inorganic compounds
Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3
aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu
Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3, crystallizes with four formula units in the Cmcm in the KCuZrS3 structure type. There is one crystallographically independent Th, Tl, and Cu atom at a site of symmetry 2/m.., m2m, and m2m, respectively. There are two crystallographically independent Se atoms at sites of symmetry m.. and m2m. The structure consists of sheets of edge-sharing ThSe6 octahedra and CuSe4 tetrahedra stacked parallel to the (010) face, separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms.
Related literature
For compounds of type AMM'Q3, see: Pell & Ibers (1996); Klepp & Gurtner (1996) for A = Tl; Pell et al. (1997); Yao et al. (2008); Wells et al. (2009) for M = Ag; Bugaris & Ibers (2009) for M = Au; Mansuetto et al. (1993); Pell & Ibers (1996) for M′ = Ti; Mansuetto et al. (1992, 1993); Huang et al. (2001); Pell et al. (1997) for M′ = Zr; Klepp & Sturmayr (1997, 1998); Pell et al. (1997) for M′ = Hf; Seldy et al. (2005); Narducci & Ibers (2000) for M′ = Th; Yao et al. (2008); Sutorik et al. (1996); Bugaris & Ibers (2009); Huang et al. (2001); Cody & Ibers (1995) for M′ = U; Wells et al. (2009) for M′ = Np. For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Witt et al. (1956).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812026669/wm2644sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812026669/wm2644Isup2.hkl
Cu (Aldrich, 99.5%), Tl2Se (Aldrich, 99.999%), and Se (Cerac, 99.999%) were used as received. Th chunks were powdered according to a literature procedure (Witt et al., 1956). A fused-silica tube was loaded with Th (30 mg, 0.129 mmol), Cu (7.0 mg, 0.110 mmol), Tl2Se (36.6 mg, 0.075 mmol), and Se (20.4 mg, 0.258 mmol), evacuated to near 10 -4 Torr, flame sealed, and placed in a computer-controlled furnace. It was heated to 597 K in 3 h, kept at 597 K for 24 h, heated to 1073 K in 24 h, kept at 1073 K for 96 h, cooled to 597 K in 96 h, cooled to 547 in 24 h, and then rapidly cooled to 298 K in 3 h. The reaction produced orange-red plates of TlCuThSe3. The elemental composition of the crystals was determined to be Tl/Cu/Th/Se in an approximate ratio of 1/1/1/3 on an EDX-equipped Hitachi S-3400 SEM.
The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak (2.0 (3) e Å-3) is 0.98 Å from atom Tl1 and the deepest hole (-1.3 (3) e Å-3) is 1.96 Å from atom Se1.
Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3, crystallizes in the KCuZrS3 structure type. The structure (Figs. 1, 2) is layered and consists of sheets of edge-sharing ThSe6 octahedra and CuSe4 tetrahedra stacked parallel to the (010) face separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms. Because there are no Se—Se bonds in the structure, oxidation states can be assigned as Tl+, Cu+, Th4+, and Se2-.
The compound TlCuThSe3 is of the type AMM'Q3, where A is an alkali metal or thallium, M is a coinage metal, M' is a tetravalent group IV metal or an actinide, and Q is a chalcogen. Including the title compound, 39 such compounds are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996; Pell et al., 1997; Yao et al., 2008; Wells et al., 2009; Bugaris & Ibers, 2009; Sutorik et al., 1996; Huang et al., 2001; Cody & Ibers, 1995; Mansuetto et al., 1993, 1992; Klepp & Sturmayr, 1997, 1998; Seldy et al., 2005; Narducci & Ibers, 2000). In all cases, crystallographic data have been collected on single crystals. Most often, the A site contains an alkali metal and only 6 Tl analogues are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996). The M site contains Cu in 28 analogues, Ag in 7 analogues (Pell et al., 1997; Yao et al., 2008; Wells et al., 2009), and Au in 4 analogues (Bugaris & Ibers, 2009). The tetravalent metal is most often U with 14 analogues (Yao et al., 2008; Sutorik et al., 1996; Bugaris & Ibers, 2009; Huang et al., 2001; Cody & Ibers, 1995), followed by Zr with 9 analogues (Mansuetto et al., 1992, 1993; Huang et al., 2001; Pell et al., 1997), Hf with 5 analogues (Klepp & Sturmayr, 1997, 1998; Pell et al., 1997), Np with 5 analogues (Wells et al., 2009), Th with 4 analogues (Seldy et al., 2005; Narducci & Ibers, 2000), and Ti with 2 analogues (Mansuetto et al., 1993; Pell & Ibers, 1996). This is the first compound of the type AMM'Q3 to contain both Tl and Th.
The compounds fall into three structure types. All the Na analogues, except for NaCuZrS3, are of the NaCuTiS3 type (space group Pnma) (Mansuetto et al., 1993; Klepp & Sturmayr, 1997); the compounds TlCuTiTe3 and RbAgHfTe3 are of the TlCuTiTe3 type (space group P21/m) (Pell & Ibers, 1996; Pell et al., 1997); and the remaining compounds are of the KCuZrS3 type (space group Cmcm).
Interatomic distances in TlCuThSe3 are listed in Table 1 and are nearly identical to those in the analogues ACuThSe3 (A = K, Cs) (Narducci & Ibers, 2000). The TlCuThSe3 Th—Se distances of 2.8844 (4) and 2.9057 (5) Å match those in KCuThSe3 (2.893 (1) and 2.900 (1) Å) and CsCuThSe3 (2.878 (1) and 2.906 (1) Å). The Cu—Se distances of 2.4617 (11) and 2.5517 (11) Å also match those in KCuThSe3 (2.459 (2) and 2.545 (2) Å) and CsCuThSe3 (2.464 (2) and 2.556 (2) Å).
For compounds of type AMM'Q3, see: Pell & Ibers (1996); Klepp & Gurtner (1996) for A = Tl; Pell et al. (1997); Yao et al. (2008); Wells et al. (2009) for M = Ag; Bugaris & Ibers (2009) for M = Au; Mansuetto et al. (1993); Pell & Ibers (1996) for M' = Ti; Mansuetto et al. (1992, 1993); Huang et al. (2001); Pell et al. (1997) for M' = Zr; Klepp & Sturmayr (1997, 1998); Pell et al. (1997) for M' = Hf; Seldy et al. (2005); Narducci & Ibers (2000) for M' = Th; Yao et al. (2008); Sutorik et al. (1996); Bugaris & Ibers (2009); Huang et al. (2001); Cody & Ibers (1995) for M' = U; Wells et al. (2009) for M' = Np. For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Witt et al. (1956).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a).Fig. 1. Structure of TlCuThSe3 viewed approximately down the a-axis. The 95% probability displacement ellipsoids are depicted with the unit cell outlined in red. Color key: black – Th, green – Cu, blue – Tl, orange – Se. | |
Fig. 2. Polyhedral view of TlCuThSe3 showing sheets of edge-sharing ThSe6 octahedra (black) and CuSe4 tetrahedra (green) separated by voids filled with Tl (blue). The unit cell is outlined in red. |
TlCuThSe3 | F(000) = 1208 |
Mr = 736.83 | Dx = 7.611 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 1794 reflections |
a = 4.1678 (2) Å | θ = 2.9–28.2° |
b = 14.2227 (7) Å | µ = 68.19 mm−1 |
c = 10.8476 (5) Å | T = 100 K |
V = 643.02 (5) Å3 | Rectangular plate, orange |
Z = 4 | 0.10 × 0.07 × 0.02 mm |
Bruker APEXII CCD diffractometer | 474 independent reflections |
Radiation source: fine-focus sealed tube | 451 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 28.5°, θmin = 2.9° |
Absorption correction: numerical (SADABS; Sheldrick, 2008b) | h = −5→5 |
Tmin = 0.101, Tmax = 0.489 | k = −18→18 |
7476 measured reflections | l = −14→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0193P)2 + 0.0000sinθ/λ] where P = 1.00000Fo2 + 0.00000Fc2 |
wR(F2) = 0.046 | (Δ/σ)max < 0.001 |
S = 1.59 | Δρmax = 2.01 e Å−3 |
474 reflections | Δρmin = −1.34 e Å−3 |
24 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00066 (7) |
TlCuThSe3 | V = 643.02 (5) Å3 |
Mr = 736.83 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 4.1678 (2) Å | µ = 68.19 mm−1 |
b = 14.2227 (7) Å | T = 100 K |
c = 10.8476 (5) Å | 0.10 × 0.07 × 0.02 mm |
Bruker APEXII CCD diffractometer | 474 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2008b) | 451 reflections with I > 2σ(I) |
Tmin = 0.101, Tmax = 0.489 | Rint = 0.032 |
7476 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 24 parameters |
wR(F2) = 0.046 | 0 restraints |
S = 1.59 | Δρmax = 2.01 e Å−3 |
474 reflections | Δρmin = −1.34 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Th1 | 0.0000 | 0.0000 | 0.0000 | 0.00558 (15) | |
Tl1 | 0.0000 | 0.74746 (3) | 0.2500 | 0.01247 (16) | |
Se1 | 0.0000 | 0.36628 (5) | 0.06410 (7) | 0.0067 (2) | |
Se2 | 0.0000 | 0.06909 (8) | 0.2500 | 0.0059 (2) | |
Cu1 | 0.0000 | 0.46554 (10) | 0.2500 | 0.0085 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Th1 | 0.0050 (2) | 0.0078 (2) | 0.0040 (2) | 0.000 | 0.000 | −0.00012 (14) |
Tl1 | 0.0101 (3) | 0.0092 (3) | 0.0181 (3) | 0.000 | 0.000 | 0.000 |
Se1 | 0.0062 (4) | 0.0071 (4) | 0.0067 (4) | 0.000 | 0.000 | −0.0002 (3) |
Se2 | 0.0069 (5) | 0.0064 (5) | 0.0043 (5) | 0.000 | 0.000 | 0.000 |
Cu1 | 0.0100 (7) | 0.0096 (7) | 0.0060 (6) | 0.000 | 0.000 | 0.000 |
Th1—Se2i | 2.8844 (4) | Se1—Th1ix | 2.9057 (5) |
Th1—Se2 | 2.8844 (4) | Se1—Th1viii | 2.9057 (5) |
Th1—Se1ii | 2.9057 (5) | Se1—Tl1v | 3.3564 (6) |
Th1—Se1iii | 2.9057 (5) | Se1—Tl1iii | 3.3564 (6) |
Th1—Se1iv | 2.9057 (5) | Se1—Tl1xii | 3.7717 (8) |
Th1—Se1v | 2.9057 (5) | Se1—Tl1xiv | 5.6211 (6) |
Th1—Cu1iv | 3.4550 (2) | Se1—Tl1xv | 5.6211 (6) |
Th1—Cu1v | 3.4550 (2) | Se2—Cu1iii | 2.5517 (11) |
Th1—Cu1ii | 3.4550 (2) | Se2—Cu1v | 2.5517 (11) |
Th1—Cu1iii | 3.4550 (2) | Se2—Th1xvi | 2.8844 (4) |
Th1—Th1vi | 4.1678 (2) | Se2—Tl1v | 3.2831 (9) |
Th1—Th1vii | 4.1678 (2) | Se2—Tl1iii | 3.2831 (9) |
Tl1—Se2viii | 3.2831 (9) | Se2—Tl1xvii | 4.5744 (12) |
Tl1—Se2ix | 3.2831 (9) | Cu1—Se1 | 2.4617 (11) |
Tl1—Se1x | 3.3564 (6) | Cu1—Se1xviii | 2.4617 (11) |
Tl1—Se1viii | 3.3564 (6) | Cu1—Se2ix | 2.5517 (11) |
Tl1—Se1xi | 3.3564 (6) | Cu1—Se2viii | 2.5517 (11) |
Tl1—Se1ix | 3.3564 (6) | Cu1—Th1xix | 3.4550 (2) |
Tl1—Cu1ix | 3.7368 (13) | Cu1—Th1viii | 3.4550 (2) |
Tl1—Cu1viii | 3.7368 (13) | Cu1—Th1xx | 3.4550 (2) |
Tl1—Se1xii | 3.7717 (8) | Cu1—Th1ix | 3.4550 (2) |
Tl1—Se1xiii | 3.7717 (8) | Cu1—Tl1iii | 3.7368 (13) |
Tl1—Cu1 | 4.0095 (16) | Cu1—Tl1v | 3.7368 (13) |
Tl1—Tl1vii | 4.1678 (2) | ||
Se2i—Th1—Se2 | 180.0 | Th1ix—Se1—Tl1v | 91.607 (8) |
Se2i—Th1—Se1ii | 89.89 (2) | Th1viii—Se1—Tl1v | 156.72 (3) |
Se2—Th1—Se1ii | 90.11 (2) | Cu1—Se1—Tl1iii | 78.26 (3) |
Se2i—Th1—Se1iii | 90.11 (2) | Th1ix—Se1—Tl1iii | 156.72 (3) |
Se2—Th1—Se1iii | 89.89 (2) | Th1viii—Se1—Tl1iii | 91.607 (8) |
Se1ii—Th1—Se1iii | 180.00 (4) | Tl1v—Se1—Tl1iii | 76.761 (17) |
Se2i—Th1—Se1iv | 89.89 (2) | Cu1—Se1—Tl1xii | 170.40 (4) |
Se2—Th1—Se1iv | 90.11 (2) | Th1ix—Se1—Tl1xii | 93.702 (18) |
Se1ii—Th1—Se1iv | 91.64 (2) | Th1viii—Se1—Tl1xii | 93.702 (18) |
Se1iii—Th1—Se1iv | 88.36 (2) | Tl1v—Se1—Tl1xii | 109.076 (17) |
Se2i—Th1—Se1v | 90.11 (2) | Tl1iii—Se1—Tl1xii | 109.076 (17) |
Se2—Th1—Se1v | 89.89 (2) | Cu1—Se1—Tl1xiv | 131.422 (8) |
Se1ii—Th1—Se1v | 88.36 (2) | Th1ix—Se1—Tl1xiv | 125.11 (2) |
Se1iii—Th1—Se1v | 91.64 (2) | Th1viii—Se1—Tl1xiv | 60.762 (10) |
Se1iv—Th1—Se1v | 180.00 (4) | Tl1v—Se1—Tl1xiv | 132.816 (19) |
Se2viii—Tl1—Se2ix | 78.80 (3) | Tl1iii—Se1—Tl1xiv | 76.051 (8) |
Se2viii—Tl1—Se1x | 141.551 (14) | Tl1xii—Se1—Tl1xiv | 47.856 (6) |
Se2ix—Tl1—Se1x | 89.713 (15) | Cu1—Se1—Tl1xv | 131.422 (9) |
Se2viii—Tl1—Se1viii | 89.713 (15) | Th1ix—Se1—Tl1xv | 60.763 (10) |
Se2ix—Tl1—Se1viii | 141.551 (14) | Th1viii—Se1—Tl1xv | 125.11 (2) |
Se1x—Tl1—Se1viii | 119.54 (3) | Tl1v—Se1—Tl1xv | 76.051 (8) |
Se2viii—Tl1—Se1xi | 89.713 (15) | Tl1iii—Se1—Tl1xv | 132.816 (19) |
Se2ix—Tl1—Se1xi | 141.551 (14) | Tl1xii—Se1—Tl1xv | 47.856 (6) |
Se1x—Tl1—Se1xi | 76.760 (17) | Tl1xiv—Se1—Tl1xv | 95.712 (12) |
Se1viii—Tl1—Se1xi | 73.86 (2) | Cu1iii—Se2—Cu1v | 109.50 (7) |
Se2viii—Tl1—Se1ix | 141.551 (14) | Cu1iii—Se2—Th1 | 78.662 (19) |
Se2ix—Tl1—Se1ix | 89.713 (15) | Cu1v—Se2—Th1 | 78.662 (19) |
Se1x—Tl1—Se1ix | 73.86 (2) | Cu1iii—Se2—Th1xvi | 78.662 (19) |
Se1viii—Tl1—Se1ix | 76.760 (17) | Cu1v—Se2—Th1xvi | 78.662 (19) |
Se1xi—Tl1—Se1ix | 119.54 (3) | Th1—Se2—Th1xvi | 140.17 (4) |
Se2viii—Tl1—Se1xii | 70.645 (11) | Cu1iii—Se2—Tl1v | 164.65 (4) |
Se2ix—Tl1—Se1xii | 70.645 (11) | Cu1v—Se2—Tl1v | 85.85 (3) |
Se1x—Tl1—Se1xii | 139.351 (12) | Th1—Se2—Tl1v | 105.262 (13) |
Se1viii—Tl1—Se1xii | 70.924 (17) | Th1xvi—Se2—Tl1v | 105.262 (13) |
Se1xi—Tl1—Se1xii | 139.351 (11) | Cu1iii—Se2—Tl1iii | 85.85 (3) |
Se1ix—Tl1—Se1xii | 70.924 (17) | Cu1v—Se2—Tl1iii | 164.65 (4) |
Cu1ix—Tl1—Se1xii | 110.855 (11) | Th1—Se2—Tl1iii | 105.262 (13) |
Cu1viii—Tl1—Se1xii | 110.855 (11) | Th1xvi—Se2—Tl1iii | 105.262 (13) |
Se2viii—Tl1—Se1xiii | 70.645 (11) | Tl1v—Se2—Tl1iii | 78.80 (3) |
Se2ix—Tl1—Se1xiii | 70.645 (11) | Cu1iii—Se2—Tl1xvii | 54.75 (3) |
Se1x—Tl1—Se1xiii | 70.924 (17) | Cu1v—Se2—Tl1xvii | 54.75 (3) |
Se1viii—Tl1—Se1xiii | 139.351 (11) | Th1—Se2—Tl1xvii | 70.08 (2) |
Se1xi—Tl1—Se1xiii | 70.924 (17) | Th1xvi—Se2—Tl1xvii | 70.08 (2) |
Se1ix—Tl1—Se1xiii | 139.351 (11) | Tl1v—Se2—Tl1xvii | 140.600 (14) |
Cu1ix—Tl1—Se1xiii | 110.855 (11) | Tl1iii—Se2—Tl1xvii | 140.600 (14) |
Cu1viii—Tl1—Se1xiii | 110.855 (11) | Se1—Cu1—Se1xviii | 110.01 (7) |
Se1xii—Tl1—Se1xiii | 129.21 (3) | Se1—Cu1—Se2ix | 109.328 (14) |
Cu1—Se1—Th1ix | 79.67 (3) | Se1xviii—Cu1—Se2ix | 109.328 (14) |
Cu1—Se1—Th1viii | 79.67 (3) | Se1—Cu1—Se2viii | 109.328 (14) |
Th1ix—Se1—Th1viii | 91.64 (2) | Se1xviii—Cu1—Se2viii | 109.328 (14) |
Cu1—Se1—Tl1v | 78.26 (3) | Se2ix—Cu1—Se2viii | 109.51 (7) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, −y+1/2, −z; (iii) x−1/2, y−1/2, z; (iv) −x−1/2, −y+1/2, −z; (v) x+1/2, y−1/2, z; (vi) x−1, y, z; (vii) x+1, y, z; (viii) x−1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, −z+1/2; (xi) x−1/2, y+1/2, −z+1/2; (xii) −x, −y+1, −z; (xiii) −x, −y+1, z+1/2; (xiv) −x−1, −y+1, −z; (xv) −x+1, −y+1, −z; (xvi) −x, −y, z+1/2; (xvii) x, y−1, z; (xviii) x, y, −z+1/2; (xix) −x+1/2, −y+1/2, z+1/2; (xx) −x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | TlCuThSe3 |
Mr | 736.83 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 100 |
a, b, c (Å) | 4.1678 (2), 14.2227 (7), 10.8476 (5) |
V (Å3) | 643.02 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 68.19 |
Crystal size (mm) | 0.10 × 0.07 × 0.02 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Numerical (SADABS; Sheldrick, 2008b) |
Tmin, Tmax | 0.101, 0.489 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7476, 474, 451 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.671 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.046, 1.59 |
No. of reflections | 474 |
No. of parameters | 24 |
Δρmax, Δρmin (e Å−3) | 2.01, −1.34 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), CrystalMaker (Palmer, 2009).
Th1—Se2i | 2.8844 (4) | Tl1—Se1viii | 3.3564 (6) |
Th1—Se2 | 2.8844 (4) | Tl1—Se1vi | 3.3564 (6) |
Th1—Se1ii | 2.9057 (5) | Tl1—Se1ix | 3.3564 (6) |
Th1—Se1iii | 2.9057 (5) | Tl1—Se1vii | 3.3564 (6) |
Th1—Se1iv | 2.9057 (5) | Cu1—Se1 | 2.4617 (11) |
Th1—Se1v | 2.9057 (5) | Cu1—Se1x | 2.4617 (11) |
Tl1—Se2vi | 3.2831 (9) | Cu1—Se2vii | 2.5517 (11) |
Tl1—Se2vii | 3.2831 (9) | Cu1—Se2vi | 2.5517 (11) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+1/2, −y+1/2, −z; (iii) x−1/2, y−1/2, z; (iv) −x−1/2, −y+1/2, −z; (v) x+1/2, y−1/2, z; (vi) x−1/2, y+1/2, z; (vii) x+1/2, y+1/2, z; (viii) x+1/2, y+1/2, −z+1/2; (ix) x−1/2, y+1/2, −z+1/2; (x) x, y, −z+1/2. |
Acknowledgements
The research was supported at Northwestern University by the U. S. Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522. The research was also supported by funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. A special thanks to Professor Thomas E. Albrecht-Schmitt at the University of Notre-Dame for his donation of thorium metal.
References
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bugaris, D. E. & Ibers, J. A. (2009). J. Solid State Chem. 182, 2587–2590. Web of Science CrossRef CAS Google Scholar
Cody, J. A. & Ibers, J. A. (1995). Inorg. Chem. 34, 3165–3172. CrossRef CAS Web of Science Google Scholar
Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143. CrossRef Web of Science IUCr Journals Google Scholar
Huang, F.-Q., Mitchell, K. & Ibers, J. A. (2001). Inorg. Chem. 40, 5123–5126. Web of Science CrossRef PubMed CAS Google Scholar
Klepp, K. O. & Gurtner, D. (1996). J. Alloys Compd, 243, 6–11. CrossRef CAS Web of Science Google Scholar
Klepp, K. O. & Sturmayr, D. (1997). Z. Kristallogr. New Cryst. Struct. 212, 75. Google Scholar
Klepp, K. O. & Sturmayr, D. (1998). Z. Kristallogr. New Cryst. Struct. 213, 693. Google Scholar
Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1992). J. Solid State Chem. 101, 257–264. CrossRef CAS Web of Science Google Scholar
Mansuetto, M. F., Keane, P. M. & Ibers, J. A. (1993). J. Solid State Chem. 105, 580–587. CrossRef CAS Web of Science Google Scholar
Narducci, A. A. & Ibers, J. A. (2000). Inorg. Chem. 39, 688–691. Web of Science CrossRef PubMed CAS Google Scholar
Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England. Google Scholar
Pell, M. A. & Ibers, J. A. (1996). J. Alloys Compd, 240, 37–41. CrossRef CAS Web of Science Google Scholar
Pell, M. A., Kleyn, A. G. & Ibers, J. A. (1997). Z. Kristallogr. New Cryst. Struct. 212, 92–?. Google Scholar
Seldy, H. D., Chan, B. C., Hess, R. F., Abney, K. D. & Dorhout, P. K. (2005). Inorg. Chem. 44, 6463–6469. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany. Google Scholar
Sutorik, A. C., Albritton-Thomas, J., Hogan, T., Kannewurf, C. R. & Kanatzidis, M. G. (1996). Chem. Mater. 8, 751–761. CrossRef CAS Web of Science Google Scholar
Wells, D. M., Jin, G. B., Skanthakumar, S., Haire, R. G., Soderholm, L. & Ibers, J. A. (2009). Inorg. Chem. 48, 11513–11517. Web of Science CrossRef PubMed CAS Google Scholar
Witt, R. H., Nylin, J. & McCullough, H. M. (1956). A Study of the Hydride Process for Producing Thorium Powder. United States Atomic Energy Commission, Atomic Energy Division, Sylvania Electric Products, Inc., Bayside, New York. Google Scholar
Yao, J., Wells, D. M., Chan, G.-H., Zeng, H., Ellis, D. E., van Duyne, R. P. & Ibers, J. A. (2008). Inorg. Chem. 47, 6873–6879. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thallium(I) copper(I) thorium(IV) triselenide, TlCuThSe3, crystallizes in the KCuZrS3 structure type. The structure (Figs. 1, 2) is layered and consists of sheets of edge-sharing ThSe6 octahedra and CuSe4 tetrahedra stacked parallel to the (010) face separated by layers filled with chains of Tl running parallel to [100]. Each Tl is coordinated by a trigonal prism of Se atoms. Because there are no Se—Se bonds in the structure, oxidation states can be assigned as Tl+, Cu+, Th4+, and Se2-.
The compound TlCuThSe3 is of the type AMM'Q3, where A is an alkali metal or thallium, M is a coinage metal, M' is a tetravalent group IV metal or an actinide, and Q is a chalcogen. Including the title compound, 39 such compounds are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996; Pell et al., 1997; Yao et al., 2008; Wells et al., 2009; Bugaris & Ibers, 2009; Sutorik et al., 1996; Huang et al., 2001; Cody & Ibers, 1995; Mansuetto et al., 1993, 1992; Klepp & Sturmayr, 1997, 1998; Seldy et al., 2005; Narducci & Ibers, 2000). In all cases, crystallographic data have been collected on single crystals. Most often, the A site contains an alkali metal and only 6 Tl analogues are known (Pell & Ibers, 1996; Klepp & Gurtner, 1996). The M site contains Cu in 28 analogues, Ag in 7 analogues (Pell et al., 1997; Yao et al., 2008; Wells et al., 2009), and Au in 4 analogues (Bugaris & Ibers, 2009). The tetravalent metal is most often U with 14 analogues (Yao et al., 2008; Sutorik et al., 1996; Bugaris & Ibers, 2009; Huang et al., 2001; Cody & Ibers, 1995), followed by Zr with 9 analogues (Mansuetto et al., 1992, 1993; Huang et al., 2001; Pell et al., 1997), Hf with 5 analogues (Klepp & Sturmayr, 1997, 1998; Pell et al., 1997), Np with 5 analogues (Wells et al., 2009), Th with 4 analogues (Seldy et al., 2005; Narducci & Ibers, 2000), and Ti with 2 analogues (Mansuetto et al., 1993; Pell & Ibers, 1996). This is the first compound of the type AMM'Q3 to contain both Tl and Th.
The compounds fall into three structure types. All the Na analogues, except for NaCuZrS3, are of the NaCuTiS3 type (space group Pnma) (Mansuetto et al., 1993; Klepp & Sturmayr, 1997); the compounds TlCuTiTe3 and RbAgHfTe3 are of the TlCuTiTe3 type (space group P21/m) (Pell & Ibers, 1996; Pell et al., 1997); and the remaining compounds are of the KCuZrS3 type (space group Cmcm).
Interatomic distances in TlCuThSe3 are listed in Table 1 and are nearly identical to those in the analogues ACuThSe3 (A = K, Cs) (Narducci & Ibers, 2000). The TlCuThSe3 Th—Se distances of 2.8844 (4) and 2.9057 (5) Å match those in KCuThSe3 (2.893 (1) and 2.900 (1) Å) and CsCuThSe3 (2.878 (1) and 2.906 (1) Å). The Cu—Se distances of 2.4617 (11) and 2.5517 (11) Å also match those in KCuThSe3 (2.459 (2) and 2.545 (2) Å) and CsCuThSe3 (2.464 (2) and 2.556 (2) Å).