metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[di­aqua­bis­­(nitrato-κ2O,O′)bis­­(1,10-phenanthroline-κ2N,N′)-μ3-succinato-dicadmium]

aSchool of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 28 May 2012; accepted 4 June 2012; online 13 June 2012)

In the title coordination polymer, [Cd2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]n, the CdII ion is seven-coordinated within a distorted penta­gonal–bipyramidal O5N2 environment. The succinate anions, located on an inversion centre, adopt a bis-monodentate bridging mode, leading to the formation of rods along [100]. The rods are connected by O—H⋯O hydrogen bonds between the coordinating water mol­ecules and nitrate O atoms of adjacent rods; the same type of hydrogen bonds are also observed between water and carboxyl­ate O atoms within the rods. ππ stacking inter­actions with a minimum plane-to-plane separation of 3.462 (2) Å occur between phenanthroline ligands.

Related literature

For the structures and properties of other cadmium coordination compounds, see: Montney et al. (2007[Montney, M. R., Krishnan, S. M., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145-1153.]); Li et al. (2011[Li, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]

  • Mr = 861.33

  • Triclinic, [P \overline 1]

  • a = 7.7349 (13) Å

  • b = 9.4467 (16) Å

  • c = 11.2063 (18) Å

  • α = 102.284 (2)°

  • β = 106.059 (2)°

  • γ = 107.003 (2)°

  • V = 713.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 110 K

  • 0.40 × 0.34 × 0.32 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 0.633

  • 5357 measured reflections

  • 2617 independent reflections

  • 2333 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.086

  • S = 1.10

  • 2617 reflections

  • 223 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.82 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O3i 0.86 (1) 1.93 (1) 2.786 (5) 174 (5)
O1W—H1A⋯O2ii 0.86 (1) 1.88 (2) 2.716 (4) 166 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Cadmium(II) coordination compounds have been increasingly studied owing to their interesting physical and chemical properties (Montney et al., 2007; Li et al., 2011). In order to extend our knowledge in this field, we investigated the structure of the cadmium(II) title compound, [Cd2(C4H4O4)(H2O)2(C12H8N2)2(NO3)2], (I).

The asymmetric unit of (I) (Fig. 1) contains one CdII ion, half of a succinate anion, one nitrate anion, one coordinating water and one 1,10-phenanthroline ligand. The CdII cation is seven-coordinated by five O atoms from two succinate anions, one water molecule and a chelating nitrate anion, and two N atoms from a 1,10-phenanthroline molecule. The coordination geometry around CdII might be described as a distorted pentagonal bipyramid. The succinate anions adopt a bis-monodentate bridging coordination mode, generating rods along [100]. Adjacent rods are connected by O—H···O hydrogen bonds and aromatic ππ stacking interactions [minimum plane-to-plane separation of 3.462 (2) Å] to generate a three-dimensional network (Figs. 2,3).

The Cd–N and Cd–O bond lengths are 2.358 (4)–2.360 (4) Å and 2.253 (3)–2.511 (3) Å, respectively, which are comparable to those reported for other Cd(II)–O and Cd(II)–N donor complexes (Montney et al., 2007; Li et al., 2011).

Related literature top

For the structures and properties of other cadmium coordination compounds, see: Montney et al. (2007); Li et al. (2011).

Experimental top

A mixture of Cd(NO3)2.4H2O (0.155 g, 0.50 mmol), succinic acid (0.029 g,0.25 mmol), 1,10-phenanthroline (0.10 g, 0.5 mmol), NaOH (0.02 g,0.5 mmol), and water (10 ml) was stirred at room temperature for 15 min, and then sealed in a 25 ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. Upon cooling, the solution yielded single crystals of the title complex in ca 65% yield. Anal.Calcd for C14H12N3O6Cd: C,39.04; H, 2.81; N, 9.76. Found: C, 38.73; H, 3.14; N, 9.63.

Refinement top

The coordinating water H atoms were located in a different Fourier map and refined with distance constraints of O—H = 0.83 (3) Å. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H= 0.93 Å, and constrained to ride on their respective parentatoms, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Cadmium(II) coordination compounds have been increasingly studied owing to their interesting physical and chemical properties (Montney et al., 2007; Li et al., 2011). In order to extend our knowledge in this field, we investigated the structure of the cadmium(II) title compound, [Cd2(C4H4O4)(H2O)2(C12H8N2)2(NO3)2], (I).

The asymmetric unit of (I) (Fig. 1) contains one CdII ion, half of a succinate anion, one nitrate anion, one coordinating water and one 1,10-phenanthroline ligand. The CdII cation is seven-coordinated by five O atoms from two succinate anions, one water molecule and a chelating nitrate anion, and two N atoms from a 1,10-phenanthroline molecule. The coordination geometry around CdII might be described as a distorted pentagonal bipyramid. The succinate anions adopt a bis-monodentate bridging coordination mode, generating rods along [100]. Adjacent rods are connected by O—H···O hydrogen bonds and aromatic ππ stacking interactions [minimum plane-to-plane separation of 3.462 (2) Å] to generate a three-dimensional network (Figs. 2,3).

The Cd–N and Cd–O bond lengths are 2.358 (4)–2.360 (4) Å and 2.253 (3)–2.511 (3) Å, respectively, which are comparable to those reported for other Cd(II)–O and Cd(II)–N donor complexes (Montney et al., 2007; Li et al., 2011).

For the structures and properties of other cadmium coordination compounds, see: Montney et al. (2007); Li et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. View approximately along the b axis, showing the rods parallel to [100] in the title complex. The green dashed lines represent ππ stacking interactions.
[Figure 3] Fig. 3. View along the c axis, showing the three-dimensional supramolecular network. Blue dashed lines represent O—H···O hydrogen bonds.
Poly[diaquabis(nitrato-κ2O,O')bis(1,10-phenanthroline- κ2N,N')-µ3-succinato-dicadmium] top
Crystal data top
[Cd2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]Z = 1
Mr = 861.33F(000) = 426
Triclinic, P1Dx = 2.006 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7349 (13) ÅCell parameters from 4041 reflections
b = 9.4467 (16) Åθ = 2.4–25.5°
c = 11.2063 (18) ŵ = 1.57 mm1
α = 102.284 (2)°T = 110 K
β = 106.059 (2)°Block, colorless
γ = 107.003 (2)°0.40 × 0.34 × 0.32 mm
V = 713.0 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2617 independent reflections
Radiation source: fine-focus sealed tube2333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.572, Tmax = 0.633k = 1111
5357 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0381P)2 + 3.2233P]
where P = (Fo2 + 2Fc2)/3
2617 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.82 e Å3
2 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Cd2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]γ = 107.003 (2)°
Mr = 861.33V = 713.0 (2) Å3
Triclinic, P1Z = 1
a = 7.7349 (13) ÅMo Kα radiation
b = 9.4467 (16) ŵ = 1.57 mm1
c = 11.2063 (18) ÅT = 110 K
α = 102.284 (2)°0.40 × 0.34 × 0.32 mm
β = 106.059 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2617 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2333 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.633Rint = 0.021
5357 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0262 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.82 e Å3
2617 reflectionsΔρmin = 0.74 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.04544 (4)0.84510 (4)0.07477 (3)0.01071 (12)
N20.2174 (5)1.0166 (4)0.2915 (4)0.0132 (8)
N10.0501 (5)0.7203 (4)0.2200 (4)0.0142 (8)
C50.1372 (7)0.5878 (6)0.4074 (5)0.0177 (10)
H50.16620.54120.47020.021*
C140.3403 (6)1.1629 (5)0.3271 (4)0.0153 (9)
H140.35651.20700.26040.018*
C30.1898 (7)0.5807 (5)0.1841 (5)0.0174 (10)
H30.26010.52620.09330.021*
C130.4480 (7)1.2563 (5)0.4588 (5)0.0178 (10)
H130.53561.36040.48030.021*
C60.0091 (7)0.7368 (6)0.4475 (4)0.0155 (9)
C70.0472 (6)0.7983 (5)0.3497 (4)0.0123 (9)
C110.1893 (6)0.9555 (5)0.3877 (4)0.0131 (9)
C80.1133 (7)0.8288 (6)0.5828 (4)0.0180 (10)
H80.08850.78630.64870.022*
C90.2449 (7)0.9734 (6)0.6180 (5)0.0200 (10)
H90.31071.03180.70840.024*
C100.2890 (6)1.0423 (5)0.5221 (4)0.0141 (9)
C120.4230 (7)1.1927 (5)0.5559 (5)0.0187 (10)
H120.49731.25150.64540.022*
C40.2371 (7)0.5112 (6)0.2757 (5)0.0197 (10)
H40.33800.41140.24670.024*
O1W0.2864 (5)0.7375 (4)0.1138 (3)0.0147 (7)
O40.0112 (4)0.7484 (4)0.1567 (3)0.0166 (7)
O30.1556 (5)0.5788 (4)0.0899 (3)0.0193 (7)
N30.1132 (5)0.6148 (4)0.1844 (4)0.0129 (8)
O50.1930 (5)0.5236 (4)0.2976 (3)0.0226 (8)
O10.1906 (4)0.9255 (4)0.0170 (3)0.0141 (6)
O20.3962 (5)0.7674 (4)0.0468 (3)0.0204 (7)
C10.3553 (6)0.8680 (5)0.0059 (4)0.0103 (8)
C20.5043 (6)0.9368 (5)0.0573 (4)0.0118 (9)
H2A0.63570.85390.09780.014*
H2B0.47580.98230.12470.014*
H1B0.238 (7)0.6402 (19)0.106 (5)0.018*
H1A0.373 (5)0.736 (6)0.080 (5)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01089 (18)0.01093 (18)0.00981 (18)0.00348 (12)0.00347 (12)0.00352 (12)
N20.0124 (18)0.016 (2)0.0127 (18)0.0055 (16)0.0053 (15)0.0070 (15)
N10.0144 (19)0.0113 (19)0.0161 (19)0.0050 (15)0.0048 (15)0.0032 (15)
C50.023 (3)0.019 (2)0.020 (2)0.010 (2)0.014 (2)0.012 (2)
C140.014 (2)0.020 (2)0.015 (2)0.0075 (19)0.0068 (18)0.0064 (18)
C30.019 (2)0.012 (2)0.019 (2)0.0028 (19)0.0079 (19)0.0040 (18)
C130.015 (2)0.007 (2)0.026 (3)0.0007 (18)0.008 (2)0.0010 (19)
C60.020 (2)0.021 (2)0.016 (2)0.013 (2)0.0106 (19)0.0131 (19)
C70.011 (2)0.015 (2)0.014 (2)0.0058 (18)0.0053 (17)0.0076 (18)
C110.015 (2)0.020 (2)0.011 (2)0.0110 (19)0.0081 (17)0.0057 (18)
C80.023 (2)0.027 (3)0.013 (2)0.014 (2)0.0093 (19)0.012 (2)
C90.020 (2)0.027 (3)0.014 (2)0.011 (2)0.0046 (19)0.006 (2)
C100.015 (2)0.014 (2)0.014 (2)0.0082 (18)0.0056 (18)0.0013 (18)
C120.016 (2)0.015 (2)0.018 (2)0.0037 (19)0.0029 (19)0.0013 (19)
C40.019 (2)0.017 (2)0.023 (3)0.006 (2)0.011 (2)0.003 (2)
O1W0.0139 (16)0.0115 (16)0.0203 (17)0.0042 (13)0.0083 (13)0.0062 (13)
O40.0154 (16)0.0109 (16)0.0195 (17)0.0002 (13)0.0063 (13)0.0044 (13)
O30.0243 (18)0.0210 (18)0.0138 (16)0.0057 (15)0.0113 (14)0.0062 (14)
N30.0138 (19)0.0103 (19)0.0136 (19)0.0047 (15)0.0048 (15)0.0019 (15)
O50.0228 (18)0.0244 (19)0.0096 (16)0.0025 (15)0.0019 (14)0.0015 (14)
O10.0081 (15)0.0195 (17)0.0137 (15)0.0036 (13)0.0037 (12)0.0057 (13)
O20.0181 (17)0.0206 (18)0.036 (2)0.0104 (14)0.0169 (15)0.0219 (16)
C10.015 (2)0.006 (2)0.011 (2)0.0038 (17)0.0065 (17)0.0012 (16)
C20.011 (2)0.011 (2)0.015 (2)0.0026 (17)0.0047 (17)0.0082 (18)
Geometric parameters (Å, º) top
Cd1—O12.253 (3)C7—C111.453 (6)
Cd1—O1W2.355 (3)C11—C101.414 (6)
Cd1—N12.358 (4)C8—C91.340 (7)
Cd1—N22.360 (4)C8—H80.9500
Cd1—O1i2.439 (3)C9—C101.437 (7)
Cd1—O42.470 (3)C9—H90.9500
Cd1—O32.511 (3)C10—C121.389 (7)
N2—C141.327 (6)C12—H120.9500
N2—C111.365 (6)C4—H40.9500
N1—C31.330 (6)O1W—H1B0.859 (10)
N1—C71.355 (6)O1W—H1A0.859 (10)
C5—C41.374 (7)O4—N31.254 (5)
C5—C61.407 (7)O3—N31.275 (5)
C5—H50.9500N3—O51.234 (5)
C14—C131.410 (6)O1—C11.282 (5)
C14—H140.9500O1—Cd1i2.439 (3)
C3—C41.405 (7)O2—C11.232 (5)
C3—H30.9500C1—C21.521 (6)
C13—C121.381 (7)C2—C2ii1.528 (9)
C13—H130.9500C2—H2A0.9900
C6—C71.406 (6)C2—H2B0.9900
C6—C81.435 (7)
O1—Cd1—O1W165.04 (11)N1—C7—C6122.8 (4)
O1—Cd1—N1107.49 (12)N1—C7—C11117.9 (4)
O1W—Cd1—N183.07 (12)C6—C7—C11119.3 (4)
O1—Cd1—N2107.06 (12)N2—C11—C10122.0 (4)
O1W—Cd1—N286.20 (12)N2—C11—C7118.5 (4)
N1—Cd1—N270.97 (13)C10—C11—C7119.4 (4)
O1—Cd1—O1i71.54 (12)C9—C8—C6121.2 (4)
O1W—Cd1—O1i103.94 (10)C9—C8—H8119.4
N1—Cd1—O1i153.21 (12)C6—C8—H8119.4
N2—Cd1—O1i83.58 (11)C8—C9—C10121.5 (4)
O1—Cd1—O481.10 (11)C8—C9—H9119.2
O1W—Cd1—O483.94 (11)C10—C9—H9119.2
N1—Cd1—O4133.14 (12)C12—C10—C11118.3 (4)
N2—Cd1—O4152.10 (12)C12—C10—C9122.7 (4)
O1i—Cd1—O473.64 (10)C11—C10—C9119.0 (4)
O1—Cd1—O387.96 (11)C13—C12—C10119.8 (4)
O1W—Cd1—O382.85 (11)C13—C12—H12120.1
N1—Cd1—O382.58 (12)C10—C12—H12120.1
N2—Cd1—O3152.40 (12)C5—C4—C3119.9 (4)
O1i—Cd1—O3123.65 (10)C5—C4—H4120.1
O4—Cd1—O351.17 (10)C3—C4—H4120.1
C14—N2—C11118.1 (4)Cd1—O1W—H1B112 (4)
C14—N2—Cd1126.2 (3)Cd1—O1W—H1A132 (4)
C11—N2—Cd1115.7 (3)H1B—O1W—H1A99 (5)
C3—N1—C7118.5 (4)N3—O4—Cd197.2 (2)
C3—N1—Cd1125.0 (3)N3—O3—Cd194.7 (2)
C7—N1—Cd1116.5 (3)O5—N3—O4121.9 (4)
C4—C5—C6118.8 (4)O5—N3—O3121.5 (4)
C4—C5—H5120.6O4—N3—O3116.6 (3)
C6—C5—H5120.6C1—O1—Cd1117.6 (3)
N2—C14—C13123.4 (4)C1—O1—Cd1i132.2 (3)
N2—C14—H14118.3Cd1—O1—Cd1i108.46 (12)
C13—C14—H14118.3O2—C1—O1124.8 (4)
N1—C3—C4122.3 (4)O2—C1—C2119.1 (4)
N1—C3—H3118.9O1—C1—C2116.0 (4)
C4—C3—H3118.9C1—C2—C2ii108.6 (4)
C12—C13—C14118.3 (4)C1—C2—H2A110.0
C12—C13—H13120.8C2ii—C2—H2A110.0
C14—C13—H13120.8C1—C2—H2B110.0
C7—C6—C5117.9 (4)C2ii—C2—H2B110.0
C7—C6—C8119.6 (4)H2A—C2—H2B108.4
C5—C6—C8122.5 (4)
O1—Cd1—N2—C1473.4 (4)C5—C6—C8—C9176.6 (5)
O1W—Cd1—N2—C1499.5 (4)C6—C8—C9—C100.6 (7)
N1—Cd1—N2—C14176.5 (4)N2—C11—C10—C121.8 (6)
O1i—Cd1—N2—C145.0 (3)C7—C11—C10—C12179.5 (4)
O4—Cd1—N2—C1430.1 (5)N2—C11—C10—C9176.9 (4)
O3—Cd1—N2—C14166.2 (3)C7—C11—C10—C90.9 (6)
O1—Cd1—N2—C11108.4 (3)C8—C9—C10—C12179.2 (4)
O1W—Cd1—N2—C1178.7 (3)C8—C9—C10—C110.6 (7)
N1—Cd1—N2—C115.3 (3)C14—C13—C12—C102.4 (7)
O1i—Cd1—N2—C11176.8 (3)C11—C10—C12—C133.5 (7)
O4—Cd1—N2—C11148.1 (3)C9—C10—C12—C13175.1 (4)
O3—Cd1—N2—C1112.0 (5)C6—C5—C4—C31.2 (7)
O1—Cd1—N1—C372.5 (4)N1—C3—C4—C50.1 (7)
O1W—Cd1—N1—C396.7 (4)O1—Cd1—O4—N391.1 (2)
N2—Cd1—N1—C3175.0 (4)O1W—Cd1—O4—N389.2 (2)
O1i—Cd1—N1—C3156.0 (3)N1—Cd1—O4—N314.6 (3)
O4—Cd1—N1—C321.7 (4)N2—Cd1—O4—N3159.1 (3)
O3—Cd1—N1—C313.0 (4)O1i—Cd1—O4—N3164.3 (3)
O1—Cd1—N1—C7107.8 (3)O3—Cd1—O4—N33.5 (2)
O1W—Cd1—N1—C783.1 (3)O1—Cd1—O3—N376.8 (2)
N2—Cd1—N1—C75.3 (3)O1W—Cd1—O3—N391.4 (2)
O1i—Cd1—N1—C724.3 (5)N1—Cd1—O3—N3175.3 (3)
O4—Cd1—N1—C7158.0 (3)N2—Cd1—O3—N3158.8 (3)
O3—Cd1—N1—C7166.7 (3)O1i—Cd1—O3—N310.6 (3)
C11—N2—C14—C132.3 (6)O4—Cd1—O3—N33.4 (2)
Cd1—N2—C14—C13175.8 (3)Cd1—O4—N3—O5172.9 (3)
C7—N1—C3—C41.1 (7)Cd1—O4—N3—O36.0 (4)
Cd1—N1—C3—C4178.6 (3)Cd1—O3—N3—O5173.1 (3)
N2—C14—C13—C120.6 (7)Cd1—O3—N3—O45.9 (4)
C4—C5—C6—C71.0 (7)O1W—Cd1—O1—C1118.5 (4)
C4—C5—C6—C8176.5 (4)N1—Cd1—O1—C115.1 (3)
C3—N1—C7—C61.3 (6)N2—Cd1—O1—C190.0 (3)
Cd1—N1—C7—C6178.5 (3)O1i—Cd1—O1—C1166.9 (4)
C3—N1—C7—C11175.4 (4)O4—Cd1—O1—C1117.4 (3)
Cd1—N1—C7—C114.8 (5)O3—Cd1—O1—C166.4 (3)
C5—C6—C7—N10.2 (7)O1W—Cd1—O1—Cd1i74.6 (4)
C8—C6—C7—N1177.8 (4)N1—Cd1—O1—Cd1i151.83 (13)
C5—C6—C7—C11176.4 (4)N2—Cd1—O1—Cd1i76.95 (14)
C8—C6—C7—C111.1 (6)O1i—Cd1—O1—Cd1i0.0
C14—N2—C11—C101.1 (6)O4—Cd1—O1—Cd1i75.62 (12)
Cd1—N2—C11—C10177.3 (3)O3—Cd1—O1—Cd1i126.61 (12)
C14—N2—C11—C7176.7 (4)Cd1—O1—C1—O22.9 (6)
Cd1—N2—C11—C75.0 (5)Cd1i—O1—C1—O2166.1 (3)
N1—C7—C11—N20.2 (6)Cd1—O1—C1—C2174.2 (3)
C6—C7—C11—N2176.7 (4)Cd1i—O1—C1—C211.0 (5)
N1—C7—C11—C10178.0 (4)O2—C1—C2—C2ii81.3 (6)
C6—C7—C11—C101.1 (6)O1—C1—C2—C2ii96.0 (5)
C7—C6—C8—C90.8 (7)
Symmetry codes: (i) x, y+2, z; (ii) x1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3iii0.86 (1)1.93 (1)2.786 (5)174 (5)
O1W—H1A···O2iv0.86 (1)1.88 (2)2.716 (4)166 (5)
Symmetry codes: (iii) x, y+1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cd2(C4H4O4)(NO3)2(C12H8N2)2(H2O)2]
Mr861.33
Crystal system, space groupTriclinic, P1
Temperature (K)110
a, b, c (Å)7.7349 (13), 9.4467 (16), 11.2063 (18)
α, β, γ (°)102.284 (2), 106.059 (2), 107.003 (2)
V3)713.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.40 × 0.34 × 0.32
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.572, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
5357, 2617, 2333
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.086, 1.10
No. of reflections2617
No. of parameters223
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.82, 0.74

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O3i0.859 (10)1.930 (12)2.786 (5)174 (5)
O1W—H1A···O2ii0.859 (10)1.875 (17)2.716 (4)166 (5)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

This work was funded by Subject Team of Taiyuan University of Science and Technology.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H.-J., Gao, Z.-Q. & Gu, J.-Z. (2011). Acta Cryst. E67, m919.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontney, M. R., Krishnan, S. M., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145–1153.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds