inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of [Gd(NO3)3(H2O)4]·2H2O

aDepartment of Applied Chemical Sciences, Jordan University of Science & Technology, Irbid 22110, Jordan, bDepartment of Chemistry, Faculty of Science, Jerash University, Jerash 26150, Jordan, cDepartment Chemie, Molekulare Katalyse, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching bei München, Germany, and dDepartment Chemie, Lehrstuhl für Anorganische Chemie, Technische Universität München, Lichtenbergstrasse 4, D-85747 Garching bei München, Germany
*Correspondence e-mail: akh75_99@yahoo.com, eberhardt.herdtweck@ch.tum.de

(Received 18 May 2012; accepted 20 June 2012; online 27 June 2012)

The crystal structure of the title compound, tetra­aqua­tris­(nitrato-κ2O,O′)gadolinium(III) dihydrate, was redetermined from single-crystal X-ray data. In comparison with the first determination [Ma et al. (1991[Ma, H., Gao, S. & Zupci, Y. (1991). Wuji Huaxue Xuebao, 7, 351-353.]). Wuji Huaxue Xuebao, 7, 351–353], all H atoms could be located, accompanied with higher accuracy and precision. The GdIII atom shows a ten-coordination with three nitrate ligands behaving in a bidentate manner and the other positions being occupied by four water mol­ecules, forming a distorted bicapped square anti­prism. Two nitrate ions coordinate to the metal atom with similar bond lengths while the third shows a more asymmetric bonding behaviour. An intricate network of O—H⋯O hydrogen bonds, including the lattice water mol­ecules, stabilizes the crystal packing.

Related literature

For a previous determination of the title compound, see: Ma et al. (1991[Ma, H., Gao, S. & Zupci, Y. (1991). Wuji Huaxue Xuebao, 7, 351-353.]). Isotypic [RE(NO3)3(H2O)4]·2H2O structures were described for RE = Nd by Rogers et al. (1983[Rogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939-941.]), for Tb by Moret et al. (1990[Moret, E., Bünzli, J.-C. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83-88.]), for Sm by Kawashima et al. (2000[Kawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297-3303.]), for Eu by Stumpf & Bolte (2001[Stumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10-i11.]), for Dy by Gao et al. (1990[Gao, S., Ma, H. & Yang, Z. (1990). J. Northwest Univ. (China), 20, 53-58.]), and for La by Eriksson et al. (1980[Eriksson, B., Larsson, L. O., Niinisto, L. & Valkonen, J. (1980). Inorg. Chem. 19, 1207-1210.]). [RE(NO3)3(H2O)4]·H2O structures with one less water mol­ecule were described for RE = Eu by Ribár et al. (1986[Ribár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). Acta Cryst. C42, 1450-1452.]), for Gd by Stockhause & Meyer (1997[Stockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.]), and for Yb by Junk et al. (1999[Junk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497-505.]).

Experimental

Crystal data
  • [Gd(NO3)3(H2O)4]·2H2O

  • Mr = 451.38

  • Triclinic, [P \overline 1]

  • a = 6.6996 (2) Å

  • b = 9.1145 (3) Å

  • c = 11.6207 (3) Å

  • α = 69.8257 (10)°

  • β = 88.9290 (11)°

  • γ = 69.2170 (11)°

  • V = 618.36 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.45 mm−1

  • T = 173 K

  • 0.48 × 0.46 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.349, Tmax = 0.745

  • 19731 measured reflections

  • 2256 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.041

  • S = 1.20

  • 2256 reflections

  • 221 parameters

  • All H-atom parameters refined

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.10 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O1 2.528 (2)
Gd1—O2 2.494 (3)
Gd1—O4 2.578 (2)
Gd1—O5 2.518 (3)
Gd1—O7 2.552 (2)
Gd1—O8 2.754 (2)
Gd1—O10 2.398 (2)
Gd1—O11 2.389 (2)
Gd1—O12 2.392 (3)
Gd1—O13 2.364 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1⋯O15i 0.76 (5) 1.97 (5) 2.720 (4) 171 (5)
O10—H2⋯O4ii 0.75 (4) 2.21 (4) 2.956 (3) 178 (6)
O11—H3⋯O14iii 0.82 (4) 1.85 (4) 2.671 (3) 176 (5)
O11—H4⋯O7iv 0.78 (5) 2.19 (5) 2.967 (4) 173 (5)
O12—H5⋯O4v 0.77 (6) 2.50 (6) 3.185 (3) 149 (5)
O12—H5⋯O7v 0.77 (6) 2.56 (6) 3.156 (4) 135 (5)
O12—H6⋯O8vi 0.83 (5) 2.27 (5) 3.074 (3) 162 (4)
O12—H6⋯O9vi 0.83 (5) 2.39 (5) 3.062 (4) 139 (4)
O13—H7⋯O15 0.90 (4) 1.84 (4) 2.721 (3) 169 (5)
O13—H8⋯O14 0.71 (4) 2.04 (4) 2.738 (4) 168 (5)
O14—H9⋯O9iv 0.81 (5) 2.03 (5) 2.826 (4) 167 (4)
O14—H10⋯O3v 0.76 (5) 2.45 (5) 3.008 (4) 132 (5)
O14—H10⋯O5vii 0.76 (5) 2.31 (5) 2.888 (4) 134 (5)
O15—H11⋯O6ii 0.80 (6) 2.02 (6) 2.819 (4) 176 (6)
O15—H12⋯O3viii 0.76 (6) 2.30 (6) 2.903 (4) 139 (5)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+2, -y+1, -z; (v) x-1, y, z; (vi) -x+1, -y+2, -z; (vii) x, y-1, z; (viii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Single crystals of gadolinium nitrate hexahydrate, [Gd(NO3)3(H2O)4].2H2O, were obtained and its structure was re-determined using single-crystal X-ray diffraction analysis.

As shown in Figure 1, the GdIII atom is ten-coordinated, being bound to six nitrate-oxygen atoms, O1, O2, O4, O5, O7, and O8, and four water-oxygen atoms O10, O11, O12, and O13. The nitrate ions are coordinated to the central gadolinium atom in a bidentate mode and show clearly the changes in bond lengths and angles noted previously for the isotypic Eu(III) structure (Stumpf & Bolte, 2001). The distances between the GdIII ion and the nitrate-O atoms (Gd—O) are in the range 2.494 (3)–2.754 (2) Å, with a mean value of 2.571 Å. The differences between the GdIII atom and the two oxygen atoms of the same nitrate group are 0.034 Å and 0.060 Å for nitrate N1 and nitrate N2, respectively. Nitrate N1 and nitrate N2 groups appear to be more symmetrically bonded to the GdIII atom because the third nitrate group N3 exhibits one Gd—O distance that is 0.202 Å longer than the other. This asymmetric bonding seem to be associated with a steric effect of the coordinating water molecules. There is simply not space enough for all the oxygen atoms around the GdIII atom at the same distance. The Gd—Owater distances are in the range of 2.364 (3)–2.398 (2) Å with an average distance of 2.386 Å. Hence the water molecules are closer to the GdIII atom than the nitrate groups by ca. 0.185 Å.

These results are comparable to that reported for other lanthanide complexes with bidentately coordinating nitrate groups. The coordination polyhedron around the GdIII ion can be best described as a distorted bi-capped square antiprism (Fig. 1), as previously reported for other hydrated lanthanide(III) nitrate complexes (Ribár et al., 1986; Moret et al., 1990; Ma et al., 1991, Stockhause & Meyer, 1997; Kawashima et al., 2000; Stumpf & Bolte, 2001; Junk et al., 1999; Gao et al., 1990; Eriksson et al., 1980; Rogers et al., 1983). The structure contains additional two lattice water molecules, which are associated with the complex by a network of hydrogen bonds. All hydrogen atoms and except for O1 and O2 all oxygen atoms are involved in a complicated network of O—H···O hydrogen bonds, stabilizing the crystal packing (Table 1, Fig. 2). H5, H6 and H10 act as bifurcated bridging atoms. In contrast to the original work of Ma et al. (1991), we report much more precise results. All hydrogen atoms could be located in the difference Fourier maps and were allowed to refine freely. The final R1 value changed from 0.076 to 0.0158 and the overall e.s.d.'s for the positional parameters dropped from e.g. Gd1 x = 0.8016 (1) to 0.80352 (2). The same is valid for distances e.g. Gd1—O1 dropped from 2.558 (56) Å to 2.528 (2) Å and for the angels e.g. O1—Gd1—O2 dropped from 51.1 (22) to 50.56 (7).

Related literature top

For a previous determination of the title compound, see: Ma et al. (1991). Isotypic [RE(NO3)3(H2O)4].2(H2O) structures were described for RE = Nd by Rogers et al. (1983), for Tb by Moret et al. (1990), for Sm by Kawashima et al. (2000), for Eu by Stumpf & Bolte (2001), for Dy by Gao et al. (1990), and for La by Eriksson et al. (1980). [RE(NO3)3(H2O)4].(H2O) structures with one less water molecule were described for RE = Eu by Ribár et al. (1986), for Gd by Stockhause & Meyer (1997), and for Yb by Junk et al. (1999).

Experimental top

Single crystals of [Gd(NO3)3(H2O)4].2H2O have been obtained accidentally during the synthesis of a Gd—N,N-bis(salicylicaldehyde)-o-phenylenediamine Schiff base complex. 1.0 mmol of the Schiff base were dissolved in 10 ml chloroform. To this solution was added in a drop-wise manner a 10 ml ethyl acetate solution of 2.0 mmol Gd(NO3)3.6(H2O). The reaction mixture was stirred for 2 h at room temperature. The yellow precipitate was filtered, washed several times with ethyl acetate and chloroform. Single crystals suitable for X-ray were obtained after a few days by the slow evaporation of the solvent in an open atmosphere.

Refinement top

Hydrogen atoms could be located in difference Fourier maps and were allowed to refine freely. The residual electron density of Δρmax = 1.04 e Å-3 is located 0.89 Å next to Gd1, whereas Δρmin = 1.10 e Å-3 is located 0.96 Å next to Gd1.

Structure description top

Single crystals of gadolinium nitrate hexahydrate, [Gd(NO3)3(H2O)4].2H2O, were obtained and its structure was re-determined using single-crystal X-ray diffraction analysis.

As shown in Figure 1, the GdIII atom is ten-coordinated, being bound to six nitrate-oxygen atoms, O1, O2, O4, O5, O7, and O8, and four water-oxygen atoms O10, O11, O12, and O13. The nitrate ions are coordinated to the central gadolinium atom in a bidentate mode and show clearly the changes in bond lengths and angles noted previously for the isotypic Eu(III) structure (Stumpf & Bolte, 2001). The distances between the GdIII ion and the nitrate-O atoms (Gd—O) are in the range 2.494 (3)–2.754 (2) Å, with a mean value of 2.571 Å. The differences between the GdIII atom and the two oxygen atoms of the same nitrate group are 0.034 Å and 0.060 Å for nitrate N1 and nitrate N2, respectively. Nitrate N1 and nitrate N2 groups appear to be more symmetrically bonded to the GdIII atom because the third nitrate group N3 exhibits one Gd—O distance that is 0.202 Å longer than the other. This asymmetric bonding seem to be associated with a steric effect of the coordinating water molecules. There is simply not space enough for all the oxygen atoms around the GdIII atom at the same distance. The Gd—Owater distances are in the range of 2.364 (3)–2.398 (2) Å with an average distance of 2.386 Å. Hence the water molecules are closer to the GdIII atom than the nitrate groups by ca. 0.185 Å.

These results are comparable to that reported for other lanthanide complexes with bidentately coordinating nitrate groups. The coordination polyhedron around the GdIII ion can be best described as a distorted bi-capped square antiprism (Fig. 1), as previously reported for other hydrated lanthanide(III) nitrate complexes (Ribár et al., 1986; Moret et al., 1990; Ma et al., 1991, Stockhause & Meyer, 1997; Kawashima et al., 2000; Stumpf & Bolte, 2001; Junk et al., 1999; Gao et al., 1990; Eriksson et al., 1980; Rogers et al., 1983). The structure contains additional two lattice water molecules, which are associated with the complex by a network of hydrogen bonds. All hydrogen atoms and except for O1 and O2 all oxygen atoms are involved in a complicated network of O—H···O hydrogen bonds, stabilizing the crystal packing (Table 1, Fig. 2). H5, H6 and H10 act as bifurcated bridging atoms. In contrast to the original work of Ma et al. (1991), we report much more precise results. All hydrogen atoms could be located in the difference Fourier maps and were allowed to refine freely. The final R1 value changed from 0.076 to 0.0158 and the overall e.s.d.'s for the positional parameters dropped from e.g. Gd1 x = 0.8016 (1) to 0.80352 (2). The same is valid for distances e.g. Gd1—O1 dropped from 2.558 (56) Å to 2.528 (2) Å and for the angels e.g. O1—Gd1—O2 dropped from 51.1 (22) to 50.56 (7).

For a previous determination of the title compound, see: Ma et al. (1991). Isotypic [RE(NO3)3(H2O)4].2(H2O) structures were described for RE = Nd by Rogers et al. (1983), for Tb by Moret et al. (1990), for Sm by Kawashima et al. (2000), for Eu by Stumpf & Bolte (2001), for Dy by Gao et al. (1990), and for La by Eriksson et al. (1980). [RE(NO3)3(H2O)4].(H2O) structures with one less water molecule were described for RE = Eu by Ribár et al. (1986), for Gd by Stockhause & Meyer (1997), and for Yb by Junk et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Stereo plot of the expanded unit cell. Hydrogen bonds (dotted lines) are limited to a distance O···H of 2.35 Å.
Tetraaquatris(nitrato-κ2O,O')gadolinium(III) dihydrate top
Crystal data top
[Gd(NO3)3(H2O)4]·2H2OZ = 2
Mr = 451.38F(000) = 434
Triclinic, P1Dx = 2.424 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6996 (2) ÅCell parameters from 9802 reflections
b = 9.1145 (3) Åθ = 1.9–25.4°
c = 11.6207 (3) ŵ = 5.45 mm1
α = 69.8257 (10)°T = 173 K
β = 88.9290 (11)°Fragment, orange
γ = 69.2170 (11)°0.48 × 0.46 × 0.23 mm
V = 618.36 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2256 independent reflections
Radiation source: rotating anode FR5912255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16 pixels mm-1θmax = 25.4°, θmin = 1.9°
phi– and ω–rotation scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1010
Tmin = 0.349, Tmax = 0.745l = 1313
19731 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016All H-atom parameters refined
wR(F2) = 0.041Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + (0.0186P)2 + 0.725P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.001
2256 reflectionsΔρmax = 1.04 e Å3
221 parametersΔρmin = 1.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0129 (7)
Crystal data top
[Gd(NO3)3(H2O)4]·2H2Oγ = 69.2170 (11)°
Mr = 451.38V = 618.36 (3) Å3
Triclinic, P1Z = 2
a = 6.6996 (2) ÅMo Kα radiation
b = 9.1145 (3) ŵ = 5.45 mm1
c = 11.6207 (3) ÅT = 173 K
α = 69.8257 (10)°0.48 × 0.46 × 0.23 mm
β = 88.9290 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
2256 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2255 reflections with I > 2σ(I)
Tmin = 0.349, Tmax = 0.745Rint = 0.036
19731 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0160 restraints
wR(F2) = 0.041All H-atom parameters refined
S = 1.20Δρmax = 1.04 e Å3
2256 reflectionsΔρmin = 1.10 e Å3
221 parameters
Special details top

Experimental. Diffractometer operator E. Herdtweck scanspeed 10 s per frame dx 45 4932 frames measured in 9 data sets phi-scan with delta_phi = 0.50 omega-scans with delta_omega = 0.50

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.80352 (2)0.59425 (1)0.22568 (1)0.0147 (1)
O11.0817 (4)0.3431 (3)0.3878 (2)0.0294 (7)
O21.1029 (4)0.3531 (3)0.20104 (19)0.0286 (6)
O31.3338 (4)0.1425 (3)0.3490 (2)0.0304 (6)
O41.0578 (3)0.6801 (3)0.3296 (2)0.0268 (6)
O50.7353 (4)0.8617 (3)0.2653 (2)0.0305 (7)
O60.9570 (4)0.9177 (3)0.3616 (2)0.0319 (7)
O71.0495 (3)0.6937 (3)0.07347 (19)0.0245 (6)
O80.7274 (4)0.8794 (3)0.0190 (2)0.0336 (7)
O90.9806 (4)0.9195 (3)0.0904 (2)0.0322 (7)
O100.6976 (4)0.5590 (3)0.4287 (2)0.0224 (7)
O110.7203 (4)0.5521 (3)0.04330 (19)0.0223 (6)
O120.4279 (4)0.7621 (3)0.1754 (2)0.0259 (7)
O130.6339 (4)0.3963 (3)0.2792 (2)0.0262 (7)
N11.1767 (4)0.2751 (3)0.3141 (2)0.0213 (7)
N20.9171 (4)0.8234 (3)0.3202 (2)0.0233 (8)
N30.9183 (4)0.8342 (3)0.0015 (2)0.0212 (7)
O140.5912 (4)0.2215 (3)0.1372 (2)0.0239 (7)
O150.6255 (4)0.2025 (3)0.5159 (2)0.0258 (7)
H10.608 (7)0.632 (6)0.437 (4)0.038 (12)*
H20.760 (6)0.500 (5)0.490 (4)0.028 (11)*
H30.625 (6)0.625 (5)0.011 (4)0.025 (10)*
H40.789 (7)0.491 (6)0.012 (4)0.037 (12)*
H50.341 (8)0.724 (6)0.193 (5)0.056 (15)*
H60.369 (7)0.865 (6)0.135 (4)0.046 (12)*
H70.649 (7)0.328 (6)0.358 (4)0.043 (11)*
H80.640 (6)0.344 (5)0.245 (3)0.019 (10)*
H90.705 (7)0.183 (5)0.113 (4)0.035 (11)*
H100.561 (7)0.151 (6)0.181 (4)0.048 (14)*
H110.741 (9)0.167 (6)0.554 (5)0.053 (15)*
H120.589 (9)0.131 (7)0.522 (5)0.069 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.0156 (1)0.0131 (1)0.0141 (1)0.0049 (1)0.0013 (1)0.0038 (1)
O10.0320 (12)0.0258 (11)0.0220 (11)0.0000 (9)0.0012 (9)0.0096 (9)
O20.0307 (12)0.0234 (11)0.0190 (10)0.0007 (9)0.0036 (9)0.0040 (9)
O30.0254 (11)0.0149 (10)0.0366 (12)0.0005 (9)0.0011 (9)0.0006 (9)
O40.0246 (11)0.0262 (11)0.0298 (11)0.0082 (9)0.0003 (9)0.0116 (9)
O50.0296 (12)0.0181 (10)0.0389 (13)0.0076 (9)0.0101 (10)0.0053 (9)
O60.0422 (14)0.0241 (12)0.0326 (12)0.0157 (11)0.0049 (10)0.0102 (10)
O70.0239 (11)0.0200 (11)0.0241 (10)0.0073 (9)0.0020 (8)0.0024 (8)
O80.0213 (11)0.0266 (12)0.0495 (14)0.0051 (9)0.0113 (10)0.0140 (11)
O90.0416 (13)0.0205 (11)0.0261 (11)0.0107 (10)0.0118 (10)0.0002 (9)
O100.0258 (12)0.0208 (12)0.0175 (11)0.0050 (10)0.0025 (9)0.0072 (10)
O110.0260 (11)0.0204 (11)0.0162 (10)0.0040 (9)0.0005 (9)0.0061 (9)
O120.0182 (11)0.0195 (12)0.0354 (12)0.0055 (9)0.0007 (9)0.0058 (10)
O130.0445 (14)0.0267 (12)0.0178 (11)0.0233 (11)0.0068 (9)0.0101 (10)
N10.0203 (12)0.0136 (12)0.0264 (13)0.0063 (10)0.0027 (10)0.0029 (10)
N20.0305 (14)0.0202 (13)0.0182 (12)0.0125 (11)0.0018 (10)0.0023 (10)
N30.0247 (13)0.0162 (12)0.0222 (12)0.0070 (10)0.0054 (10)0.0070 (10)
O140.0277 (12)0.0189 (11)0.0232 (11)0.0083 (10)0.0008 (9)0.0057 (9)
O150.0328 (14)0.0201 (12)0.0245 (11)0.0118 (10)0.0039 (10)0.0061 (9)
Geometric parameters (Å, º) top
Gd1—O12.528 (2)O7—N31.277 (3)
Gd1—O22.494 (3)O8—N31.243 (4)
Gd1—O42.578 (2)O9—N31.227 (3)
Gd1—O52.518 (3)O10—H10.76 (5)
Gd1—O72.552 (2)O10—H20.75 (4)
Gd1—O82.754 (2)O11—H30.82 (4)
Gd1—O102.398 (2)O11—H40.78 (5)
Gd1—O112.389 (2)O12—H50.77 (6)
Gd1—O122.392 (3)O12—H60.83 (5)
Gd1—O132.364 (3)O13—H70.90 (4)
O1—N11.260 (4)O13—H80.71 (4)
O2—N11.268 (3)O14—H90.81 (5)
O3—N11.228 (4)O14—H100.76 (5)
O4—N21.280 (4)O15—H110.80 (6)
O5—N21.259 (4)O15—H120.76 (6)
O6—N21.223 (4)
O1—Gd1—O250.56 (7)O8—Gd1—O1268.70 (8)
O1—Gd1—O467.93 (8)O8—Gd1—O13130.50 (8)
O1—Gd1—O5111.77 (8)O10—Gd1—O11140.10 (9)
O1—Gd1—O799.76 (8)O10—Gd1—O1279.72 (8)
O1—Gd1—O8146.55 (9)O10—Gd1—O1371.04 (9)
O1—Gd1—O1068.65 (9)O11—Gd1—O1278.30 (9)
O1—Gd1—O11115.74 (9)O11—Gd1—O1371.47 (8)
O1—Gd1—O12143.98 (8)O12—Gd1—O1375.61 (9)
O1—Gd1—O1378.10 (9)Gd1—O1—N195.96 (16)
O2—Gd1—O493.36 (8)Gd1—O2—N197.41 (18)
O2—Gd1—O5141.08 (9)Gd1—O4—N295.25 (17)
O2—Gd1—O768.28 (8)Gd1—O5—N298.75 (19)
O2—Gd1—O8109.78 (8)Gd1—O7—N3101.83 (17)
O2—Gd1—O10117.19 (8)Gd1—O8—N392.94 (17)
O2—Gd1—O1169.75 (8)Gd1—O10—H2129 (3)
O2—Gd1—O12145.36 (9)H1—O10—H2110 (5)
O2—Gd1—O1381.74 (9)Gd1—O10—H1118 (3)
O4—Gd1—O549.97 (8)H3—O11—H4105 (5)
O4—Gd1—O769.84 (7)Gd1—O11—H3122 (3)
O4—Gd1—O889.68 (8)Gd1—O11—H4131 (4)
O4—Gd1—O1075.39 (8)Gd1—O12—H6128 (3)
O4—Gd1—O11144.41 (8)Gd1—O12—H5122 (4)
O4—Gd1—O12120.88 (9)H5—O12—H6109 (5)
O4—Gd1—O13138.89 (7)Gd1—O13—H8122 (3)
O5—Gd1—O784.58 (8)Gd1—O13—H7120 (3)
O5—Gd1—O864.27 (7)H7—O13—H8104 (5)
O5—Gd1—O1070.94 (8)H9—O14—H10110 (5)
O5—Gd1—O11130.51 (8)H11—O15—H12110 (6)
O5—Gd1—O1271.40 (9)O1—N1—O2116.1 (3)
O5—Gd1—O13133.03 (9)O1—N1—O3122.2 (2)
O7—Gd1—O847.73 (8)O2—N1—O3121.7 (3)
O7—Gd1—O10145.14 (8)O4—N2—O5116.0 (3)
O7—Gd1—O1174.76 (8)O4—N2—O6122.0 (3)
O7—Gd1—O12116.18 (8)O5—N2—O6122.0 (3)
O7—Gd1—O13140.84 (8)O8—N3—O9122.0 (3)
O8—Gd1—O10131.16 (8)O7—N3—O8117.5 (2)
O8—Gd1—O1168.65 (8)O7—N3—O9120.5 (3)
O2—Gd1—O1—N10.36 (17)O11—Gd1—O5—N2134.37 (16)
O4—Gd1—O1—N1114.9 (2)O12—Gd1—O5—N2170.31 (18)
O5—Gd1—O1—N1139.49 (18)O13—Gd1—O5—N2122.60 (17)
O7—Gd1—O1—N151.5 (2)O1—Gd1—O7—N3171.29 (17)
O8—Gd1—O1—N163.6 (3)O2—Gd1—O7—N3148.39 (19)
O10—Gd1—O1—N1162.8 (2)O4—Gd1—O7—N3109.28 (19)
O11—Gd1—O1—N126.2 (2)O5—Gd1—O7—N360.09 (18)
O12—Gd1—O1—N1132.50 (19)O8—Gd1—O7—N30.29 (16)
O13—Gd1—O1—N188.7 (2)O10—Gd1—O7—N3104.8 (2)
O1—Gd1—O2—N10.36 (17)O11—Gd1—O7—N374.51 (18)
O4—Gd1—O2—N157.96 (19)O12—Gd1—O7—N36.1 (2)
O5—Gd1—O2—N175.6 (2)O13—Gd1—O7—N3105.6 (2)
O7—Gd1—O2—N1124.7 (2)O1—Gd1—O8—N316.5 (3)
O8—Gd1—O2—N1148.82 (18)O2—Gd1—O8—N330.59 (19)
O10—Gd1—O2—N117.3 (2)O4—Gd1—O8—N362.87 (18)
O11—Gd1—O2—N1154.2 (2)O5—Gd1—O8—N3107.53 (19)
O12—Gd1—O2—N1130.31 (19)O7—Gd1—O8—N30.29 (16)
O13—Gd1—O2—N180.99 (19)O10—Gd1—O8—N3132.99 (18)
O1—Gd1—O4—N2148.15 (17)O11—Gd1—O8—N388.21 (18)
O2—Gd1—O4—N2167.14 (15)O12—Gd1—O8—N3173.6 (2)
O5—Gd1—O4—N21.56 (14)O13—Gd1—O8—N3126.70 (18)
O7—Gd1—O4—N2101.75 (16)Gd1—O1—N1—O20.6 (3)
O8—Gd1—O4—N257.34 (16)Gd1—O1—N1—O3179.5 (3)
O10—Gd1—O4—N275.63 (16)Gd1—O2—N1—O10.6 (3)
O11—Gd1—O4—N2108.04 (19)Gd1—O2—N1—O3179.5 (3)
O12—Gd1—O4—N27.40 (18)Gd1—O4—N2—O52.7 (2)
O13—Gd1—O4—N2111.58 (18)Gd1—O4—N2—O6177.6 (2)
O1—Gd1—O5—N228.63 (19)Gd1—O5—N2—O42.7 (2)
O2—Gd1—O5—N224.9 (2)Gd1—O5—N2—O6177.5 (2)
O4—Gd1—O5—N21.59 (14)Gd1—O7—N3—O80.5 (3)
O7—Gd1—O5—N269.73 (17)Gd1—O7—N3—O9179.1 (2)
O8—Gd1—O5—N2114.96 (19)Gd1—O8—N3—O70.5 (3)
O10—Gd1—O5—N285.07 (17)Gd1—O8—N3—O9179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O15i0.76 (5)1.97 (5)2.720 (4)171 (5)
O10—H2···O4ii0.75 (4)2.21 (4)2.956 (3)178 (6)
O11—H3···O14iii0.82 (4)1.85 (4)2.671 (3)176 (5)
O11—H4···O7iv0.78 (5)2.19 (5)2.967 (4)173 (5)
O12—H5···O4v0.77 (6)2.50 (6)3.185 (3)149 (5)
O12—H5···O7v0.77 (6)2.56 (6)3.156 (4)135 (5)
O12—H6···O8vi0.83 (5)2.27 (5)3.074 (3)162 (4)
O12—H6···O9vi0.83 (5)2.39 (5)3.062 (4)139 (4)
O13—H7···O150.90 (4)1.84 (4)2.721 (3)169 (5)
O13—H8···O140.71 (4)2.04 (4)2.738 (4)168 (5)
O14—H9···O9iv0.81 (5)2.03 (5)2.826 (4)167 (4)
O14—H10···O3v0.76 (5)2.45 (5)3.008 (4)132 (5)
O14—H10···O5vii0.76 (5)2.31 (5)2.888 (4)134 (5)
O15—H11···O6ii0.80 (6)2.02 (6)2.819 (4)176 (6)
O15—H12···O3viii0.76 (6)2.30 (6)2.903 (4)139 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x1, y, z; (vi) x+1, y+2, z; (vii) x, y1, z; (viii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Gd(NO3)3(H2O)4]·2H2O
Mr451.38
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.6996 (2), 9.1145 (3), 11.6207 (3)
α, β, γ (°)69.8257 (10), 88.9290 (11), 69.2170 (11)
V3)618.36 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.45
Crystal size (mm)0.48 × 0.46 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.349, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
19731, 2256, 2255
Rint0.036
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.041, 1.20
No. of reflections2256
No. of parameters221
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.04, 1.10

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Gd1—O12.528 (2)Gd1—O82.754 (2)
Gd1—O22.494 (3)Gd1—O102.398 (2)
Gd1—O42.578 (2)Gd1—O112.389 (2)
Gd1—O52.518 (3)Gd1—O122.392 (3)
Gd1—O72.552 (2)Gd1—O132.364 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1···O15i0.76 (5)1.97 (5)2.720 (4)171 (5)
O10—H2···O4ii0.75 (4)2.21 (4)2.956 (3)178 (6)
O11—H3···O14iii0.82 (4)1.85 (4)2.671 (3)176 (5)
O11—H4···O7iv0.78 (5)2.19 (5)2.967 (4)173 (5)
O12—H5···O4v0.77 (6)2.50 (6)3.185 (3)149 (5)
O12—H5···O7v0.77 (6)2.56 (6)3.156 (4)135 (5)
O12—H6···O8vi0.83 (5)2.27 (5)3.074 (3)162 (4)
O12—H6···O9vi0.83 (5)2.39 (5)3.062 (4)139 (4)
O13—H7···O150.90 (4)1.84 (4)2.721 (3)169 (5)
O13—H8···O140.71 (4)2.04 (4)2.738 (4)168 (5)
O14—H9···O9iv0.81 (5)2.03 (5)2.826 (4)167 (4)
O14—H10···O3v0.76 (5)2.45 (5)3.008 (4)132 (5)
O14—H10···O5vii0.76 (5)2.31 (5)2.888 (4)134 (5)
O15—H11···O6ii0.80 (6)2.02 (6)2.819 (4)176 (6)
O15—H12···O3viii0.76 (6)2.30 (6)2.903 (4)139 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z; (iv) x+2, y+1, z; (v) x1, y, z; (vi) x+1, y+2, z; (vii) x, y1, z; (viii) x+2, y, z+1.
 

Acknowledgements

The authors are grateful to the Deanship of Scientific Research at Jordan University of Science and Technology for the financial support of this work (grant No. 48/2008).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2008). APEX, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEriksson, B., Larsson, L. O., Niinisto, L. & Valkonen, J. (1980). Inorg. Chem. 19, 1207–1210.  CrossRef CAS Web of Science Google Scholar
First citationGao, S., Ma, H. & Yang, Z. (1990). J. Northwest Univ. (China), 20, 53–58.  CAS Google Scholar
First citationJunk, P. C., Kepert, D. L., Skelton, B. W. & White, A. H. (1999). Aust. J. Chem. 52, 497–505.  CAS Google Scholar
First citationKawashima, R., Sasaki, M., Satoh, S., Isoda, H., Kino, Y. & Shiozaki, Y. (2000). J. Phys. Soc. Jpn, 69, 3297–3303.  Web of Science CrossRef CAS Google Scholar
First citationMa, H., Gao, S. & Zupci, Y. (1991). Wuji Huaxue Xuebao, 7, 351–353.  CAS Google Scholar
First citationMoret, E., Bünzli, J.-C. G. & Schenk, K. J. (1990). Inorg. Chim. Acta, 178, 83–88.  CrossRef CAS Web of Science Google Scholar
First citationRibár, B., Kapor, A., Argay, Gy. & Kálmán, A. (1986). Acta Cryst. C42, 1450–1452.  CrossRef Web of Science IUCr Journals Google Scholar
First citationRogers, D. J., Taylor, N. J. & Toogood, G. E. (1983). Acta Cryst. C39, 939–941.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStockhause, S. & Meyer, G. (1997). Z. Kristallogr. New Cryst. Struct. 212, 315.  Google Scholar
First citationStumpf, T. & Bolte, M. (2001). Acta Cryst. E57, i10–i11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds