metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of (aceto­nitrile-κN)dicarbon­yl(η5-cyclo­penta­dien­yl)iron(II) tetra­fluoridoborate

aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 31 May 2012; accepted 19 June 2012; online 23 June 2012)

The crystal structure of the title compound, [Fe(C5H5)(CH3CN)(CO)2]BF4, of which only the coordinates of the non-H atoms of the cation have previously been reported [Fadel et al. (1979[Fadel, F., Weidenhammer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98-106.]). Z. Anorg. Allg. Chem. 453, 98–106] has been redetermined. The FeII atom in the complex cation is coordinated by a cyclo­penta­dienyl ring, two carbonyl ligands and an acetonitrile mol­ecule displaying a three-legged piano stool structure. Three of the four F atoms of the BF4 anion are disordered over two sets of sites, with a site-occupancy factor of 0.709 (10) for the major occupied site.

Related literature

For background to this work, see: Kückmann et al. (2005[Kückmann, T. I., Hermsen, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chem. 44, 3449-3458.], 2007[Kückmann, T. I., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989-2003.], 2008[Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Organometallics, 27, 3272-3278.], 2010[Kückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2010). Eur. J. Inorg. Chem. pp. 468-475.]); Lerner (2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]); Sänger et al. (2012[Sänger, I., Kückmann, T. I., Dornhaus, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Dalton Trans. 41, 6671-6676.]). For a previous (incomplete) structure determination of the title compound, see: Fadel et al. (1979[Fadel, F., Weidenhammer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98-106.]). For the structure of closely related dicarbonyl-(η5-cyclo­penta­dien­yl)-(N-methyl cyanido)iron(II) tetra­fluoridoborate, see: Callan et al. (1987[Callan, B., Manning, A. R. & Stephens, F. S. (1987). J. Organomet. Chem. 331, 357-377.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C2H3N)(CO)2]BF4

  • Mr = 304.82

  • Monoclinic, P 21 /c

  • a = 6.8842 (7) Å

  • b = 15.289 (2) Å

  • c = 11.4353 (12) Å

  • β = 95.192 (8)°

  • V = 1198.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 173 K

  • 0.33 × 0.12 × 0.12 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.674, Tmax = 0.860

  • 6372 measured reflections

  • 2222 independent reflections

  • 1976 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.151

  • S = 1.04

  • 2222 reflections

  • 162 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Very recently we have reported (Sänger et al., 2012) that the dimeric iron carbonyl [CpFe(CO)2]2 and the iodosilanes tBu2RSiI (R = Me, tBu) were obtained from the reaction of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (Lerner, 2005) in THF. The reaction of [CpFe(CO)2]X (X = halogen) with silyl thiolates [SSiR3]- is a method to prepare the corresponding chalcogenolato complexes. We found that the sodium thiolate Na[SSitBu3] (Kückmann et al., 2005, 2008, 2010) reacts readily with [CpFe(CO)2][BF4] in THF at room temperature to give the desired complex [CpFe(CO)2][SSitBu3] (Kückmann et al., 2007). In this article we report the crystal structure of the starting material of this approach, [CpFe(CO)2][BF4]. The title compound [CpFe(CO)2][BF4] was easily accessible from the reaction of [CpFe(CO)2]I with AgBF4 in THF. Single crystals of the acetonitrile solvate [CpFe(CO)2(NCCH3)][BF4] were obtained by recrystallization from acetonitrile.

The crystal structure of the title compound (Fig. 1), of which only the coordinates of the non-H atoms of the cation have previously been determined (Fadel et al., 1979) has been reinvestigated, now with the location of the tetrafluorido borate anion and improved R factors for the present model.

The FeII atom in the cation is coordinated by a cyclopentadienyl ring, two carbonyl ligands and an acetonitrile molecule displaying a three-legged piano-stool structure. Three of the four F atoms of the BF4- anion are disordered over two sites with a site occupancy factor of 0.709 (10) for the major occupied site.

It is noteworthy, that Callan et al. (1987) determined the closely related structure of dicarbonyl-(η5-cyclopentadienyl)-(N-methyl cyanido)-iron(II) tetrafluoridoborate which has a methylisocyanide molecule bonded to the iron(II) atom instead of an acetonitrile molecule as in the title compound.

Related literature top

For background to this work, see: Kückmann et al. (2005, 2007, 2008, 2010); Lerner (2005); Sänger et al. (2012). For a previous (incomplete) structure determination of the title compound, see: Fadel et al. (1979). For the structure of closely related dicarbonyl-(η5-cyclopentadienyl)-(N-methyl cyanido)iron(II) tetrafluoridoborate, see: Callan et al. (1987).

Experimental top

AgBF4 (0.19 g, 0.98 mmol) was added to a solution of [CpFe(CO)2]I (0.31 g, 1.02 mmol) (Fig. 1). The mixture was stirred at room temperature for 12 h. After filtration the solvent was removed in vacuo. Single crystals of the acetonitrile solvate [CpFe(CO)2(NCCH3)][BF4] were obtained by recrystallization from acetonitrile (yield: 74 mol%).

Refinement top

H atoms bonded to C were refined using a riding model, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C) or with C—H = 0.98 Å and with Uiso(H) = 1.5Ueq(Cmethyl). The methyl group was allowed to rotate but not to tip. Three of the F atoms of the BF4- anion are disordered over two sites with a site occupancy factor of 0.709 (10) for the major occupied site and were refined with isotropic displacement parameters. The B—F bond lengths and the F···F distances were restrained to be equal.

Structure description top

Very recently we have reported (Sänger et al., 2012) that the dimeric iron carbonyl [CpFe(CO)2]2 and the iodosilanes tBu2RSiI (R = Me, tBu) were obtained from the reaction of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (Lerner, 2005) in THF. The reaction of [CpFe(CO)2]X (X = halogen) with silyl thiolates [SSiR3]- is a method to prepare the corresponding chalcogenolato complexes. We found that the sodium thiolate Na[SSitBu3] (Kückmann et al., 2005, 2008, 2010) reacts readily with [CpFe(CO)2][BF4] in THF at room temperature to give the desired complex [CpFe(CO)2][SSitBu3] (Kückmann et al., 2007). In this article we report the crystal structure of the starting material of this approach, [CpFe(CO)2][BF4]. The title compound [CpFe(CO)2][BF4] was easily accessible from the reaction of [CpFe(CO)2]I with AgBF4 in THF. Single crystals of the acetonitrile solvate [CpFe(CO)2(NCCH3)][BF4] were obtained by recrystallization from acetonitrile.

The crystal structure of the title compound (Fig. 1), of which only the coordinates of the non-H atoms of the cation have previously been determined (Fadel et al., 1979) has been reinvestigated, now with the location of the tetrafluorido borate anion and improved R factors for the present model.

The FeII atom in the cation is coordinated by a cyclopentadienyl ring, two carbonyl ligands and an acetonitrile molecule displaying a three-legged piano-stool structure. Three of the four F atoms of the BF4- anion are disordered over two sites with a site occupancy factor of 0.709 (10) for the major occupied site.

It is noteworthy, that Callan et al. (1987) determined the closely related structure of dicarbonyl-(η5-cyclopentadienyl)-(N-methyl cyanido)-iron(II) tetrafluoridoborate which has a methylisocyanide molecule bonded to the iron(II) atom instead of an acetonitrile molecule as in the title compound.

For background to this work, see: Kückmann et al. (2005, 2007, 2008, 2010); Lerner (2005); Sänger et al. (2012). For a previous (incomplete) structure determination of the title compound, see: Fadel et al. (1979). For the structure of closely related dicarbonyl-(η5-cyclopentadienyl)-(N-methyl cyanido)iron(II) tetrafluoridoborate, see: Callan et al. (1987).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction scheme for obtaining the title compound.
[Figure 2] Fig. 2. Perspective view of the title compound with the atom numbering scheme; displacement ellipsoids are at the 50% probability level. Only the major occupied site of the disordered BF4- anion is shown.
(acetonitrile-κN)dicarbonyl(η5-cyclopentadienyl)iron(II) tetrafluoridoborate top
Crystal data top
[Fe(C5H5)(C2H3N)(CO)2]BF4F(000) = 608
Mr = 304.82Dx = 1.689 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6543 reflections
a = 6.8842 (7) Åθ = 3.6–25.7°
b = 15.289 (2) ŵ = 1.30 mm1
c = 11.4353 (12) ÅT = 173 K
β = 95.192 (8)°Rod, orange
V = 1198.7 (2) Å30.33 × 0.12 × 0.12 mm
Z = 4
Data collection top
Stoe IPDS II two-circle
diffractometer
2222 independent reflections
Radiation source: fine-focus sealed tube1976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 88
Tmin = 0.674, Tmax = 0.860k = 1815
6372 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0822P)2 + 3.3996P]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 1.43 e Å3
45 restraintsΔρmin = 0.87 e Å3
Crystal data top
[Fe(C5H5)(C2H3N)(CO)2]BF4V = 1198.7 (2) Å3
Mr = 304.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8842 (7) ŵ = 1.30 mm1
b = 15.289 (2) ÅT = 173 K
c = 11.4353 (12) Å0.33 × 0.12 × 0.12 mm
β = 95.192 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2222 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1976 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.860Rint = 0.044
6372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05545 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.04Δρmax = 1.43 e Å3
2222 reflectionsΔρmin = 0.87 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
B10.1682 (8)0.4317 (5)0.8015 (5)0.0504 (17)
F10.0863 (6)0.3739 (3)0.8730 (4)0.0696 (11)
F20.0456 (9)0.4609 (4)0.7113 (5)0.073 (2)*0.709 (10)
F30.1922 (8)0.5136 (3)0.8728 (5)0.0584 (17)*0.709 (10)
F40.3529 (8)0.4133 (4)0.7734 (7)0.0631 (18)*0.709 (10)
F2'0.126 (3)0.3804 (14)0.6880 (14)0.122 (8)*0.291 (10)
F3'0.104 (3)0.5108 (11)0.773 (2)0.127 (9)*0.291 (10)
F4'0.3687 (15)0.4177 (9)0.8167 (15)0.056 (4)*0.291 (10)
Fe10.70458 (8)0.33865 (4)0.44357 (5)0.0232 (3)
C10.9179 (7)0.3351 (3)0.3623 (4)0.0284 (9)
O11.0553 (5)0.3298 (2)0.3141 (4)0.0424 (9)
C20.7445 (6)0.4506 (3)0.4916 (4)0.0309 (10)
O20.7644 (6)0.5205 (3)0.5253 (4)0.0477 (10)
N10.5355 (5)0.3759 (2)0.3084 (3)0.0260 (8)
C30.4383 (6)0.4036 (3)0.2304 (4)0.0268 (9)
C40.3128 (7)0.4408 (4)0.1331 (4)0.0390 (11)
H4A0.18900.45930.16130.058*
H4B0.28770.39660.07150.058*
H4C0.37760.49140.10110.058*
C110.6770 (13)0.2026 (4)0.4651 (6)0.064 (2)
H110.70060.16070.40660.076*
C120.8106 (10)0.2334 (5)0.5468 (7)0.068 (2)
H120.94320.21550.55660.081*
C130.7255 (14)0.2963 (5)0.6162 (5)0.075 (2)
H130.78770.32930.67930.090*
C140.5213 (12)0.2996 (4)0.5701 (7)0.071 (2)
H140.42160.33520.59730.085*
C150.5027 (10)0.2403 (5)0.4787 (6)0.0620 (19)
H150.38460.22780.43210.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.034 (3)0.071 (5)0.046 (3)0.005 (3)0.001 (3)0.031 (3)
F10.083 (3)0.062 (2)0.066 (2)0.025 (2)0.020 (2)0.008 (2)
Fe10.0228 (4)0.0248 (4)0.0217 (4)0.0011 (2)0.0004 (2)0.0004 (2)
C10.027 (2)0.024 (2)0.033 (2)0.0026 (16)0.0002 (19)0.0044 (17)
O10.0292 (18)0.043 (2)0.057 (2)0.0040 (14)0.0131 (17)0.0086 (17)
C20.025 (2)0.036 (3)0.031 (2)0.0032 (18)0.0018 (17)0.006 (2)
O20.046 (2)0.039 (2)0.056 (2)0.0030 (17)0.0039 (17)0.0191 (18)
N10.0210 (16)0.0306 (19)0.0264 (18)0.0055 (15)0.0028 (15)0.0026 (15)
C30.0224 (19)0.033 (2)0.025 (2)0.0022 (17)0.0016 (17)0.0002 (18)
C40.036 (2)0.048 (3)0.031 (2)0.005 (2)0.006 (2)0.004 (2)
C110.115 (6)0.030 (3)0.049 (4)0.005 (3)0.028 (4)0.006 (3)
C120.052 (4)0.074 (5)0.080 (5)0.023 (3)0.016 (4)0.049 (4)
C130.132 (7)0.065 (4)0.024 (3)0.034 (5)0.012 (3)0.017 (3)
C140.091 (5)0.049 (4)0.084 (5)0.027 (4)0.065 (5)0.034 (4)
C150.060 (4)0.062 (4)0.061 (4)0.029 (3)0.008 (3)0.033 (3)
Geometric parameters (Å, º) top
B1—F3'1.319 (14)C2—O21.140 (6)
B1—F21.348 (8)N1—C31.147 (6)
B1—F11.361 (7)C3—C41.461 (6)
B1—F41.369 (8)C4—H4A0.9800
B1—F4'1.392 (11)C4—H4B0.9800
B1—F31.496 (9)C4—H4C0.9800
B1—F2'1.521 (14)C11—C121.336 (11)
Fe1—C11.809 (5)C11—C151.353 (11)
Fe1—C21.811 (5)C11—H110.9500
Fe1—N11.935 (4)C12—C131.407 (11)
Fe1—C132.070 (6)C12—H120.9500
Fe1—C122.088 (6)C13—C141.457 (12)
Fe1—C142.091 (5)C13—H130.9500
Fe1—C112.106 (6)C14—C151.381 (11)
Fe1—C152.110 (6)C14—H140.9500
C1—O11.140 (6)C15—H150.9500
F3'—B1—F1126.5 (11)O1—C1—Fe1177.0 (4)
F2—B1—F1114.2 (5)O2—C2—Fe1177.2 (4)
F2—B1—F4114.8 (6)C3—N1—Fe1175.4 (4)
F1—B1—F4116.9 (6)N1—C3—C4178.5 (5)
F3'—B1—F4'118.7 (12)C3—C4—H4A109.5
F1—B1—F4'106.6 (8)C3—C4—H4B109.5
F2—B1—F399.8 (5)H4A—C4—H4B109.5
F1—B1—F3104.3 (5)C3—C4—H4C109.5
F4—B1—F3103.9 (6)H4A—C4—H4C109.5
F3'—B1—F2'103.2 (13)H4B—C4—H4C109.5
F1—B1—F2'96.9 (10)C12—C11—C15109.3 (6)
F4'—B1—F2'98.0 (11)C12—C11—Fe170.7 (4)
C1—Fe1—C294.4 (2)C15—C11—Fe171.5 (4)
C1—Fe1—N193.21 (18)C12—C11—H11125.4
C2—Fe1—N191.61 (19)C15—C11—H11125.4
C1—Fe1—C13119.4 (3)Fe1—C11—H11124.1
C2—Fe1—C1390.6 (3)C11—C12—C13109.9 (6)
N1—Fe1—C13147.0 (3)C11—C12—Fe172.1 (4)
C1—Fe1—C1290.5 (2)C13—C12—Fe169.5 (4)
C2—Fe1—C12121.4 (3)C11—C12—H12125.1
N1—Fe1—C12146.4 (3)C13—C12—H12125.1
C13—Fe1—C1239.6 (3)Fe1—C12—H12124.8
C1—Fe1—C14156.4 (2)C12—C13—C14104.9 (6)
C2—Fe1—C1498.3 (3)C12—C13—Fe170.9 (3)
N1—Fe1—C14106.2 (3)C14—C13—Fe170.3 (3)
C13—Fe1—C1441.0 (3)C12—C13—H13127.6
C12—Fe1—C1465.9 (3)C14—C13—H13127.6
C1—Fe1—C1196.7 (2)Fe1—C13—H13123.1
C2—Fe1—C11155.7 (2)C15—C14—C13105.7 (6)
N1—Fe1—C11109.3 (3)C15—C14—Fe171.6 (3)
C13—Fe1—C1165.1 (3)C13—C14—Fe168.7 (3)
C12—Fe1—C1137.2 (3)C15—C14—H14127.1
C14—Fe1—C1164.6 (3)C13—C14—H14127.1
C1—Fe1—C15131.0 (3)Fe1—C14—H14124.2
C2—Fe1—C15134.4 (3)C11—C15—C14110.2 (7)
N1—Fe1—C1590.2 (2)C11—C15—Fe171.1 (4)
C13—Fe1—C1565.5 (3)C14—C15—Fe170.1 (4)
C12—Fe1—C1563.0 (3)C11—C15—H15124.9
C14—Fe1—C1538.4 (3)C14—C15—H15124.9
C11—Fe1—C1537.4 (3)Fe1—C15—H15125.5
C1—Fe1—C11—C1282.0 (4)N1—Fe1—C13—C148.0 (7)
C2—Fe1—C11—C1234.5 (9)C12—Fe1—C13—C14114.4 (6)
N1—Fe1—C11—C12177.7 (4)C11—Fe1—C13—C1479.2 (5)
C13—Fe1—C11—C1237.4 (5)C15—Fe1—C13—C1437.9 (4)
C14—Fe1—C11—C1282.9 (5)C12—C13—C14—C150.4 (6)
C15—Fe1—C11—C12119.1 (6)Fe1—C13—C14—C1562.5 (4)
C1—Fe1—C11—C15158.9 (4)C12—C13—C14—Fe162.9 (4)
C2—Fe1—C11—C1584.6 (8)C1—Fe1—C14—C1575.5 (10)
N1—Fe1—C11—C1563.1 (4)C2—Fe1—C14—C15162.8 (4)
C13—Fe1—C11—C1581.7 (5)N1—Fe1—C14—C1568.7 (4)
C12—Fe1—C11—C15119.1 (6)C13—Fe1—C14—C15115.8 (6)
C14—Fe1—C11—C1536.2 (5)C12—Fe1—C14—C1576.4 (5)
C15—C11—C12—C131.8 (7)C11—Fe1—C14—C1535.3 (4)
Fe1—C11—C12—C1359.5 (5)C1—Fe1—C14—C1340.4 (10)
C15—C11—C12—Fe161.4 (4)C2—Fe1—C14—C1381.3 (4)
C1—Fe1—C12—C11100.4 (4)N1—Fe1—C14—C13175.4 (4)
C2—Fe1—C12—C11164.1 (4)C12—Fe1—C14—C1339.5 (5)
N1—Fe1—C12—C113.8 (7)C11—Fe1—C14—C1380.5 (5)
C13—Fe1—C12—C11120.1 (6)C15—Fe1—C14—C13115.8 (6)
C14—Fe1—C12—C1179.2 (5)C12—C11—C15—C141.6 (7)
C15—Fe1—C12—C1136.6 (4)Fe1—C11—C15—C1459.3 (4)
C1—Fe1—C12—C13139.5 (5)C12—C11—C15—Fe160.9 (5)
C2—Fe1—C12—C1344.0 (5)C13—C14—C15—C110.6 (7)
N1—Fe1—C12—C13124.0 (5)Fe1—C14—C15—C1160.0 (4)
C14—Fe1—C12—C1340.9 (5)C13—C14—C15—Fe160.6 (4)
C11—Fe1—C12—C13120.1 (6)C1—Fe1—C15—C1128.2 (5)
C15—Fe1—C12—C1383.5 (5)C2—Fe1—C15—C11145.0 (4)
C11—C12—C13—C141.4 (7)N1—Fe1—C15—C11122.6 (4)
Fe1—C12—C13—C1462.5 (4)C13—Fe1—C15—C1180.4 (5)
C11—C12—C13—Fe161.1 (5)C12—Fe1—C15—C1136.3 (4)
C1—Fe1—C13—C1248.2 (5)C14—Fe1—C15—C11120.8 (6)
C2—Fe1—C13—C12143.6 (5)C1—Fe1—C15—C14149.1 (4)
N1—Fe1—C13—C12122.5 (6)C2—Fe1—C15—C1424.1 (6)
C14—Fe1—C13—C12114.4 (6)N1—Fe1—C15—C14116.6 (4)
C11—Fe1—C13—C1235.2 (5)C13—Fe1—C15—C1440.4 (5)
C15—Fe1—C13—C1276.5 (5)C12—Fe1—C15—C1484.5 (5)
C1—Fe1—C13—C14162.7 (4)C11—Fe1—C15—C14120.8 (6)
C2—Fe1—C13—C14102.0 (4)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C2H3N)(CO)2]BF4
Mr304.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.8842 (7), 15.289 (2), 11.4353 (12)
β (°) 95.192 (8)
V3)1198.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.33 × 0.12 × 0.12
Data collection
DiffractometerStoe IPDS II two-circle
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.674, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
6372, 2222, 1976
Rint0.044
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.151, 1.04
No. of reflections2222
No. of parameters162
No. of restraints45
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.43, 0.87

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCallan, B., Manning, A. R. & Stephens, F. S. (1987). J. Organomet. Chem. 331, 357–377.  CSD CrossRef CAS Web of Science Google Scholar
First citationFadel, F., Weidenhammer, K. & Ziegler, M. L. (1979). Z. Anorg. Allg. Chem. 453, 98–106.  CSD CrossRef CAS Web of Science Google Scholar
First citationKückmann, T. I., Dornhaus, F., Bolte, M., Lerner, H.-W., Holthausen, M. C. & Wagner, M. (2007). Eur. J. Inorg. Chem. pp. 1989–2003.  Google Scholar
First citationKückmann, T. I., Hermsen, M., Bolte, M., Wagner, M. & Lerner, H.-W. (2005). Inorg. Chem. 44, 3449–3458.  Web of Science PubMed Google Scholar
First citationKückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2008). Organometallics, 27, 3272–3278.  Google Scholar
First citationKückmann, T. I., Schödel, F., Sänger, I., Bolte, M., Wagner, M. & Lerner, H.-W. (2010). Eur. J. Inorg. Chem. pp. 468–475.  Web of Science CSD CrossRef Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationSänger, I., Kückmann, T. I., Dornhaus, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2012). Dalton Trans. 41, 6671–6676.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds