15)O20—C13—C14—O16175.1 (2)
O25—Cr2—O23—C24175.60 (16)O25—C21—C22—O262.5 (3)
O21—Cr2—O24—C2388.89 (16)O29—C21—C22—O26178.8 (2)
O22—Cr2—O24—C2390.59 (16)O29—C21—C22—O271.4 (4)
O23—Cr2—O24—C233.45 (15)O25—C21—C22—O27177.2 (2)
O26—Cr2—O24—C23178.25 (15)O28—C23—C24—O304.4 (4)
O21—Cr2—O25—C2189.89 (16)O28—C23—C24—O23176.1 (2)
O22—Cr2—O25—C2190.74 (16)O24—C23—C24—O30175.5 (2)
O23—Cr2—O25—C21178.12 (16)O24—C23—C24—O234.0 (3)
O26—Cr2—O25—C210.05 (17)C5—C1—C2—C31.5 (5)
O21—Cr2—O26—C2288.14 (17)C2—C1—C5—C40.3 (5)
O22—Cr2—O26—C2293.17 (17)C2—C1—C5—N11179.2 (3)
O24—Cr2—O26—C22175.31 (16)C1—C2—C3—N121.9 (5)
Cr1—O13—C12—C111.3 (2)N12—C4—C5—N11179.9 (3)
Cr1—O13—C12—O19179.2 (2)N12—C4—C5—C10.4 (4)
Cr1—O14—C11—C121.0 (2)N22—C6—C10—N21180.0 (3)
Cr1—O14—C11—O17179.8 (2)N22—C6—C10—C90.5 (4)
Cr1—O15—C13—O20175.2 (2)N22—C7—C8—C90.1 (5)
Cr1—O15—C13—C144.8 (2)C7—C8—C9—C100.8 (5)
Cr1—O16—C14—C132.4 (2)C8—C9—C10—N21179.6 (3)
Cr1—O16—C14—O18177.6 (2)C8—C9—C10—C61.0 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z+1; (viii) x1, y, z; (ix) x, y+1/2, z+1/2; (x) x, y1, z; (xi) x, y1/2, z+1/2; (xii) x, y+1/2, z1/2; (xiii) x, y+1, z; (xiv) x, y+1/2, z+1/2; (xv) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O25xii0.862.223.047 (4)161
N11—H11B···O22i0.862.463.139 (4)136
N12—H12···O18v0.862.302.998 (3)139
N12—H12···O20v0.862.162.896 (3)144
N21—H21A···O13ii0.862.313.142 (3)163
N21—H21B···O11viii0.862.423.201 (4)151
N22—H22···O28xiii0.862.383.121 (3)145
N22—H22···O30xiii0.862.052.755 (3)138
O11—H111···O27iii0.84 (3)2.30 (3)3.103 (3)161 (2)
O11—H111···O29iii0.84 (3)2.19 (2)2.749 (3)123 (2)
O11—H211···O18iv0.84 (1)1.95 (2)2.777 (3)173 (3)
O12—H112···O270.84 (2)1.85 (2)2.684 (3)176 (2)
O12—H212···O28i0.84 (1)1.78 (1)2.619 (2)172 (3)
O21—H121···O20v0.84 (2)1.85 (1)2.682 (3)176 (3)
O21—H221···O17viii0.84 (2)1.85 (2)2.681 (3)177 (2)
O22—H122···O23vii0.85 (2)1.94 (2)2.780 (2)173 (3)
O22—H222···O190.84 (2)1.85 (2)2.646 (3)157 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y, z; (iv) x+2, y+1, z+1; (v) x+1, y1/2, z+1/2; (vii) x+1, y, z+1; (viii) x1, y, z; (xii) x, y+1/2, z1/2; (xiii) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C5H7N2)[Cr(C2O4)2(H2O)2]
Mr359.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.3901 (15), 17.586 (4), 20.995 (5)
β (°) 107.941 (11)
V3)2596.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.53 × 0.33 × 0.19
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.695, 0.835
No. of measured, independent and
observed [I > 2σ(I)] reflections
22038, 5865, 4091
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.04
No. of reflections5865
No. of parameters421
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.42

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cr1—O112.0223 (18)Cr2—O212.006 (2)
Cr1—O122.0017 (17)Cr2—O222.007 (2)
Cr1—O131.9421 (17)Cr2—O231.9604 (17)
Cr1—O141.9690 (18)Cr2—O241.9846 (18)
Cr1—O151.9771 (18)Cr2—O251.9429 (17)
Cr1—O161.9517 (18)Cr2—O261.9793 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O25i0.86002.22003.047 (4)161.00
N11—H11B···O22ii0.86002.46003.139 (4)136.00
N12—H12···O18iii0.86002.30002.998 (3)139.00
N12—H12···O20iii0.86002.16002.896 (3)144.00
N21—H21A···O13iv0.86002.31003.142 (3)163.00
N21—H21B···O11v0.86002.42003.201 (4)151.00
N22—H22···O28vi0.86002.38003.121 (3)145.00
N22—H22···O30vi0.86002.05002.755 (3)138.00
O11—H111···O27vii0.84 (3)2.30 (3)3.103 (3)161 (2)
O11—H111···O29vii0.84 (3)2.19 (2)2.749 (3)123 (2)
O11—H211···O18viii0.835 (13)1.946 (15)2.777 (3)173 (3)
O12—H112···O270.84 (2)1.85 (2)2.684 (3)176 (2)
O12—H212···O28ii0.843 (11)1.781 (13)2.619 (2)172 (3)
O21—H121···O20iii0.837 (15)1.846 (14)2.682 (3)176 (3)
O21—H221···O17v0.84 (2)1.85 (2)2.681 (3)177.0 (17)
O22—H122···O23ix0.848 (16)1.937 (18)2.780 (2)173 (3)
O22—H222···O190.84 (2)1.852 (18)2.646 (3)157 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y+1, z; (vii) x+1, y, z; (viii) x+2, y+1, z+1; (ix) x+1, y, z+1.
 

References

First citationBélombé, M. M., Nenwa, J. & Emmerling, F. (2009). Z. Kristallogr. 224, 239–240.  Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. F., Liu, L., Ma, J. G., Yi, L., Cheng, P., Liao, D. Z., Yan, S. P. & Jiang, Z. H. (2005). J. Mol. Struct. 750, 94–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationChérif, I., Abdelhak, J., Zid, M. F. & Driss, A. (2011). Acta Cryst. E67, m1648–m1649.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHernández-Molina, M., Lorenzo-Luis, P. A. & Ruiz-Pénez, C. (2001). CrystEngComm, 16, 1–4.  Google Scholar
First citationMarinescu, G., Andruh, M., Lloret, F. & Julve, M. (2011). Coord. Chem. Rev. 255, 161–185.  Web of Science CrossRef CAS Google Scholar
First citationMartak, F., Onggo, D., Ismunandar, I., Nugroho, A. A., Mufti, N. & Yamin, B. M. (2009). Curr. Res. Chem. 1, 1–7.  CrossRef CAS Google Scholar
First citationNenwa, J., Belombe, M. M., Ngoune, J. & Fokwa, B. P. T. (2010). Acta Cryst. E66, m1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds