inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Thallium(I) copper(I) thorium(IV) tris­­elenide, TlCuThSe3

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 1 June 2012; accepted 12 June 2012; online 20 June 2012)

Thallium(I) copper(I) thorium(IV) tris­elenide, TlCuThSe3, crystallizes with four formula units in the space group Cmcm in the KCuZrS3 structure type. There is one crystallographic­ally independent Th, Tl, and Cu atom at a site of symmetry 2/m.., m2m, and m2m, respectively. There are two crystallographically independent Se atoms at sites of symmetry m.. and m2m. The structure consists of sheets of edge-sharing ThSe6 octa­hedra and CuSe4 tetra­hedra stacked parallel to the (010) face, separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms.

Related literature

For compounds of type AMM'Q3, see: Pell & Ibers (1996[Pell, M. A. & Ibers, J. A. (1996). J. Alloys Compd, 240, 37-41.]); Klepp & Gurtner (1996[Klepp, K. O. & Gurtner, D. (1996). J. Alloys Compd, 243, 6-11.]) for A = Tl; Pell et al. (1997[Pell, M. A., Kleyn, A. G. & Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92-?.]); Yao et al. (2008[Yao, J., Wells, D. M., Chan, G.-H., Zeng, H., Ellis, D. E., van Duyne, R. P. & Ibers, J. A. (2008). Inorg. Chem. 47, 6873-6879.]); Wells et al. (2009[Wells, D. M., Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2009). Inorg. Chem. 48, 11513-11517.]) for M = Ag; Bugaris & Ibers (2009[Bugaris, D. E. & Ibers, J. A. (2009). J. Solid State Chem. 182, 2587-2590.]) for M = Au; Mansuetto et al. (1993[Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1993). J. Solid State Chem. 105, 580-587.]); Pell & Ibers (1996[Pell, M. A. & Ibers, J. A. (1996). J. Alloys Compd, 240, 37-41.]) for M′ = Ti; Mansuetto et al. (1992[Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1992). J. Solid State Chem. 101, 257-264.], 1993[Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1993). J. Solid State Chem. 105, 580-587.]); Huang et al. (2001[Huang, F.-Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123-5126.]); Pell et al. (1997[Pell, M. A., Kleyn, A. G. & Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92-?.]) for M′ = Zr; Klepp & Sturmayr (1997[Klepp, K. O. & Sturmayr, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 75.], 1998[Klepp, K. O. & Sturmayr, D. (1998). Z. Kristallogr. New Cryst. Struct. 213, 693.]); Pell et al. (1997[Pell, M. A., Kleyn, A. G. & Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92-?.]) for M′ = Hf; Seldy et al. (2005[Seldy, H. D., Chan, B. C., Hess, R. F., Abney, K. D. & Dorhout, P. K. (2005). Inorg. Chem. 44, 6463-6469.]); Narducci & Ibers (2000[Narducci, A. A. & Ibers, J. A. (2000). Inorg. Chem. 39, 688-691.]) for M′ = Th; Yao et al. (2008[Yao, J., Wells, D. M., Chan, G.-H., Zeng, H., Ellis, D. E., van Duyne, R. P. & Ibers, J. A. (2008). Inorg. Chem. 47, 6873-6879.]); Sutorik et al. (1996[Sutorik, A. C., Albritton-Thomas, J., Hogan, T., Kannewurf, C. R. & Kanatzidis, M. G. (1996). Chem. Mater. 8, 751-761.]); Bugaris & Ibers (2009[Bugaris, D. E. & Ibers, J. A. (2009). J. Solid State Chem. 182, 2587-2590.]); Huang et al. (2001[Huang, F.-Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123-5126.]); Cody & Ibers (1995[Cody, J. A. & Ibers, J. A. (1995). Inorg. Chem. 34, 3165-3172.]) for M′ = U; Wells et al. (2009[Wells, D. M., Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2009). Inorg. Chem. 48, 11513-11517.]) for M′ = Np. For computational details, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). For additional synthetic details, see: Witt et al. (1956[Witt, R. H., Nylin, J. & McCullough, H. M. (1956). A Study of the Hydride Process for Producing Thorium Powder. United States Atomic Energy Commission, Atomic Energy Division, Sylvania Electric Products, Inc., Bayside, New York.]).

Experimental

Crystal data
  • TlCuThSe3

  • Mr = 736.83

  • Orthorhombic, C m c m

  • a = 4.1678 (2) Å

  • b = 14.2227 (7) Å

  • c = 10.8476 (5) Å

  • V = 643.02 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 68.19 mm−1

  • T = 100 K

  • 0.10 × 0.07 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.101, Tmax = 0.489

  • 7476 measured reflections

  • 474 independent reflections

  • 451 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.046

  • S = 1.59

  • 474 reflections

  • 24 parameters

  • Δρmax = 2.01 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Selected bond lengths (Å)

Th1—Se2i 2.8844 (4)
Th1—Se2 2.8844 (4)
Th1—Se1ii 2.9057 (5)
Th1—Se1iii 2.9057 (5)
Th1—Se1iv 2.9057 (5)
Th1—Se1v 2.9057 (5)
Tl1—Se2vi 3.2831 (9)
Tl1—Se2vii 3.2831 (9)
Tl1—Se1viii 3.3564 (6)
Tl1—Se1vi 3.3564 (6)
Tl1—Se1ix 3.3564 (6)
Tl1—Se1vii 3.3564 (6)
Cu1—Se1 2.4617 (11)
Cu1—Se1x 2.4617 (11)
Cu1—Se2vii 2.5517 (11)
Cu1—Se2vi 2.5517 (11)
Symmetry codes: (i) -x, -y, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (v) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (x) [x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3, crystallizes in the KCuZrS3 structure type. The structure (Figs. 1, 2) is layered and consists of sheets of edge-sharing ThSe6 octahedra and CuSe4 tetrahedra stacked parallel to the (010) face separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms. Because there are no Se—Se bonds in the structure, oxidation states can be assigned as Tl+, Cu+, Th4+, and Se2-.

The compound TlCuThSe3 is of the type AMM'Q3, where A is an alkali metal or thallium, M is a coinage metal, M' is a tetravalent group IV metal or an actinide, and Q is a chalcogen. Including the title compound, 39 such compounds are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996; Pell et al., 1997; Yao et al., 2008; Wells et al., 2009; Bugaris & Ibers, 2009; Sutorik et al., 1996; Huang et al., 2001; Cody & Ibers, 1995; Mansuetto et al., 1993, 1992; Klepp & Sturmayr, 1997, 1998; Seldy et al., 2005; Narducci & Ibers, 2000). In all cases, crystallographic data have been collected on single crystals. Most often, the A site contains an alkali metal and only 6 Tl analogues are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996). The M site contains Cu in 28 analogues, Ag in 7 analogues (Pell et al., 1997; Yao et al., 2008; Wells et al., 2009), and Au in 4 analogues (Bugaris & Ibers, 2009). The tetravalent metal is most often U with 14 analogues (Yao et al., 2008; Sutorik et al., 1996; Bugaris & Ibers, 2009; Huang et al., 2001; Cody & Ibers, 1995), followed by Zr with 9 analogues (Mansuetto et al., 1992, 1993; Huang et al., 2001; Pell et al., 1997), Hf with 5 analogues (Klepp & Sturmayr, 1997, 1998; Pell et al., 1997), Np with 5 analogues (Wells et al., 2009), Th with 4 analogues (Seldy et al., 2005; Narducci & Ibers, 2000), and Ti with 2 analogues (Mansuetto et al., 1993; Pell & Ibers, 1996). This is the first compound of the type AMM'Q3 to contain both Tl and Th.

The compounds fall into three structure types. All the Na analogues, except for NaCuZrS3, are of the NaCuTiS3 type (space group Pnma) (Mansuetto et al., 1993; Klepp & Sturmayr, 1997); the compounds TlCuTiTe3 and RbAgHfTe3 are of the TlCuTiTe3 type (space group P21/m) (Pell & Ibers, 1996; Pell et al., 1997); and the remaining compounds are of the KCuZrS3 type (space group Cmcm).

Interatomic distances in TlCuThSe3 are listed in Table 1 and are nearly identical to those in the analogues ACuThSe3 (A = K, Cs) (Narducci & Ibers, 2000). The TlCuThSe3 Th—Se distances of 2.8844 (4) and 2.9057 (5) Å match those in KCuThSe3 (2.893 (1) and 2.900 (1) Å) and CsCuThSe3 (2.878 (1) and 2.906 (1) Å). The Cu—Se distances of 2.4617 (11) and 2.5517 (11) Å also match those in KCuThSe3 (2.459 (2) and 2.545 (2) Å) and CsCuThSe3 (2.464 (2) and 2.556 (2) Å).

Related literature top

For compounds of type AMM'Q3, see: Pell & Ibers (1996); Klepp & Gurtner (1996) for A = Tl; Pell et al. (1997); Yao et al. (2008); Wells et al. (2009) for M = Ag; Bugaris & Ibers (2009) for M = Au; Mansuetto et al. (1993); Pell & Ibers (1996) for M' = Ti; Mansuetto et al. (1992, 1993); Huang et al. (2001); Pell et al. (1997) for M' = Zr; Klepp & Sturmayr (1997, 1998); Pell et al. (1997) for M' = Hf; Seldy et al. (2005); Narducci & Ibers (2000) for M' = Th; Yao et al. (2008); Sutorik et al. (1996); Bugaris & Ibers (2009); Huang et al. (2001); Cody & Ibers (1995) for M' = U; Wells et al. (2009) for M' = Np. For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Witt et al. (1956).

Experimental top

Cu (Aldrich, 99.5%), Tl2Se (Aldrich, 99.999%), and Se (Cerac, 99.999%) were used as received. Th chunks were powdered according to a literature procedure (Witt et al., 1956). A fused-silica tube was loaded with Th (30 mg, 0.129 mmol), Cu (7.0 mg, 0.110 mmol), Tl2Se (36.6 mg, 0.075 mmol), and Se (20.4 mg, 0.258 mmol), evacuated to near 10 -4 Torr, flame sealed, and placed in a computer-controlled furnace. It was heated to 597 K in 3 h, kept at 597 K for 24 h, heated to 1073 K in 24 h, kept at 1073 K for 96 h, cooled to 597 K in 96 h, cooled to 547 in 24 h, and then rapidly cooled to 298 K in 3 h. The reaction produced orange-red plates of TlCuThSe3. The elemental composition of the crystals was determined to be Tl/Cu/Th/Se in an approximate ratio of 1/1/1/3 on an EDX-equipped Hitachi S-3400 SEM.

Refinement top

The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak (2.0 (3) e Å-3) is 0.98 Å from atom Tl1 and the deepest hole (-1.3 (3) e Å-3) is 1.96 Å from atom Se1.

Structure description top

Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3, crystallizes in the KCuZrS3 structure type. The structure (Figs. 1, 2) is layered and consists of sheets of edge-sharing ThSe6 octahedra and CuSe4 tetrahedra stacked parallel to the (010) face separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms. Because there are no Se—Se bonds in the structure, oxidation states can be assigned as Tl+, Cu+, Th4+, and Se2-.

The compound TlCuThSe3 is of the type AMM'Q3, where A is an alkali metal or thallium, M is a coinage metal, M' is a tetravalent group IV metal or an actinide, and Q is a chalcogen. Including the title compound, 39 such compounds are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996; Pell et al., 1997; Yao et al., 2008; Wells et al., 2009; Bugaris & Ibers, 2009; Sutorik et al., 1996; Huang et al., 2001; Cody & Ibers, 1995; Mansuetto et al., 1993, 1992; Klepp & Sturmayr, 1997, 1998; Seldy et al., 2005; Narducci & Ibers, 2000). In all cases, crystallographic data have been collected on single crystals. Most often, the A site contains an alkali metal and only 6 Tl analogues are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996). The M site contains Cu in 28 analogues, Ag in 7 analogues (Pell et al., 1997; Yao et al., 2008; Wells et al., 2009), and Au in 4 analogues (Bugaris & Ibers, 2009). The tetravalent metal is most often U with 14 analogues (Yao et al., 2008; Sutorik et al., 1996; Bugaris & Ibers, 2009; Huang et al., 2001; Cody & Ibers, 1995), followed by Zr with 9 analogues (Mansuetto et al., 1992, 1993; Huang et al., 2001; Pell et al., 1997), Hf with 5 analogues (Klepp & Sturmayr, 1997, 1998; Pell et al., 1997), Np with 5 analogues (Wells et al., 2009), Th with 4 analogues (Seldy et al., 2005; Narducci & Ibers, 2000), and Ti with 2 analogues (Mansuetto et al., 1993; Pell & Ibers, 1996). This is the first compound of the type AMM'Q3 to contain both Tl and Th.

The compounds fall into three structure types. All the Na analogues, except for NaCuZrS3, are of the NaCuTiS3 type (space group Pnma) (Mansuetto et al., 1993; Klepp & Sturmayr, 1997); the compounds TlCuTiTe3 and RbAgHfTe3 are of the TlCuTiTe3 type (space group P21/m) (Pell & Ibers, 1996; Pell et al., 1997); and the remaining compounds are of the KCuZrS3 type (space group Cmcm).

Interatomic distances in TlCuThSe3 are listed in Table 1 and are nearly identical to those in the analogues ACuThSe3 (A = K, Cs) (Narducci & Ibers, 2000). The TlCuThSe3 Th—Se distances of 2.8844 (4) and 2.9057 (5) Å match those in KCuThSe3 (2.893 (1) and 2.900 (1) Å) and CsCuThSe3 (2.878 (1) and 2.906 (1) Å). The Cu—Se distances of 2.4617 (11) and 2.5517 (11) Å also match those in KCuThSe3 (2.459 (2) and 2.545 (2) Å) and CsCuThSe3 (2.464 (2) and 2.556 (2) Å).

For compounds of type AMM'Q3, see: Pell & Ibers (1996); Klepp & Gurtner (1996) for A = Tl; Pell et al. (1997); Yao et al. (2008); Wells et al. (2009) for M = Ag; Bugaris & Ibers (2009) for M = Au; Mansuetto et al. (1993); Pell & Ibers (1996) for M' = Ti; Mansuetto et al. (1992, 1993); Huang et al. (2001); Pell et al. (1997) for M' = Zr; Klepp & Sturmayr (1997, 1998); Pell et al. (1997) for M' = Hf; Seldy et al. (2005); Narducci & Ibers (2000) for M' = Th; Yao et al. (2008); Sutorik et al. (1996); Bugaris & Ibers (2009); Huang et al. (2001); Cody & Ibers (1995) for M' = U; Wells et al. (2009) for M' = Np. For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Witt et al. (1956).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Structure of TlCuThSe3 viewed approximately down the a-axis. The 95% probability displacement ellipsoids are depicted with the unit cell outlined in red. Color key: black – Th, green – Cu, blue – Tl, orange – Se.
[Figure 2] Fig. 2. Polyhedral view of TlCuThSe3 showing sheets of edge-sharing ThSe6 octahedra (black) and CuSe4 tetrahedra (green) separated by voids filled with Tl (blue). The unit cell is outlined in red.
Thallium(I) copper(I) thorium(IV) triselenide top
Crystal data top
TlCuThSe3F(000) = 1208
Mr = 736.83Dx = 7.611 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1794 reflections
a = 4.1678 (2) Åθ = 2.9–28.2°
b = 14.2227 (7) ŵ = 68.19 mm1
c = 10.8476 (5) ÅT = 100 K
V = 643.02 (5) Å3Rectangular plate, orange
Z = 40.10 × 0.07 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
474 independent reflections
Radiation source: fine-focus sealed tube451 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 28.5°, θmin = 2.9°
Absorption correction: numerical
(SADABS; Sheldrick, 2008b)
h = 55
Tmin = 0.101, Tmax = 0.489k = 1818
7476 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0193P)2 + 0.0000sinθ/λ]
where P = 1.00000Fo2 + 0.00000Fc2
wR(F2) = 0.046(Δ/σ)max < 0.001
S = 1.59Δρmax = 2.01 e Å3
474 reflectionsΔρmin = 1.34 e Å3
24 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00066 (7)
Crystal data top
TlCuThSe3V = 643.02 (5) Å3
Mr = 736.83Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 4.1678 (2) ŵ = 68.19 mm1
b = 14.2227 (7) ÅT = 100 K
c = 10.8476 (5) Å0.10 × 0.07 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
474 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008b)
451 reflections with I > 2σ(I)
Tmin = 0.101, Tmax = 0.489Rint = 0.032
7476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02124 parameters
wR(F2) = 0.0460 restraints
S = 1.59Δρmax = 2.01 e Å3
474 reflectionsΔρmin = 1.34 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Th10.00000.00000.00000.00558 (15)
Tl10.00000.74746 (3)0.25000.01247 (16)
Se10.00000.36628 (5)0.06410 (7)0.0067 (2)
Se20.00000.06909 (8)0.25000.0059 (2)
Cu10.00000.46554 (10)0.25000.0085 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Th10.0050 (2)0.0078 (2)0.0040 (2)0.0000.0000.00012 (14)
Tl10.0101 (3)0.0092 (3)0.0181 (3)0.0000.0000.000
Se10.0062 (4)0.0071 (4)0.0067 (4)0.0000.0000.0002 (3)
Se20.0069 (5)0.0064 (5)0.0043 (5)0.0000.0000.000
Cu10.0100 (7)0.0096 (7)0.0060 (6)0.0000.0000.000
Geometric parameters (Å, º) top
Th1—Se2i2.8844 (4)Se1—Th1ix2.9057 (5)
Th1—Se22.8844 (4)Se1—Th1viii2.9057 (5)
Th1—Se1ii2.9057 (5)Se1—Tl1v3.3564 (6)
Th1—Se1iii2.9057 (5)Se1—Tl1iii3.3564 (6)
Th1—Se1iv2.9057 (5)Se1—Tl1xii3.7717 (8)
Th1—Se1v2.9057 (5)Se1—Tl1xiv5.6211 (6)
Th1—Cu1iv3.4550 (2)Se1—Tl1xv5.6211 (6)
Th1—Cu1v3.4550 (2)Se2—Cu1iii2.5517 (11)
Th1—Cu1ii3.4550 (2)Se2—Cu1v2.5517 (11)
Th1—Cu1iii3.4550 (2)Se2—Th1xvi2.8844 (4)
Th1—Th1vi4.1678 (2)Se2—Tl1v3.2831 (9)
Th1—Th1vii4.1678 (2)Se2—Tl1iii3.2831 (9)
Tl1—Se2viii3.2831 (9)Se2—Tl1xvii4.5744 (12)
Tl1—Se2ix3.2831 (9)Cu1—Se12.4617 (11)
Tl1—Se1x3.3564 (6)Cu1—Se1xviii2.4617 (11)
Tl1—Se1viii3.3564 (6)Cu1—Se2ix2.5517 (11)
Tl1—Se1xi3.3564 (6)Cu1—Se2viii2.5517 (11)
Tl1—Se1ix3.3564 (6)Cu1—Th1xix3.4550 (2)
Tl1—Cu1ix3.7368 (13)Cu1—Th1viii3.4550 (2)
Tl1—Cu1viii3.7368 (13)Cu1—Th1xx3.4550 (2)
Tl1—Se1xii3.7717 (8)Cu1—Th1ix3.4550 (2)
Tl1—Se1xiii3.7717 (8)Cu1—Tl1iii3.7368 (13)
Tl1—Cu14.0095 (16)Cu1—Tl1v3.7368 (13)
Tl1—Tl1vii4.1678 (2)
Se2i—Th1—Se2180.0Th1ix—Se1—Tl1v91.607 (8)
Se2i—Th1—Se1ii89.89 (2)Th1viii—Se1—Tl1v156.72 (3)
Se2—Th1—Se1ii90.11 (2)Cu1—Se1—Tl1iii78.26 (3)
Se2i—Th1—Se1iii90.11 (2)Th1ix—Se1—Tl1iii156.72 (3)
Se2—Th1—Se1iii89.89 (2)Th1viii—Se1—Tl1iii91.607 (8)
Se1ii—Th1—Se1iii180.00 (4)Tl1v—Se1—Tl1iii76.761 (17)
Se2i—Th1—Se1iv89.89 (2)Cu1—Se1—Tl1xii170.40 (4)
Se2—Th1—Se1iv90.11 (2)Th1ix—Se1—Tl1xii93.702 (18)
Se1ii—Th1—Se1iv91.64 (2)Th1viii—Se1—Tl1xii93.702 (18)
Se1iii—Th1—Se1iv88.36 (2)Tl1v—Se1—Tl1xii109.076 (17)
Se2i—Th1—Se1v90.11 (2)Tl1iii—Se1—Tl1xii109.076 (17)
Se2—Th1—Se1v89.89 (2)Cu1—Se1—Tl1xiv131.422 (8)
Se1ii—Th1—Se1v88.36 (2)Th1ix—Se1—Tl1xiv125.11 (2)
Se1iii—Th1—Se1v91.64 (2)Th1viii—Se1—Tl1xiv60.762 (10)
Se1iv—Th1—Se1v180.00 (4)Tl1v—Se1—Tl1xiv132.816 (19)
Se2viii—Tl1—Se2ix78.80 (3)Tl1iii—Se1—Tl1xiv76.051 (8)
Se2viii—Tl1—Se1x141.551 (14)Tl1xii—Se1—Tl1xiv47.856 (6)
Se2ix—Tl1—Se1x89.713 (15)Cu1—Se1—Tl1xv131.422 (9)
Se2viii—Tl1—Se1viii89.713 (15)Th1ix—Se1—Tl1xv60.763 (10)
Se2ix—Tl1—Se1viii141.551 (14)Th1viii—Se1—Tl1xv125.11 (2)
Se1x—Tl1—Se1viii119.54 (3)Tl1v—Se1—Tl1xv76.051 (8)
Se2viii—Tl1—Se1xi89.713 (15)Tl1iii—Se1—Tl1xv132.816 (19)
Se2ix—Tl1—Se1xi141.551 (14)Tl1xii—Se1—Tl1xv47.856 (6)
Se1x—Tl1—Se1xi76.760 (17)Tl1xiv—Se1—Tl1xv95.712 (12)
Se1viii—Tl1—Se1xi73.86 (2)Cu1iii—Se2—Cu1v109.50 (7)
Se2viii—Tl1—Se1ix141.551 (14)Cu1iii—Se2—Th178.662 (19)
Se2ix—Tl1—Se1ix89.713 (15)Cu1v—Se2—Th178.662 (19)
Se1x—Tl1—Se1ix73.86 (2)Cu1iii—Se2—Th1xvi78.662 (19)
Se1viii—Tl1—Se1ix76.760 (17)Cu1v—Se2—Th1xvi78.662 (19)
Se1xi—Tl1—Se1ix119.54 (3)Th1—Se2—Th1xvi140.17 (4)
Se2viii—Tl1—Se1xii70.645 (11)Cu1iii—Se2—Tl1v164.65 (4)
Se2ix—Tl1—Se1xii70.645 (11)Cu1v—Se2—Tl1v85.85 (3)
Se1x—Tl1—Se1xii139.351 (12)Th1—Se2—Tl1v105.262 (13)
Se1viii—Tl1—Se1xii70.924 (17)Th1xvi—Se2—Tl1v105.262 (13)
Se1xi—Tl1—Se1xii139.351 (11)Cu1iii—Se2—Tl1iii85.85 (3)
Se1ix—Tl1—Se1xii70.924 (17)Cu1v—Se2—Tl1iii164.65 (4)
Cu1ix—Tl1—Se1xii110.855 (11)Th1—Se2—Tl1iii105.262 (13)
Cu1viii—Tl1—Se1xii110.855 (11)Th1xvi—Se2—Tl1iii105.262 (13)
Se2viii—Tl1—Se1xiii70.645 (11)Tl1v—Se2—Tl1iii78.80 (3)
Se2ix—Tl1—Se1xiii70.645 (11)Cu1iii—Se2—Tl1xvii54.75 (3)
Se1x—Tl1—Se1xiii70.924 (17)Cu1v—Se2—Tl1xvii54.75 (3)
Se1viii—Tl1—Se1xiii139.351 (11)Th1—Se2—Tl1xvii70.08 (2)
Se1xi—Tl1—Se1xiii70.924 (17)Th1xvi—Se2—Tl1xvii70.08 (2)
Se1ix—Tl1—Se1xiii139.351 (11)Tl1v—Se2—Tl1xvii140.600 (14)
Cu1ix—Tl1—Se1xiii110.855 (11)Tl1iii—Se2—Tl1xvii140.600 (14)
Cu1viii—Tl1—Se1xiii110.855 (11)Se1—Cu1—Se1xviii110.01 (7)
Se1xii—Tl1—Se1xiii129.21 (3)Se1—Cu1—Se2ix109.328 (14)
Cu1—Se1—Th1ix79.67 (3)Se1xviii—Cu1—Se2ix109.328 (14)
Cu1—Se1—Th1viii79.67 (3)Se1—Cu1—Se2viii109.328 (14)
Th1ix—Se1—Th1viii91.64 (2)Se1xviii—Cu1—Se2viii109.328 (14)
Cu1—Se1—Tl1v78.26 (3)Se2ix—Cu1—Se2viii109.51 (7)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z; (vi) x1, y, z; (vii) x+1, y, z; (viii) x1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z+1/2; (xi) x1/2, y+1/2, z+1/2; (xii) x, y+1, z; (xiii) x, y+1, z+1/2; (xiv) x1, y+1, z; (xv) x+1, y+1, z; (xvi) x, y, z+1/2; (xvii) x, y1, z; (xviii) x, y, z+1/2; (xix) x+1/2, y+1/2, z+1/2; (xx) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaTlCuThSe3
Mr736.83
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)100
a, b, c (Å)4.1678 (2), 14.2227 (7), 10.8476 (5)
V3)643.02 (5)
Z4
Radiation typeMo Kα
µ (mm1)68.19
Crystal size (mm)0.10 × 0.07 × 0.02
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.101, 0.489
No. of measured, independent and
observed [I > 2σ(I)] reflections
7476, 474, 451
Rint0.032
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.046, 1.59
No. of reflections474
No. of parameters24
Δρmax, Δρmin (e Å3)2.01, 1.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), CrystalMaker (Palmer, 2009).

Selected bond lengths (Å) top
Th1—Se2i2.8844 (4)Tl1—Se1viii3.3564 (6)
Th1—Se22.8844 (4)Tl1—Se1vi3.3564 (6)
Th1—Se1ii2.9057 (5)Tl1—Se1ix3.3564 (6)
Th1—Se1iii2.9057 (5)Tl1—Se1vii3.3564 (6)
Th1—Se1iv2.9057 (5)Cu1—Se12.4617 (11)
Th1—Se1v2.9057 (5)Cu1—Se1x2.4617 (11)
Tl1—Se2vi3.2831 (9)Cu1—Se2vii2.5517 (11)
Tl1—Se2vii3.2831 (9)Cu1—Se2vi2.5517 (11)
Symmetry codes: (i) x, y, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x+1/2, y1/2, z; (vi) x1/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x, y, z+1/2.
 

Acknowledgements

The research was supported at Northwestern University by the U. S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522. The research was also supported by funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. A special thanks to Professor Thomas E. Albrecht-Schmitt at the University of Notre-Dame for his donation of thorium metal.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugaris, D. E. & Ibers, J. A. (2009). J. Solid State Chem. 182, 2587–2590.  Web of Science CrossRef CAS Google Scholar
First citationCody, J. A. & Ibers, J. A. (1995). Inorg. Chem. 34, 3165–3172.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHuang, F.-Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123–5126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlepp, K. O. & Gurtner, D. (1996). J. Alloys Compd, 243, 6–11.  CrossRef CAS Web of Science Google Scholar
First citationKlepp, K. O. & Sturmayr, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 75.  Google Scholar
First citationKlepp, K. O. & Sturmayr, D. (1998). Z. Kristallogr. New Cryst. Struct. 213, 693.  Google Scholar
First citationMansuetto, M. F., Keane, P. M. & Ibers, J. A. (1992). J. Solid State Chem. 101, 257–264.  CrossRef CAS Web of Science Google Scholar
First citationMansuetto, M. F., Keane, P. M. & Ibers, J. A. (1993). J. Solid State Chem. 105, 580–587.  CrossRef CAS Web of Science Google Scholar
First citationNarducci, A. A. & Ibers, J. A. (2000). Inorg. Chem. 39, 688–691.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationPell, M. A. & Ibers, J. A. (1996). J. Alloys Compd, 240, 37–41.  CrossRef CAS Web of Science Google Scholar
First citationPell, M. A., Kleyn, A. G. & Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92–?.  Google Scholar
First citationSeldy, H. D., Chan, B. C., Hess, R. F., Abney, K. D. & Dorhout, P. K. (2005). Inorg. Chem. 44, 6463–6469.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSutorik, A. C., Albritton-Thomas, J., Hogan, T., Kannewurf, C. R. & Kanatzidis, M. G. (1996). Chem. Mater. 8, 751–761.  CrossRef CAS Web of Science Google Scholar
First citationWells, D. M., Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2009). Inorg. Chem. 48, 11513–11517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWitt, R. H., Nylin, J. & McCullough, H. M. (1956). A Study of the Hydride Process for Producing Thorium Powder. United States Atomic Energy Commission, Atomic Energy Division, Sylvania Electric Products, Inc., Bayside, New York.  Google Scholar
First citationYao, J., Wells, D. M., Chan, G.-H., Zeng, H., Ellis, D. E., van Duyne, R. P. & Ibers, J. A. (2008). Inorg. Chem. 47, 6873–6879.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds