metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-2,2′-Bi­pyrimidine-κ4N1,N1′:N3,N3′-bis­­[iodido(tri­phenyl­phosphane-κP)copper(I)] di­methyl­formamide disolvate

aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
*Correspondence e-mail: fettouhi@kfupm.edu.sa

(Received 7 June 2012; accepted 21 June 2012; online 30 June 2012)

In the title binuclear centrosymmetric complex, [Cu2I2(C8H6N4)(C18H15P)2]·2C3H7NO, the bis-bidentate 2,2′-bipyrimidine ligand bridges two copper(I) ions, each additionally bound to an iodide anion and a triphenyl­phosphane ligand in a distorted tetra­hedral N2IP geometry. The complex mol­ecules pack in columns parallel to [100] generating cavities occupied by dimethyl­formamide solvent mol­ecules. Weak C—H⋯I hydrogen-bonding inter­actions help to stabilize the crystal packing.

Related literature

For copper(I) mixed-ligand complexes based on diimines and phosphanes, see: Costa et al. (2011[Costa, R. D., Tordera, D., Orti, E., Bolink, H. J., Schonle, J., Graber, S., Housecroft, C. E., Constable, E. C. & Zampese, J. A. (2011). J. Mater. Chem. 21, 16108-16118.]); Fazal et al. (2009[Fazal, A., Al-Fayez, S., Abdel-Rahman, L. H., Seddidgi, Z. S., Al-Arfaj, A. R., El Ali, B., Dastageer, M. A., Gondal, M. A. & Fettouhi, M. (2009). Polyhedron, 28, 4072-4076.]). For 2,2′-bipyrimidine polymetallic complexes, see: Albores & Rentschler (2009[Albores, P. & Rentschler, E. (2009). Dalton Trans. pp. 2609-2615.]); Yucesan et al. (2009[Yucesan, G., Valeich, J. E., Liu, H., Ouellette, W., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chim. Acta, 362, 1831-1839.]). For the analogous chlorido complex, see: Tan et al. (2012[Tan, C.-H., Ma, X., Zhu, Q.-L., Huang, Y.-H., Fu, R.-B., Hu, S.-M. & Sheng, T.-L. (2012). J. Mol. Struct. 1007, 26-30.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2I2(C8H6N4)(C18H15P)2]·2C3H7NO

  • Mr = 1209.78

  • Monoclinic, P 21 /c

  • a = 9.2436 (5) Å

  • b = 14.0911 (8) Å

  • c = 20.1932 (11) Å

  • β = 92.232 (1)°

  • V = 2628.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 298 K

  • 0.70 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.323, Tmax = 0.759

  • 35525 measured reflections

  • 6544 independent reflections

  • 4457 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.02

  • 6544 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N3 2.075 (3)
Cu1—N4i 2.155 (3)
Cu1—P1 2.1857 (10)
Cu1—I1 2.5731 (6)
N3—Cu1—N4i 78.97 (10)
N3—Cu1—P1 124.71 (9)
N4i—Cu1—P1 119.53 (8)
N3—Cu1—I1 105.04 (9)
N4i—Cu1—I1 100.92 (8)
P1—Cu1—I1 119.15 (3)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯I1ii 0.93 3.03 3.796 (4) 140
Symmetry code: (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper(I) mixed-ligand complexes based on diimines and phosphanes exhibit attracting photophysical and catalytic properties (Costa et al., 2011; Fazal et al., 2009). The 2,2'-bipyrimidine ligand (bpm) is of interest owing to its bis-chelating coordination ability, allowing the design of one-, two- and three-dimensional polymeric solids with interesting chemical and physical properties (Albores & Rentschler, 2009; Yucesan et al., 2009). Herein is reported on a bimetallic mixed-ligand copper(I) iodido complex based on 2,2'-bipyrimidine and triphenylphosphane, [Cu2I2{P(C6H5)3}2(C8H6N4)].2(C3H7NO), (I).

The asymmetric unit of (I) contains one half-molecule of the complex [Cu2I2(Ph3P)2(bpm)] and one dimethylformamide solvent molecule. The complete complex is generated by inversion symmetry with the inversion centre being located on the central C—C bond of the bipyrimidine ligand. One bis-chelating bpm ligand bridges two Cu(I) ions which are each additionally bound to an iodide anion and a phosphorus atom of the phosphane ligand. The geometry around the metal ion is distorted tetrahedral (Figure 1). The triphenylphosphane ipso carbon atoms and the iodide anion adopt an anti configuration with respect to the rotation around the Cu—P bond with a torsion angle (C17—P1—Cu1—I1) of -163.2 (1) °. The unfavorable syn configuration is observed in the analogous chlorido complex reported recently which is likely stabilized by intra-molecular ππ interactions (Tan et al., 2012). The molecules of the complex (I) pack in columns parallel to [100] generating cavities occupied by the solvent molecules (Figure 2). Weak C—H···I hydrogen bonding interactions help to stabilize the crystal packing.

Related literature top

For copper(I) mixed-ligand complexes based on diimines and phosphanes, see: Costa et al. (2011); Fazal et al. (2009). For 2,2'-bipyrimidine polymetallic complexes, see: Albores & Rentschler (2009); Yucesan et al. (2009). For the analogous chlorido complex, see: Tan et al. (2012).

Experimental top

CuI (1.0 mmol, 0.1904 g), Ph3P (1.0 mmol, 0.2623 g) and 2,2'-bipyrimidine (0.5 mmol, 0.0790 g) were reacted in dimethylformamide (35 ml) at 338 K for 2 h. The red solution was then filtered. After a few days, red crystals suitable for X-ray diffraction were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions with C—H distances of 0.93 Å (sp2 carbon atoms), or 0.96 Å (sp3 carbon atoms). The isotropic displacement parameters were Uiso(H) = 1.5Ueq(C) for the methyl atoms and Uiso(H) = 1.2Ueq(C) for all other atoms. The highest remaining electron density is located 0.97 Å from atom I1, and the lowest electron density 0.88 Å from the same atom.

Structure description top

Copper(I) mixed-ligand complexes based on diimines and phosphanes exhibit attracting photophysical and catalytic properties (Costa et al., 2011; Fazal et al., 2009). The 2,2'-bipyrimidine ligand (bpm) is of interest owing to its bis-chelating coordination ability, allowing the design of one-, two- and three-dimensional polymeric solids with interesting chemical and physical properties (Albores & Rentschler, 2009; Yucesan et al., 2009). Herein is reported on a bimetallic mixed-ligand copper(I) iodido complex based on 2,2'-bipyrimidine and triphenylphosphane, [Cu2I2{P(C6H5)3}2(C8H6N4)].2(C3H7NO), (I).

The asymmetric unit of (I) contains one half-molecule of the complex [Cu2I2(Ph3P)2(bpm)] and one dimethylformamide solvent molecule. The complete complex is generated by inversion symmetry with the inversion centre being located on the central C—C bond of the bipyrimidine ligand. One bis-chelating bpm ligand bridges two Cu(I) ions which are each additionally bound to an iodide anion and a phosphorus atom of the phosphane ligand. The geometry around the metal ion is distorted tetrahedral (Figure 1). The triphenylphosphane ipso carbon atoms and the iodide anion adopt an anti configuration with respect to the rotation around the Cu—P bond with a torsion angle (C17—P1—Cu1—I1) of -163.2 (1) °. The unfavorable syn configuration is observed in the analogous chlorido complex reported recently which is likely stabilized by intra-molecular ππ interactions (Tan et al., 2012). The molecules of the complex (I) pack in columns parallel to [100] generating cavities occupied by the solvent molecules (Figure 2). Weak C—H···I hydrogen bonding interactions help to stabilize the crystal packing.

For copper(I) mixed-ligand complexes based on diimines and phosphanes, see: Costa et al. (2011); Fazal et al. (2009). For 2,2'-bipyrimidine polymetallic complexes, see: Albores & Rentschler (2009); Yucesan et al. (2009). For the analogous chlorido complex, see: Tan et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (Symmetry code: i = -x,-y,-z + 1).
[Figure 2] Fig. 2. The packing of the structure of (I).
[(µ2-2,2'-Bipyrimidine)diiodidobis(triphenylphosphane)dicopper(I) dimethylformamide] disolvate top
Crystal data top
[Cu2I2(C8H6N4)(C18H15P)2]·2C3H7NOF(000) = 1204
Mr = 1209.78Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 35525 reflections
a = 9.2436 (5) Åθ = 1.8–28.3°
b = 14.0911 (8) ŵ = 2.09 mm1
c = 20.1932 (11) ÅT = 298 K
β = 92.232 (1)°Rod, red
V = 2628.2 (3) Å30.70 × 0.17 × 0.14 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
6544 independent reflections
Radiation source: normal-focus sealed tube4457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.323, Tmax = 0.759k = 1818
35525 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.047P)2 + 1.9084P]
where P = (Fo2 + 2Fc2)/3
6544 reflections(Δ/σ)max = 0.002
291 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Cu2I2(C8H6N4)(C18H15P)2]·2C3H7NOV = 2628.2 (3) Å3
Mr = 1209.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.2436 (5) ŵ = 2.09 mm1
b = 14.0911 (8) ÅT = 298 K
c = 20.1932 (11) Å0.70 × 0.17 × 0.14 mm
β = 92.232 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6544 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4457 reflections with I > 2σ(I)
Tmin = 0.323, Tmax = 0.759Rint = 0.031
35525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.02Δρmax = 1.15 e Å3
6544 reflectionsΔρmin = 0.72 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21442 (4)0.09166 (3)0.42804 (2)0.06482 (14)
P10.27705 (8)0.23843 (6)0.40902 (4)0.0542 (2)
I10.33242 (3)0.04290 (2)0.363020 (19)0.09714 (15)
N30.1824 (3)0.0354 (2)0.52127 (15)0.0613 (7)
N40.0105 (3)0.05172 (19)0.58132 (14)0.0566 (7)
N50.5546 (5)0.1459 (3)0.1663 (2)0.0951 (11)
O10.7858 (7)0.1074 (4)0.1799 (6)0.287 (5)
C10.0525 (3)0.0046 (2)0.52828 (16)0.0516 (7)
C20.1071 (4)0.0581 (3)0.63210 (19)0.0661 (9)
H20.08150.09000.67020.079*
C30.2430 (4)0.0190 (3)0.6297 (2)0.0758 (11)
H30.30910.02340.66540.091*
C40.2770 (4)0.0266 (3)0.5726 (2)0.0756 (11)
H40.36910.05250.56950.091*
C50.4687 (3)0.2596 (2)0.39732 (18)0.0581 (8)
C60.5653 (4)0.2300 (3)0.4476 (2)0.0754 (10)
H60.53110.20070.48520.091*
C70.7126 (4)0.2441 (4)0.4418 (3)0.0928 (14)
H70.77640.22510.47600.111*
C80.7651 (4)0.2849 (3)0.3872 (3)0.0953 (15)
H80.86420.29420.38410.114*
C90.6737 (5)0.3120 (4)0.3372 (3)0.0958 (14)
H90.71030.33870.29920.115*
C100.5233 (4)0.3003 (3)0.3420 (2)0.0790 (11)
H100.46080.32030.30760.095*
C110.1831 (3)0.2817 (3)0.33385 (18)0.0634 (9)
C120.1491 (4)0.2157 (4)0.2849 (2)0.0829 (12)
H120.18030.15330.29000.099*
C130.0689 (6)0.2418 (5)0.2285 (3)0.1131 (19)
H130.04630.19720.19580.136*
C140.0236 (6)0.3329 (6)0.2211 (3)0.122 (2)
H140.03020.35050.18320.146*
C150.0556 (6)0.3986 (5)0.2683 (3)0.117 (2)
H150.02320.46070.26280.141*
C160.1362 (5)0.3740 (4)0.3249 (2)0.0843 (12)
H160.15890.41970.35690.101*
C170.2317 (4)0.3272 (3)0.47079 (18)0.0615 (8)
C180.3051 (5)0.4121 (3)0.4795 (2)0.0875 (12)
H180.38560.42450.45470.105*
C190.2605 (7)0.4787 (4)0.5246 (3)0.1106 (17)
H190.31130.53530.53010.133*
C200.1431 (7)0.4616 (4)0.5608 (3)0.1070 (17)
H200.11310.50700.59070.128*
C210.0690 (5)0.3794 (5)0.5540 (2)0.0994 (16)
H210.01130.36870.57930.119*
C220.1124 (4)0.3100 (3)0.50876 (19)0.0756 (11)
H220.06180.25320.50440.091*
C230.6841 (10)0.1602 (6)0.1610 (8)0.267 (8)
H230.70950.21680.14070.321*
C240.4410 (7)0.2140 (5)0.1495 (4)0.149 (2)
H24A0.39580.23390.18920.223*
H24B0.37010.18500.12000.223*
H24C0.48210.26810.12830.223*
C250.5060 (11)0.0608 (7)0.1946 (5)0.216 (5)
H25A0.58010.03610.22440.324*
H25B0.48480.01540.16010.324*
H25C0.42020.07310.21840.324*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0474 (2)0.0649 (3)0.0820 (3)0.01234 (18)0.00001 (19)0.0069 (2)
P10.0421 (4)0.0605 (5)0.0600 (5)0.0076 (3)0.0026 (3)0.0019 (4)
I10.05444 (16)0.0968 (2)0.1387 (3)0.00905 (13)0.01487 (16)0.03649 (19)
N30.0401 (13)0.0681 (18)0.0748 (19)0.0121 (12)0.0099 (12)0.0072 (14)
N40.0402 (13)0.0598 (16)0.0692 (18)0.0035 (11)0.0050 (12)0.0043 (13)
N50.083 (3)0.093 (3)0.109 (3)0.014 (2)0.004 (2)0.006 (2)
O10.115 (4)0.126 (5)0.619 (17)0.002 (4)0.008 (7)0.049 (7)
C10.0363 (13)0.0490 (17)0.069 (2)0.0057 (12)0.0043 (13)0.0022 (15)
C20.0516 (18)0.078 (2)0.068 (2)0.0042 (16)0.0060 (16)0.0085 (18)
C30.0512 (19)0.099 (3)0.075 (3)0.0110 (19)0.0176 (17)0.009 (2)
C40.0435 (17)0.092 (3)0.090 (3)0.0178 (17)0.0154 (18)0.007 (2)
C50.0436 (15)0.0559 (19)0.075 (2)0.0051 (13)0.0056 (15)0.0035 (16)
C60.0517 (19)0.084 (3)0.091 (3)0.0005 (18)0.0011 (18)0.003 (2)
C70.048 (2)0.101 (3)0.129 (4)0.005 (2)0.007 (2)0.002 (3)
C80.046 (2)0.087 (3)0.154 (5)0.005 (2)0.016 (3)0.013 (3)
C90.068 (3)0.099 (3)0.123 (4)0.014 (2)0.039 (3)0.007 (3)
C100.059 (2)0.092 (3)0.087 (3)0.013 (2)0.0123 (19)0.008 (2)
C110.0408 (15)0.085 (3)0.064 (2)0.0089 (16)0.0044 (14)0.0097 (19)
C120.071 (2)0.108 (3)0.070 (3)0.010 (2)0.0067 (19)0.000 (2)
C130.090 (3)0.174 (6)0.074 (3)0.019 (4)0.015 (3)0.002 (4)
C140.078 (3)0.199 (8)0.087 (4)0.006 (4)0.012 (3)0.048 (5)
C150.097 (4)0.145 (6)0.110 (4)0.031 (4)0.016 (3)0.054 (4)
C160.075 (3)0.096 (3)0.083 (3)0.006 (2)0.004 (2)0.025 (2)
C170.0502 (17)0.071 (2)0.063 (2)0.0037 (16)0.0012 (15)0.0013 (17)
C180.077 (3)0.080 (3)0.106 (3)0.004 (2)0.011 (2)0.019 (3)
C190.103 (4)0.096 (4)0.132 (5)0.008 (3)0.003 (3)0.040 (3)
C200.102 (4)0.115 (4)0.104 (4)0.032 (3)0.007 (3)0.031 (3)
C210.068 (3)0.149 (5)0.082 (3)0.035 (3)0.011 (2)0.003 (3)
C220.0545 (19)0.103 (3)0.069 (2)0.010 (2)0.0022 (17)0.002 (2)
C230.107 (6)0.104 (6)0.60 (3)0.009 (5)0.082 (10)0.038 (10)
C240.117 (5)0.136 (6)0.191 (7)0.015 (4)0.017 (5)0.004 (5)
C250.198 (10)0.212 (10)0.236 (11)0.049 (8)0.003 (8)0.103 (8)
Geometric parameters (Å, º) top
Cu1—N32.075 (3)C9—H90.9300
Cu1—N4i2.155 (3)C10—H100.9300
Cu1—P12.1857 (10)C11—C161.380 (6)
Cu1—I12.5731 (6)C11—C121.385 (6)
P1—C51.821 (3)C12—C131.384 (7)
P1—C111.824 (4)C12—H120.9300
P1—C171.827 (4)C13—C141.357 (9)
N3—C41.336 (5)C13—H130.9300
N3—C11.339 (4)C14—C151.354 (9)
N4—C11.331 (4)C14—H140.9300
N4—C21.336 (4)C15—C161.383 (7)
N4—Cu1i2.155 (3)C15—H150.9300
N5—C231.222 (8)C16—H160.9300
N5—C251.408 (8)C17—C181.383 (6)
N5—C241.453 (8)C17—C221.388 (5)
O1—C231.247 (12)C18—C191.381 (7)
C1—C1i1.476 (6)C18—H180.9300
C2—C31.374 (5)C19—C201.354 (8)
C2—H20.9300C19—H190.9300
C3—C41.367 (6)C20—C211.349 (8)
C3—H30.9300C20—H200.9300
C4—H40.9300C21—C221.407 (7)
C5—C101.370 (5)C21—H210.9300
C5—C61.390 (5)C22—H220.9300
C6—C71.385 (5)C23—H230.9300
C6—H60.9300C24—H24A0.9600
C7—C81.350 (7)C24—H24B0.9600
C7—H70.9300C24—H24C0.9600
C8—C91.346 (7)C25—H25A0.9600
C8—H80.9300C25—H25B0.9600
C9—C101.407 (5)C25—H25C0.9600
N3—Cu1—N4i78.97 (10)C16—C11—C12118.5 (4)
N3—Cu1—P1124.71 (9)C16—C11—P1124.2 (3)
N4i—Cu1—P1119.53 (8)C12—C11—P1117.2 (3)
N3—Cu1—I1105.04 (9)C13—C12—C11120.5 (5)
N4i—Cu1—I1100.92 (8)C13—C12—H12119.7
P1—Cu1—I1119.15 (3)C11—C12—H12119.7
C5—P1—C11105.74 (16)C14—C13—C12119.7 (6)
C5—P1—C17103.11 (16)C14—C13—H13120.2
C11—P1—C17102.97 (17)C12—C13—H13120.2
C5—P1—Cu1116.31 (12)C15—C14—C13120.8 (5)
C11—P1—Cu1110.00 (13)C15—C14—H14119.6
C17—P1—Cu1117.30 (12)C13—C14—H14119.6
C4—N3—C1116.2 (3)C14—C15—C16120.4 (6)
C4—N3—Cu1128.9 (2)C14—C15—H15119.8
C1—N3—Cu1114.6 (2)C16—C15—H15119.8
C1—N4—C2116.4 (3)C11—C16—C15120.1 (5)
C1—N4—Cu1i111.74 (19)C11—C16—H16119.9
C2—N4—Cu1i131.5 (2)C15—C16—H16119.9
C23—N5—C25120.3 (8)C18—C17—C22118.5 (4)
C23—N5—C24124.8 (7)C18—C17—P1123.7 (3)
C25—N5—C24114.7 (6)C22—C17—P1117.7 (3)
N4—C1—N3125.9 (3)C19—C18—C17120.9 (5)
N4—C1—C1i117.6 (3)C19—C18—H18119.5
N3—C1—C1i116.5 (4)C17—C18—H18119.5
N4—C2—C3122.0 (4)C20—C19—C18120.0 (5)
N4—C2—H2119.0C20—C19—H19120.0
C3—C2—H2119.0C18—C19—H19120.0
C4—C3—C2117.3 (3)C21—C20—C19120.8 (5)
C4—C3—H3121.3C21—C20—H20119.6
C2—C3—H3121.3C19—C20—H20119.6
N3—C4—C3122.2 (3)C20—C21—C22120.4 (5)
N3—C4—H4118.9C20—C21—H21119.8
C3—C4—H4118.9C22—C21—H21119.8
C10—C5—C6118.4 (3)C17—C22—C21119.3 (5)
C10—C5—P1124.4 (3)C17—C22—H22120.4
C6—C5—P1117.2 (3)C21—C22—H22120.4
C7—C6—C5120.0 (4)N5—C23—O1127.1 (10)
C7—C6—H6120.0N5—C23—H23116.4
C5—C6—H6120.0O1—C23—H23116.4
C8—C7—C6121.1 (4)N5—C24—H24A109.5
C8—C7—H7119.5N5—C24—H24B109.5
C6—C7—H7119.5H24A—C24—H24B109.5
C9—C8—C7119.9 (4)N5—C24—H24C109.5
C9—C8—H8120.1H24A—C24—H24C109.5
C7—C8—H8120.1H24B—C24—H24C109.5
C8—C9—C10120.5 (4)N5—C25—H25A109.5
C8—C9—H9119.7N5—C25—H25B109.5
C10—C9—H9119.7H25A—C25—H25B109.5
C5—C10—C9120.1 (4)N5—C25—H25C109.5
C5—C10—H10120.0H25A—C25—H25C109.5
C9—C10—H10120.0H25B—C25—H25C109.5
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···I1ii0.933.033.796 (4)140
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2I2(C8H6N4)(C18H15P)2]·2C3H7NO
Mr1209.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.2436 (5), 14.0911 (8), 20.1932 (11)
β (°) 92.232 (1)
V3)2628.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.70 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.323, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
35525, 6544, 4457
Rint0.031
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.02
No. of reflections6544
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.15, 0.72

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cu1—N32.075 (3)Cu1—P12.1857 (10)
Cu1—N4i2.155 (3)Cu1—I12.5731 (6)
N3—Cu1—N4i78.97 (10)N3—Cu1—I1105.04 (9)
N3—Cu1—P1124.71 (9)N4i—Cu1—I1100.92 (8)
N4i—Cu1—P1119.53 (8)P1—Cu1—I1119.15 (3)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···I1ii0.933.033.796 (4)140
Symmetry code: (ii) x+1, y, z+1.
 

Acknowledgements

The author gratefully acknowledges King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, for financial support.

References

First citationAlbores, P. & Rentschler, E. (2009). Dalton Trans. pp. 2609–2615.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, R. D., Tordera, D., Orti, E., Bolink, H. J., Schonle, J., Graber, S., Housecroft, C. E., Constable, E. C. & Zampese, J. A. (2011). J. Mater. Chem. 21, 16108–16118.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFazal, A., Al-Fayez, S., Abdel-Rahman, L. H., Seddidgi, Z. S., Al-Arfaj, A. R., El Ali, B., Dastageer, M. A., Gondal, M. A. & Fettouhi, M. (2009). Polyhedron, 28, 4072–4076.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C.-H., Ma, X., Zhu, Q.-L., Huang, Y.-H., Fu, R.-B., Hu, S.-M. & Sheng, T.-L. (2012). J. Mol. Struct. 1007, 26–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYucesan, G., Valeich, J. E., Liu, H., Ouellette, W., O'Connor, C. J. & Zubieta, J. (2009). Inorg. Chim. Acta, 362, 1831–1839.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds