metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(pyridazine-κN)bis­­(seleno­cyanato-κN)nickel(II) pyridazine disolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartement of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 18 June 2012; accepted 20 June 2012; online 23 June 2012)

The reaction of nickel(II) nitrate with potassium seleno­cyanate and pyridazine leads to crystals of the title compound, [Ni(NCSe)2(C4H4N2)4]·2C4H4N2. The NiII atom is coordinated by two terminal N-bonded seleno­cyanate anions and four pyridazine ligands within a slightly distorted octa­hedral geometry. The crystal structure contains two crystallographically independent pyridazine molecules in cavities of the structure, which are not coordinated to the metal centres. The structure is pseudo-C-centered due to the positioning of the discrete coordination complexes; the non-coordinating pyridazine molecules, however, break the C-centering. In the subcell, these ligands are disordered around centres of inversion, which do not coincide with the mid-point of the mol­ecules.

Related literature

For the synthesis, structures and properties of related coordination compounds see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.], 2012[Wöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m793.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCSe)2(C4H4N2)4]·2C4H4N2

  • Mr = 749.22

  • Triclinic, [P \overline 1]

  • a = 11.2923 (15) Å

  • b = 12.0868 (14) Å

  • c = 12.8220 (15) Å

  • α = 62.324 (9)°

  • β = 88.427 (10)°

  • γ = 88.512 (10)°

  • V = 1549.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 293 K

  • 0.25 × 0.14 × 0.10 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.243, Tmax = 0.572

  • 15038 measured reflections

  • 6534 independent reflections

  • 4010 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.129

  • S = 1.01

  • 6534 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.051 (4)
Ni1—N2 2.055 (4)
Ni1—N10 2.154 (3)
Ni1—N20 2.129 (3)
Ni1—N30 2.153 (3)
Ni1—N40 2.124 (3)

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Recently we have reported on the synthesis and characterization of coordination polymers based on transition metal thio- and selenocyanates. Within this project we investigated the influence of neutral N-donor co-ligands on the structural, thermal and magnetic properties of compounds, in which the metal cations are linked by the anionic ligands (Boeckmann & Näther, 2010, 2011; Wöhlert et al., 2011). In the present investigation we tried to prepare similar compounds using pyridazine as co-ligand, which results in the formation of single crystals of the title compound, which are isotypic to [Ni(NCS)2(pyridazine)4].2(pyridazine) reported recently (Wöhlert et al., 2012). In the crystal structure each nickel(II) cation is coordinated by two terminal N-bonded selenocyanato anions and four pyridazine ligands into discrete complexes (Fig. 1). The NiN6 octahedra are slightly distorted with distances ranging from 2.051 (4) to 2.154 (3) Å and angles between 87.31 (12) ° and 179.88 (15) ° (Table 1). The discrete complexes are arranged in layers, which are separated by additional non-coordinated pyridazine ligands. The shortest intermolecular Ni···Ni distance amounts to 8.2173 (12) Å.

Related literature top

For the synthesis, structures and properties of related coordination compounds see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011, 2012).

Experimental top

Nickel(II) nitrate hexahydrate (Ni(NO3)2x6H2O) and potassium selenocyanate (KNCSe) as well as pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (36.4 mg) Ni(NO3)2.6H2O and 0.25 mmol (36.0 mg) KNCSe were reacted in 2.76 mmol (200 µL) pyridazine, respectively. Purple single crystals of the title compound were obtained after one week.

Refinement top

All H atoms were located in a difference map but were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.93 Å. PLATON (Spek, 2009) detects a pseudo-C centreing. In the subcell the two crystallographically independent pyridazine molecules are each located on centres of inversion, which means that at this place the crystal symmetry is higher than the molecular symmetry. Moreover, the midpoint of these rings does not coincidence with the inversion centre and therefore, after generating the symmetry equivalent atoms two different orientations of the pyridazine rings are obtained, which cannot be resolved successfully. After structure refinement all reliability factors are much higher than in the supercell. Therefore, the structure was refined in the supercell in which both non-coordinating pyridazine ligands are perfectly ordered.

Structure description top

Recently we have reported on the synthesis and characterization of coordination polymers based on transition metal thio- and selenocyanates. Within this project we investigated the influence of neutral N-donor co-ligands on the structural, thermal and magnetic properties of compounds, in which the metal cations are linked by the anionic ligands (Boeckmann & Näther, 2010, 2011; Wöhlert et al., 2011). In the present investigation we tried to prepare similar compounds using pyridazine as co-ligand, which results in the formation of single crystals of the title compound, which are isotypic to [Ni(NCS)2(pyridazine)4].2(pyridazine) reported recently (Wöhlert et al., 2012). In the crystal structure each nickel(II) cation is coordinated by two terminal N-bonded selenocyanato anions and four pyridazine ligands into discrete complexes (Fig. 1). The NiN6 octahedra are slightly distorted with distances ranging from 2.051 (4) to 2.154 (3) Å and angles between 87.31 (12) ° and 179.88 (15) ° (Table 1). The discrete complexes are arranged in layers, which are separated by additional non-coordinated pyridazine ligands. The shortest intermolecular Ni···Ni distance amounts to 8.2173 (12) Å.

For the synthesis, structures and properties of related coordination compounds see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011, 2012).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound [Ni(NCSe)2(C4H4N2)4].2C4H4N2 with labeling and displacement ellipsoids drawn at the 30% probability level.
Tetrakis(pyridazine-κN)bis(selenocyanato-κN)nickel(II) pyridazine disolvate top
Crystal data top
[Ni(NCSe)2(C4H4N2)4]·2C4H4N2Z = 2
Mr = 749.22F(000) = 748
Triclinic, P1Dx = 1.606 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2923 (15) ÅCell parameters from 15038 reflections
b = 12.0868 (14) Åθ = 1.8–26.8°
c = 12.8220 (15) ŵ = 3.02 mm1
α = 62.324 (9)°T = 293 K
β = 88.427 (10)°Block, purple
γ = 88.512 (10)°0.25 × 0.14 × 0.10 mm
V = 1549.1 (3) Å3
Data collection top
Stoe IPDS-2
diffractometer
6534 independent reflections
Radiation source: fine-focus sealed tube4010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scanθmax = 26.8°, θmin = 1.8°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1314
Tmin = 0.243, Tmax = 0.572k = 1515
15038 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
6534 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Ni(NCSe)2(C4H4N2)4]·2C4H4N2γ = 88.512 (10)°
Mr = 749.22V = 1549.1 (3) Å3
Triclinic, P1Z = 2
a = 11.2923 (15) ÅMo Kα radiation
b = 12.0868 (14) ŵ = 3.02 mm1
c = 12.8220 (15) ÅT = 293 K
α = 62.324 (9)°0.25 × 0.14 × 0.10 mm
β = 88.427 (10)°
Data collection top
Stoe IPDS-2
diffractometer
6534 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4010 reflections with I > 2σ(I)
Tmin = 0.243, Tmax = 0.572Rint = 0.068
15038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.01Δρmax = 0.57 e Å3
6534 reflectionsΔρmin = 0.46 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75263 (4)0.75195 (4)0.49428 (5)0.03775 (13)
N10.6464 (3)0.8464 (3)0.3514 (3)0.0482 (8)
C10.5667 (4)0.8920 (3)0.2914 (4)0.0449 (9)
Se10.44241 (5)0.96264 (4)0.19891 (5)0.06887 (18)
N20.8589 (3)0.6575 (3)0.6376 (3)0.0480 (8)
C20.9339 (4)0.6062 (3)0.7026 (4)0.0433 (9)
Se21.05284 (4)0.52717 (4)0.80123 (5)0.06587 (17)
N100.6978 (3)0.5804 (3)0.4987 (3)0.0455 (8)
N110.6601 (3)0.4895 (3)0.6020 (3)0.0550 (9)
C110.6253 (4)0.3838 (4)0.6056 (5)0.0663 (13)
H110.59700.32180.67720.080*
C120.6283 (4)0.3596 (4)0.5112 (5)0.0687 (14)
H120.60360.28350.51830.082*
C130.6688 (5)0.4513 (5)0.4069 (5)0.0743 (15)
H130.67420.44030.33980.089*
C140.7019 (4)0.5629 (4)0.4047 (4)0.0589 (11)
H140.72790.62780.33370.071*
N200.6117 (3)0.7459 (3)0.6104 (3)0.0408 (7)
N210.5425 (3)0.8496 (3)0.5696 (3)0.0466 (8)
C210.4570 (4)0.8558 (4)0.6387 (4)0.0541 (11)
H210.40980.92770.61040.065*
C220.4334 (4)0.7615 (4)0.7510 (4)0.0623 (12)
H220.37210.76920.79720.075*
C230.5033 (4)0.6571 (4)0.7912 (4)0.0568 (11)
H230.49070.59030.86550.068*
C240.5940 (4)0.6534 (4)0.7177 (4)0.0480 (9)
H240.64410.58370.74480.058*
N300.8051 (3)0.9236 (3)0.4909 (3)0.0456 (8)
N310.8360 (3)1.0191 (3)0.3876 (3)0.0557 (9)
C310.8674 (4)1.1253 (4)0.3867 (5)0.0661 (13)
H310.89061.19070.31480.079*
C320.8680 (4)1.1452 (5)0.4824 (6)0.0712 (14)
H320.88921.22160.47680.085*
C330.8360 (5)1.0471 (5)0.5874 (5)0.0735 (15)
H330.83451.05360.65690.088*
C340.8056 (4)0.9371 (4)0.5858 (4)0.0581 (11)
H340.78450.86910.65680.070*
N400.8959 (3)0.7555 (3)0.3819 (3)0.0438 (7)
N410.9615 (3)0.6503 (3)0.4249 (3)0.0487 (8)
C411.0520 (4)0.6428 (4)0.3616 (4)0.0589 (12)
H411.09560.56850.39080.071*
C421.0859 (4)0.7394 (5)0.2542 (5)0.0652 (13)
H421.15260.73190.21350.078*
C431.0186 (4)0.8460 (4)0.2098 (4)0.0603 (12)
H431.03640.91370.13730.072*
C440.9220 (4)0.8487 (4)0.2779 (4)0.0505 (10)
H440.87350.91960.24870.061*
N500.8139 (5)0.8781 (4)0.9912 (5)0.0856 (14)
N510.8770 (5)0.8446 (5)0.9251 (5)0.0989 (16)
C510.8485 (7)0.7476 (7)0.9162 (6)0.103 (2)
H510.89550.72540.86790.123*
C520.7534 (8)0.6741 (6)0.9729 (8)0.109 (3)
H520.73490.60460.96390.131*
C530.6881 (6)0.7093 (5)1.0433 (7)0.107 (3)
H530.62220.66481.08560.128*
C540.7233 (6)0.8112 (6)1.0487 (6)0.0923 (19)
H540.67990.83611.09710.111*
N601.2999 (4)0.5993 (4)1.0408 (4)0.0718 (11)
N611.3853 (4)0.6604 (4)1.0600 (4)0.0741 (12)
C611.3687 (5)0.7775 (5)1.0313 (5)0.0755 (15)
H611.42940.81851.04620.091*
C621.2676 (6)0.8459 (5)0.9802 (5)0.0828 (17)
H621.26070.93040.95930.099*
C631.1803 (5)0.7846 (5)0.9622 (5)0.0751 (14)
H631.10880.82410.92990.090*
C641.2007 (5)0.6605 (5)0.9935 (5)0.0729 (14)
H641.14110.61690.98050.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0371 (2)0.0319 (2)0.0395 (2)0.00175 (16)0.00078 (17)0.01283 (18)
N10.048 (2)0.0464 (18)0.0447 (19)0.0053 (16)0.0025 (16)0.0168 (16)
C10.056 (3)0.0323 (18)0.043 (2)0.0050 (18)0.0046 (19)0.0142 (17)
Se10.0648 (3)0.0556 (3)0.0712 (4)0.0030 (2)0.0256 (3)0.0156 (3)
N20.0443 (19)0.0453 (18)0.048 (2)0.0073 (15)0.0059 (16)0.0165 (16)
C20.044 (2)0.0390 (19)0.043 (2)0.0033 (17)0.0035 (18)0.0166 (18)
Se20.0581 (3)0.0605 (3)0.0658 (3)0.0073 (2)0.0216 (2)0.0175 (3)
N100.0373 (18)0.0401 (16)0.058 (2)0.0012 (14)0.0016 (15)0.0221 (16)
N110.062 (2)0.0395 (17)0.061 (2)0.0087 (16)0.0092 (18)0.0209 (17)
C110.062 (3)0.047 (2)0.083 (4)0.014 (2)0.014 (3)0.024 (2)
C120.063 (3)0.054 (3)0.101 (4)0.010 (2)0.000 (3)0.045 (3)
C130.080 (4)0.079 (3)0.089 (4)0.014 (3)0.003 (3)0.059 (3)
C140.061 (3)0.059 (3)0.060 (3)0.011 (2)0.003 (2)0.030 (2)
N200.0432 (18)0.0324 (14)0.0427 (18)0.0033 (13)0.0005 (14)0.0140 (14)
N210.0462 (19)0.0394 (16)0.0478 (19)0.0057 (14)0.0030 (15)0.0154 (15)
C210.050 (3)0.047 (2)0.062 (3)0.013 (2)0.001 (2)0.023 (2)
C220.059 (3)0.068 (3)0.058 (3)0.006 (2)0.011 (2)0.028 (2)
C230.066 (3)0.051 (2)0.048 (3)0.001 (2)0.009 (2)0.019 (2)
C240.052 (2)0.042 (2)0.048 (2)0.0027 (18)0.0011 (19)0.0186 (19)
N300.0446 (19)0.0385 (16)0.054 (2)0.0024 (14)0.0021 (16)0.0213 (16)
N310.059 (2)0.0398 (17)0.063 (2)0.0069 (16)0.0085 (18)0.0194 (17)
C310.065 (3)0.043 (2)0.086 (4)0.006 (2)0.007 (3)0.026 (2)
C320.060 (3)0.058 (3)0.105 (4)0.014 (2)0.003 (3)0.045 (3)
C330.073 (3)0.084 (4)0.088 (4)0.017 (3)0.001 (3)0.060 (3)
C340.060 (3)0.058 (3)0.062 (3)0.012 (2)0.000 (2)0.031 (2)
N400.0414 (18)0.0371 (16)0.0481 (19)0.0000 (14)0.0026 (15)0.0159 (15)
N410.047 (2)0.0401 (16)0.052 (2)0.0061 (15)0.0027 (16)0.0157 (15)
C410.057 (3)0.058 (3)0.065 (3)0.009 (2)0.006 (2)0.032 (2)
C420.057 (3)0.073 (3)0.064 (3)0.002 (2)0.016 (2)0.031 (3)
C430.068 (3)0.058 (3)0.046 (3)0.015 (2)0.016 (2)0.017 (2)
C440.057 (3)0.039 (2)0.047 (2)0.0022 (18)0.000 (2)0.0127 (18)
N500.084 (3)0.067 (3)0.116 (4)0.002 (3)0.010 (3)0.050 (3)
N510.088 (4)0.075 (3)0.115 (4)0.010 (3)0.007 (3)0.030 (3)
C510.119 (6)0.105 (5)0.100 (5)0.046 (5)0.027 (4)0.062 (4)
C520.129 (6)0.057 (3)0.156 (7)0.027 (4)0.089 (6)0.058 (4)
C530.066 (4)0.059 (3)0.156 (7)0.011 (3)0.016 (4)0.015 (4)
C540.095 (5)0.088 (4)0.094 (5)0.012 (4)0.000 (4)0.043 (4)
N600.080 (3)0.049 (2)0.078 (3)0.008 (2)0.006 (2)0.022 (2)
N610.072 (3)0.061 (2)0.075 (3)0.004 (2)0.005 (2)0.019 (2)
C610.082 (4)0.072 (3)0.077 (4)0.022 (3)0.002 (3)0.037 (3)
C620.103 (5)0.052 (3)0.091 (4)0.002 (3)0.018 (4)0.033 (3)
C630.065 (3)0.075 (3)0.080 (4)0.009 (3)0.007 (3)0.032 (3)
C640.075 (4)0.074 (3)0.072 (4)0.025 (3)0.006 (3)0.035 (3)
Geometric parameters (Å, º) top
Ni1—N12.051 (4)C32—C331.363 (8)
Ni1—N22.055 (4)C32—H320.9300
Ni1—N102.154 (3)C33—C341.391 (6)
Ni1—N202.129 (3)C33—H330.9300
Ni1—N302.153 (3)C34—H340.9300
Ni1—N402.124 (3)N40—C441.317 (5)
N1—C11.151 (5)N40—N411.339 (4)
C1—Se11.786 (5)N41—C411.315 (5)
N2—C21.152 (5)C41—C421.381 (7)
C2—Se21.794 (4)C41—H410.9300
N10—C141.317 (6)C42—C431.362 (6)
N10—N111.335 (5)C42—H420.9300
N11—C111.326 (5)C43—C441.387 (6)
C11—C121.371 (7)C43—H430.9300
C11—H110.9300C44—H440.9300
C12—C131.357 (8)N50—N511.289 (7)
C12—H120.9300N50—C541.301 (8)
C13—C141.398 (6)N51—C511.280 (9)
C13—H130.9300C51—C521.370 (11)
C14—H140.9300C51—H510.9300
N20—C241.323 (5)C52—C531.358 (11)
N20—N211.348 (4)C52—H520.9300
N21—C211.317 (5)C53—C541.336 (9)
C21—C221.384 (6)C53—H530.9300
C21—H210.9300C54—H540.9300
C22—C231.359 (6)N60—N611.324 (6)
C22—H220.9300N60—C641.322 (7)
C23—C241.386 (6)N61—C611.296 (6)
C23—H230.9300C61—C621.380 (8)
C24—H240.9300C61—H610.9300
N30—C341.301 (5)C62—C631.336 (8)
N30—N311.335 (5)C62—H620.9300
N31—C311.334 (5)C63—C641.376 (7)
C31—C321.356 (7)C63—H630.9300
C31—H310.9300C64—H640.9300
N1—Ni1—N2179.88 (15)N31—C31—H31117.4
N1—Ni1—N4090.53 (13)C32—C31—H31117.4
N2—Ni1—N4089.57 (13)C31—C32—C33116.5 (4)
N1—Ni1—N2090.85 (13)C31—C32—H32121.8
N2—Ni1—N2089.05 (13)C33—C32—H32121.8
N40—Ni1—N20178.62 (14)C32—C33—C34117.1 (5)
N1—Ni1—N3091.64 (13)C32—C33—H33121.5
N2—Ni1—N3088.30 (13)C34—C33—H33121.5
N40—Ni1—N3092.71 (12)N30—C34—C33123.9 (5)
N20—Ni1—N3087.31 (12)N30—C34—H34118.0
N1—Ni1—N1088.17 (13)C33—C34—H34118.0
N2—Ni1—N1091.89 (13)C44—N40—N41120.0 (3)
N40—Ni1—N1088.07 (12)C44—N40—Ni1126.0 (3)
N20—Ni1—N1091.92 (12)N41—N40—Ni1114.0 (2)
N30—Ni1—N10179.20 (13)C41—N41—N40118.7 (3)
C1—N1—Ni1164.0 (3)N41—C41—C42123.6 (4)
N1—C1—Se1179.7 (4)N41—C41—H41118.2
C2—N2—Ni1167.3 (4)C42—C41—H41118.2
N2—C2—Se2178.9 (4)C43—C42—C41117.8 (4)
C14—N10—N11120.1 (3)C43—C42—H42121.1
C14—N10—Ni1122.3 (3)C41—C42—H42121.1
N11—N10—Ni1117.5 (3)C42—C43—C44116.7 (4)
C11—N11—N10118.0 (4)C42—C43—H43121.6
N11—C11—C12124.6 (5)C44—C43—H43121.6
N11—C11—H11117.7N40—C44—C43123.1 (4)
C12—C11—H11117.7N40—C44—H44118.4
C13—C12—C11117.2 (4)C43—C44—H44118.4
C13—C12—H12121.4N51—N50—C54119.0 (5)
C11—C12—H12121.4C51—N51—N50119.5 (6)
C12—C13—C14117.1 (5)N51—C51—C52124.4 (7)
C12—C13—H13121.4N51—C51—H51117.8
C14—C13—H13121.4C52—C51—H51117.8
N10—C14—C13122.9 (5)C53—C52—C51115.7 (5)
N10—C14—H14118.5C53—C52—H52122.2
C13—C14—H14118.5C51—C52—H52122.2
C24—N20—N21120.4 (3)C54—C53—C52116.6 (6)
C24—N20—Ni1124.8 (2)C54—C53—H53121.7
N21—N20—Ni1114.6 (2)C52—C53—H53121.7
C21—N21—N20118.4 (3)N50—C54—C53124.8 (7)
N21—C21—C22123.7 (4)N50—C54—H54117.6
N21—C21—H21118.1C53—C54—H54117.6
C22—C21—H21118.1N61—N60—C64118.5 (4)
C23—C22—C21117.4 (4)C61—N61—N60118.9 (5)
C23—C22—H22121.3N61—C61—C62124.9 (5)
C21—C22—H22121.3N61—C61—H61117.6
C22—C23—C24117.9 (4)C62—C61—H61117.6
C22—C23—H23121.1C63—C62—C61116.7 (5)
C24—C23—H23121.1C63—C62—H62121.7
N20—C24—C23122.1 (4)C61—C62—H62121.7
N20—C24—H24118.9C62—C63—C64117.0 (5)
C23—C24—H24118.9C62—C63—H63121.5
C34—N30—N31119.5 (3)C64—C63—H63121.5
C34—N30—Ni1121.9 (3)N60—C64—C63124.1 (5)
N31—N30—Ni1118.6 (3)N60—C64—H64118.0
C31—N31—N30117.9 (4)C63—C64—H64118.0
N31—C31—C32125.1 (5)

Experimental details

Crystal data
Chemical formula[Ni(NCSe)2(C4H4N2)4]·2C4H4N2
Mr749.22
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.2923 (15), 12.0868 (14), 12.8220 (15)
α, β, γ (°)62.324 (9), 88.427 (10), 88.512 (10)
V3)1549.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.02
Crystal size (mm)0.25 × 0.14 × 0.10
Data collection
DiffractometerStoe IPDS2
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.243, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
15038, 6534, 4010
Rint0.068
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.129, 1.01
No. of reflections6534
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.46

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), XCIF in SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—N12.051 (4)Ni1—N202.129 (3)
Ni1—N22.055 (4)Ni1—N302.153 (3)
Ni1—N102.154 (3)Ni1—N402.124 (3)
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104–7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920–6923.  Google Scholar
First citationWöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m793.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds