metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(pyridazine-κN)bis­­(seleno­cyanato-κN)cobalt(II) pyridazine disolvate

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bDepartment of Chemistry, Texas A&M University, College Station, Texas 77843, USA
*Correspondence e-mail: swoehlert@ac.uni-kiel.de

(Received 12 June 2012; accepted 19 June 2012; online 23 June 2012)

Reaction of cobalt(II) nitrate with potassium seleno­cyanate and pyridazine leads to single crystals of the title compound, [Co(NCSe)2(C4H4N2)4]·2C4H4N2, which is isotypic with its nickel(II) thio­cyanate analogue. The Co2+ cations are coordinated by two N-bonded seleno­cyanate ligands and four N atoms from four pyridazine ligands into discrete complexes. The complexes are arranged into layers parallel to (001). These layers are separated by additional non-coordinating pyridazine ligands.

Related literature

For background to this work, including related thio­cyanato compounds, see: Boeckmann & Näther (2010[Boeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019-11026.], 2011[Boeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.]); Wöhlert et al. (2011[Wöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920-6923.]). For the isotypic Ni thio­cyanate analogue, see: Wöhlert et al. (2012[Wöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m793.]). For related pyridazine coordination compounds, see: Boeckmann et al. (2011[Boeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502-5511.]); Lloret et al. (1998[Lloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135-138.]). For crystallographic analysis, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NCSe)2(C4H4N2)4]·2C4H4N2

  • Mr = 749.44

  • Triclinic, [P \overline 1]

  • a = 11.2138 (9) Å

  • b = 12.0996 (11) Å

  • c = 12.7033 (11) Å

  • α = 62.206 (9)°

  • β = 88.827 (10)°

  • γ = 88.682 (10)°

  • V = 1524.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 170 K

  • 0.15 × 0.11 × 0.08 mm

Data collection
  • STOE IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.579, Tmax = 0.697

  • 16685 measured reflections

  • 7160 independent reflections

  • 4872 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 0.95

  • 7160 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Selected bond lengths (Å)

Co1—N1 2.084 (2)
Co1—N2 2.091 (2)
Co1—N20 2.174 (2)
Co1—N40 2.175 (2)
Co1—N10 2.197 (2)
Co1—N30 2.204 (2)

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND, Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: XCIF in SHELXTL.

Supporting information


Comment top

Recently, we have reported on the synthesis and characterization of coordination polymers based on transition metal(II) thiocyanates and different monodentate and bidentate co-ligands (Boeckmann & Näther, 2010, 2011; Wöhlert et al., 2011). In the course of these investigations we have found that the thiocyanato compounds are frequently isotypic with their selenocyanato analogues and exhibit a similar thermal reactivity and a similar magnetic behaviour (Boeckmann & Näther, 2011). In view of these results, we tried to prepare similar compounds based on pyridazine as co-ligand which results in the formation of single-crystals of the title compound, which are isotypic to [Ni(NCS)2(N2C4H4)4].2(N2C4H4) reported recently (Wöhlert et al., 2012).

In the crystal structure each cobalt(II) cation is coordinated by two terminal N-bonded selenocyanate anions and four pyridazine ligands into discrete complexes (Fig. 1). The octahedral coordination of the cobalt(II) cations is slightly distorted with distances in the range of 2.084 (2) to 2.204 (2) Å and angles ranging from 87.31 (9) ° to 179.70 (10) °. The discrete complexes are arranged into layers parallel to (001) (Fig. 2). These layers are separated by additional non-coordinating pyridazine ligands. The shortest intermolecular Co···Co distances amount to 8.2074 (11) Å.

It must be noted that similar discrete complexes based on cobalt and cadmium as counter cations are already reported in literature (Boeckmann et al., 2011; Lloret et al., 1998).

Related literature top

For background to this work, including related thiocyanato compounds, see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011). For the isotypic Ni thiocyanate analogue, see: Wöhlert et al. (2012). For related pyridazine coordination compounds, see: Boeckmann et al. (2011); Lloret et al. (1998). For crystallographic analysis, see: Spek (2009).

Experimental top

Cobalt(II) nitrate hexahydrate (Co(NO3)2.6H2O) and potassium selenocyanate (KNCSe) as well as pyridazine were obtained from Alfa Aesar. All chemicals were used without further purification. 0.125 mmol (36.4 mg) Co(NO3)2.6H2O and 0.25 mmol (36.0 mg) KNCSe were reacted in 2.76 mmol (200 µL) pyridazine. Orange single-crystals of the title compound were obtained after three days.

Refinement top

All H atoms could be located in difference maps but were positioned with idealized geometry and were refined isotropic with Uiso(H) = 1.2 Ueq(C) of the parent atom using a riding model with C—H = 0.95 Å. PLATON (Spek, 2009) detect a pseudo-translation which is without any relevance because our investigations cleary shows that the symmetry and the space group is correct.

Structure description top

Recently, we have reported on the synthesis and characterization of coordination polymers based on transition metal(II) thiocyanates and different monodentate and bidentate co-ligands (Boeckmann & Näther, 2010, 2011; Wöhlert et al., 2011). In the course of these investigations we have found that the thiocyanato compounds are frequently isotypic with their selenocyanato analogues and exhibit a similar thermal reactivity and a similar magnetic behaviour (Boeckmann & Näther, 2011). In view of these results, we tried to prepare similar compounds based on pyridazine as co-ligand which results in the formation of single-crystals of the title compound, which are isotypic to [Ni(NCS)2(N2C4H4)4].2(N2C4H4) reported recently (Wöhlert et al., 2012).

In the crystal structure each cobalt(II) cation is coordinated by two terminal N-bonded selenocyanate anions and four pyridazine ligands into discrete complexes (Fig. 1). The octahedral coordination of the cobalt(II) cations is slightly distorted with distances in the range of 2.084 (2) to 2.204 (2) Å and angles ranging from 87.31 (9) ° to 179.70 (10) °. The discrete complexes are arranged into layers parallel to (001) (Fig. 2). These layers are separated by additional non-coordinating pyridazine ligands. The shortest intermolecular Co···Co distances amount to 8.2074 (11) Å.

It must be noted that similar discrete complexes based on cobalt and cadmium as counter cations are already reported in literature (Boeckmann et al., 2011; Lloret et al., 1998).

For background to this work, including related thiocyanato compounds, see: Boeckmann & Näther (2010, 2011); Wöhlert et al. (2011). For the isotypic Ni thiocyanate analogue, see: Wöhlert et al. (2012). For related pyridazine coordination compounds, see: Boeckmann et al. (2011); Lloret et al. (1998). For crystallographic analysis, see: Spek (2009).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal structure of the title compound in a view along [010].
Tetrakis(pyridazine-κN)bis(selenocyanato-κN)cobalt(II) pyridazine disolvate top
Crystal data top
[Co(SeCN)2(C4H4N2)4]·2C4H4N2Z = 2
Mr = 749.44F(000) = 746
Triclinic, P1Dx = 1.633 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2138 (9) ÅCell parameters from 16685 reflections
b = 12.0996 (11) Åθ = 2.6–28.0°
c = 12.7033 (11) ŵ = 2.99 mm1
α = 62.206 (9)°T = 170 K
β = 88.827 (10)°Block, orange
γ = 88.682 (10)°0.15 × 0.11 × 0.08 mm
V = 1524.3 (2) Å3
Data collection top
STOE IPDS-1
diffractometer
7160 independent reflections
Radiation source: fine-focus sealed tube4872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi scanθmax = 28.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1414
Tmin = 0.579, Tmax = 0.697k = 1515
16685 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0561P)2]
where P = (Fo2 + 2Fc2)/3
7160 reflections(Δ/σ)max = 0.001
388 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Co(SeCN)2(C4H4N2)4]·2C4H4N2γ = 88.682 (10)°
Mr = 749.44V = 1524.3 (2) Å3
Triclinic, P1Z = 2
a = 11.2138 (9) ÅMo Kα radiation
b = 12.0996 (11) ŵ = 2.99 mm1
c = 12.7033 (11) ÅT = 170 K
α = 62.206 (9)°0.15 × 0.11 × 0.08 mm
β = 88.827 (10)°
Data collection top
STOE IPDS-1
diffractometer
7160 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4872 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.697Rint = 0.047
16685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.95Δρmax = 0.42 e Å3
7160 reflectionsΔρmin = 0.74 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.74918 (3)0.74770 (4)0.50943 (3)0.01251 (9)
N10.8568 (2)0.6511 (2)0.6576 (2)0.0193 (5)
C10.9395 (3)0.6035 (3)0.7155 (3)0.0170 (6)
Se11.06840 (3)0.53113 (3)0.80450 (3)0.02804 (10)
N20.6414 (2)0.8434 (2)0.3603 (2)0.0194 (5)
C20.5651 (3)0.8969 (3)0.2944 (3)0.0166 (6)
Se20.44604 (3)0.97836 (3)0.19407 (3)0.02555 (10)
N100.8043 (2)0.9230 (2)0.5048 (2)0.0166 (5)
N110.8491 (2)1.0109 (2)0.4008 (2)0.0224 (5)
C110.8829 (3)1.1191 (3)0.3937 (3)0.0253 (7)
H110.91651.17960.32080.030*
C120.8715 (3)1.1488 (3)0.4871 (3)0.0282 (7)
H120.89461.22770.47820.034*
C130.8255 (3)1.0588 (3)0.5925 (3)0.0307 (8)
H130.81571.07280.65980.037*
C140.7938 (3)0.9459 (3)0.5969 (3)0.0236 (7)
H140.76300.88210.66970.028*
N200.8926 (2)0.7545 (2)0.3889 (2)0.0140 (5)
N210.9612 (2)0.6494 (2)0.4300 (2)0.0169 (5)
C211.0463 (3)0.6422 (3)0.3595 (3)0.0219 (6)
H211.09330.56770.38820.026*
C221.0709 (3)0.7375 (3)0.2457 (3)0.0273 (7)
H221.13370.72940.19830.033*
C231.0007 (3)0.8436 (3)0.2047 (3)0.0223 (6)
H231.01330.91190.12790.027*
C240.9105 (3)0.8474 (3)0.2800 (3)0.0189 (6)
H240.85970.91920.25250.023*
N300.6947 (2)0.5719 (2)0.5135 (2)0.0170 (5)
N310.6603 (2)0.4772 (2)0.6183 (2)0.0223 (5)
C310.6270 (3)0.3707 (3)0.6204 (3)0.0290 (7)
H310.60070.30490.69410.035*
C320.6284 (3)0.3506 (3)0.5212 (3)0.0321 (8)
H320.60480.27320.52660.038*
C330.6653 (3)0.4469 (4)0.4155 (3)0.0325 (8)
H330.66920.43880.34460.039*
C340.6971 (3)0.5576 (3)0.4160 (3)0.0240 (7)
H340.72160.62600.34320.029*
N400.6010 (2)0.7439 (2)0.6242 (2)0.0151 (5)
N410.5359 (2)0.8514 (2)0.5780 (2)0.0180 (5)
C410.4414 (3)0.8588 (3)0.6389 (3)0.0220 (6)
H410.39610.93450.60650.026*
C420.4049 (3)0.7623 (3)0.7473 (3)0.0249 (7)
H420.33540.77070.78720.030*
C430.4725 (3)0.6542 (3)0.7949 (3)0.0228 (7)
H430.45250.58560.86940.027*
C440.5718 (3)0.6497 (3)0.7289 (3)0.0199 (6)
H440.62050.57630.76020.024*
N500.6844 (3)0.6254 (3)1.0041 (3)0.0348 (7)
N510.6207 (3)0.6544 (3)1.0784 (3)0.0413 (8)
C510.6508 (4)0.7539 (4)1.0884 (4)0.0467 (11)
H510.60390.77511.13960.056*
C520.7464 (4)0.8295 (4)1.0291 (4)0.0470 (12)
H520.76610.89921.04040.056*
C530.8102 (3)0.7995 (4)0.9544 (4)0.0456 (11)
H530.87630.84770.91000.055*
C540.7752 (3)0.6955 (4)0.9454 (4)0.0373 (9)
H540.81950.67320.89350.045*
N600.2024 (3)0.8989 (3)0.9578 (3)0.0301 (6)
N610.1110 (3)0.8398 (3)0.9384 (3)0.0300 (6)
C610.1245 (3)0.7193 (3)0.9688 (3)0.0320 (8)
H610.06010.67870.95460.038*
C620.2272 (3)0.6484 (3)1.0205 (3)0.0325 (8)
H620.23280.56221.04120.039*
C630.3189 (3)0.7088 (3)1.0397 (3)0.0308 (8)
H630.39130.66631.07450.037*
C640.3023 (3)0.8353 (3)1.0065 (3)0.0281 (7)
H640.36560.87841.01910.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01260 (17)0.00907 (17)0.01339 (18)0.00259 (13)0.00004 (13)0.00327 (14)
N10.0210 (12)0.0180 (13)0.0168 (12)0.0044 (10)0.0027 (10)0.0064 (11)
C10.0224 (14)0.0111 (14)0.0165 (14)0.0024 (12)0.0025 (11)0.0056 (11)
Se10.02541 (17)0.02162 (19)0.02991 (18)0.00417 (14)0.01359 (14)0.00566 (15)
N20.0195 (12)0.0165 (13)0.0185 (12)0.0046 (10)0.0032 (10)0.0051 (11)
C20.0190 (14)0.0130 (14)0.0174 (14)0.0002 (11)0.0033 (11)0.0069 (12)
Se20.02245 (16)0.02343 (19)0.02468 (17)0.00506 (13)0.01067 (13)0.00593 (14)
N100.0152 (11)0.0115 (12)0.0198 (12)0.0001 (9)0.0010 (9)0.0046 (10)
N110.0274 (13)0.0140 (13)0.0243 (13)0.0024 (11)0.0058 (11)0.0078 (11)
C110.0258 (15)0.0143 (15)0.0315 (17)0.0040 (13)0.0030 (13)0.0071 (14)
C120.0231 (15)0.0214 (17)0.045 (2)0.0046 (13)0.0019 (14)0.0196 (16)
C130.0326 (18)0.037 (2)0.0356 (19)0.0078 (16)0.0009 (15)0.0273 (18)
C140.0239 (15)0.0245 (17)0.0237 (16)0.0069 (13)0.0017 (12)0.0121 (14)
N200.0146 (11)0.0123 (12)0.0145 (11)0.0027 (9)0.0014 (9)0.0060 (10)
N210.0187 (11)0.0129 (12)0.0168 (12)0.0063 (10)0.0003 (9)0.0052 (10)
C210.0210 (14)0.0201 (16)0.0254 (16)0.0068 (13)0.0021 (12)0.0117 (14)
C220.0249 (16)0.033 (2)0.0251 (16)0.0050 (14)0.0051 (13)0.0145 (15)
C230.0274 (16)0.0206 (16)0.0140 (14)0.0009 (13)0.0042 (12)0.0041 (12)
C240.0234 (14)0.0144 (15)0.0166 (14)0.0031 (12)0.0011 (11)0.0054 (12)
N300.0156 (11)0.0142 (12)0.0210 (12)0.0002 (10)0.0011 (9)0.0081 (10)
N310.0235 (13)0.0161 (13)0.0256 (13)0.0021 (11)0.0038 (11)0.0083 (11)
C310.0313 (17)0.0179 (16)0.0352 (18)0.0046 (14)0.0055 (14)0.0102 (15)
C320.0259 (17)0.0266 (19)0.050 (2)0.0100 (15)0.0035 (16)0.0226 (18)
C330.0369 (19)0.037 (2)0.0339 (19)0.0111 (17)0.0009 (15)0.0251 (18)
C340.0244 (15)0.0237 (17)0.0238 (16)0.0037 (13)0.0027 (13)0.0108 (14)
N400.0142 (11)0.0125 (12)0.0165 (11)0.0028 (9)0.0004 (9)0.0051 (10)
N410.0169 (11)0.0154 (13)0.0183 (12)0.0049 (10)0.0013 (9)0.0053 (10)
C410.0198 (14)0.0210 (16)0.0257 (16)0.0067 (12)0.0006 (12)0.0117 (14)
C420.0226 (15)0.0308 (18)0.0232 (16)0.0004 (13)0.0091 (12)0.0145 (14)
C430.0274 (16)0.0217 (17)0.0166 (14)0.0065 (13)0.0079 (12)0.0066 (13)
C440.0254 (15)0.0126 (14)0.0183 (14)0.0031 (12)0.0018 (12)0.0042 (12)
N500.0330 (16)0.0267 (16)0.0481 (19)0.0020 (13)0.0082 (14)0.0201 (15)
N510.0368 (17)0.0308 (18)0.049 (2)0.0033 (14)0.0010 (15)0.0126 (16)
C510.063 (3)0.042 (2)0.038 (2)0.026 (2)0.013 (2)0.022 (2)
C520.059 (3)0.0233 (19)0.068 (3)0.0145 (19)0.045 (2)0.028 (2)
C530.0251 (18)0.026 (2)0.064 (3)0.0011 (16)0.0099 (18)0.003 (2)
C540.039 (2)0.033 (2)0.037 (2)0.0072 (17)0.0001 (16)0.0142 (18)
N600.0389 (16)0.0172 (14)0.0306 (15)0.0035 (12)0.0028 (13)0.0078 (12)
N610.0323 (15)0.0254 (16)0.0284 (15)0.0049 (13)0.0009 (12)0.0090 (13)
C610.0370 (19)0.0288 (19)0.0330 (19)0.0126 (16)0.0046 (15)0.0164 (16)
C620.044 (2)0.0183 (17)0.0356 (19)0.0008 (15)0.0095 (16)0.0133 (15)
C630.0279 (17)0.033 (2)0.0293 (18)0.0060 (15)0.0038 (14)0.0127 (16)
C640.0307 (17)0.0275 (18)0.0270 (17)0.0102 (14)0.0052 (13)0.0132 (15)
Geometric parameters (Å, º) top
Co1—N12.084 (2)C32—C331.369 (5)
Co1—N22.091 (2)C32—H320.9500
Co1—N202.174 (2)C33—C341.398 (5)
Co1—N402.175 (2)C33—H330.9500
Co1—N102.197 (2)C34—H340.9500
Co1—N302.204 (2)N40—C441.327 (4)
N1—C11.157 (4)N40—N411.353 (3)
C1—Se11.795 (3)N41—C411.325 (4)
N2—C21.163 (4)C41—C421.388 (5)
C2—Se21.793 (3)C41—H410.9500
N10—C141.325 (4)C42—C431.373 (5)
N10—N111.348 (4)C42—H420.9500
N11—C111.334 (4)C43—C441.395 (4)
C11—C121.393 (5)C43—H430.9500
C11—H110.9500C44—H440.9500
C12—C131.372 (5)N50—C541.316 (5)
C12—H120.9500N50—N511.340 (5)
C13—C141.395 (5)N51—C511.320 (5)
C13—H130.9500C51—C521.387 (7)
C14—H140.9500C51—H510.9500
N20—C241.329 (4)C52—C531.352 (7)
N20—N211.354 (3)C52—H520.9500
N21—C211.325 (4)C53—C541.381 (6)
C21—C221.392 (5)C53—H530.9500
C21—H210.9500C54—H540.9500
C22—C231.373 (5)N60—C641.332 (4)
C22—H220.9500N60—N611.353 (4)
C23—C241.393 (4)N61—C611.328 (5)
C23—H230.9500C61—C621.397 (5)
C24—H240.9500C61—H610.9500
N30—C341.327 (4)C62—C631.365 (5)
N30—N311.345 (4)C62—H620.9500
N31—C311.337 (4)C63—C641.393 (5)
C31—C321.390 (5)C63—H630.9500
C31—H310.9500C64—H640.9500
N1—Co1—N2179.50 (11)N31—C31—H31118.0
N1—Co1—N2091.87 (9)C32—C31—H31118.0
N2—Co1—N2087.88 (9)C33—C32—C31117.2 (3)
N1—Co1—N4090.35 (10)C33—C32—H32121.4
N2—Co1—N4089.90 (9)C31—C32—H32121.4
N20—Co1—N40177.76 (8)C32—C33—C34117.3 (3)
N1—Co1—N1088.58 (9)C32—C33—H33121.4
N2—Co1—N1091.87 (9)C34—C33—H33121.4
N20—Co1—N1092.39 (9)N30—C34—C33123.1 (3)
N40—Co1—N1087.93 (9)N30—C34—H34118.4
N1—Co1—N3091.41 (9)C33—C34—H34118.4
N2—Co1—N3088.14 (9)C44—N40—N41120.5 (2)
N20—Co1—N3087.31 (9)C44—N40—Co1126.6 (2)
N40—Co1—N3092.36 (9)N41—N40—Co1112.88 (17)
N10—Co1—N30179.70 (10)C41—N41—N40118.2 (3)
C1—N1—Co1161.1 (2)N41—C41—C42123.8 (3)
N1—C1—Se1179.5 (3)N41—C41—H41118.1
C2—N2—Co1166.1 (3)C42—C41—H41118.1
N2—C2—Se2179.3 (3)C43—C42—C41117.8 (3)
C14—N10—N11119.7 (3)C43—C42—H42121.1
C14—N10—Co1123.5 (2)C41—C42—H42121.1
N11—N10—Co1116.70 (18)C42—C43—C44117.0 (3)
C11—N11—N10118.7 (3)C42—C43—H43121.5
N11—C11—C12123.8 (3)C44—C43—H43121.5
N11—C11—H11118.1N40—C44—C43122.6 (3)
C12—C11—H11118.1N40—C44—H44118.7
C13—C12—C11117.0 (3)C43—C44—H44118.7
C13—C12—H12121.5C54—N50—N51119.1 (3)
C11—C12—H12121.5C51—N51—N50118.3 (4)
C12—C13—C14117.4 (3)N51—C51—C52124.4 (4)
C12—C13—H13121.3N51—C51—H51117.8
C14—C13—H13121.3C52—C51—H51117.8
N10—C14—C13123.3 (3)C53—C52—C51116.8 (3)
N10—C14—H14118.3C53—C52—H52121.6
C13—C14—H14118.3C51—C52—H52121.6
C24—N20—N21120.4 (2)C52—C53—C54117.0 (4)
C24—N20—Co1125.23 (19)C52—C53—H53121.5
N21—N20—Co1114.20 (17)C54—C53—H53121.5
C21—N21—N20118.4 (2)N50—C54—C53124.3 (4)
N21—C21—C22123.8 (3)N50—C54—H54117.8
N21—C21—H21118.1C53—C54—H54117.8
C22—C21—H21118.1C64—N60—N61119.5 (3)
C23—C22—C21117.3 (3)C61—N61—N60118.4 (3)
C23—C22—H22121.3N61—C61—C62124.4 (3)
C21—C22—H22121.3N61—C61—H61117.8
C22—C23—C24117.5 (3)C62—C61—H61117.8
C22—C23—H23121.2C63—C62—C61116.8 (3)
C24—C23—H23121.2C63—C62—H62121.6
N20—C24—C23122.5 (3)C61—C62—H62121.6
N20—C24—H24118.7C62—C63—C64117.5 (3)
C23—C24—H24118.7C62—C63—H63121.3
C34—N30—N31120.1 (3)C64—C63—H63121.3
C34—N30—Co1121.5 (2)N60—C64—C63123.5 (3)
N31—N30—Co1118.45 (19)N60—C64—H64118.3
C31—N31—N30118.3 (3)C63—C64—H64118.3
N31—C31—C32124.0 (3)

Experimental details

Crystal data
Chemical formula[Co(SeCN)2(C4H4N2)4]·2C4H4N2
Mr749.44
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)11.2138 (9), 12.0996 (11), 12.7033 (11)
α, β, γ (°)62.206 (9), 88.827 (10), 88.682 (10)
V3)1524.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.99
Crystal size (mm)0.15 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS1
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.579, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
16685, 7160, 4872
Rint0.047
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 0.95
No. of reflections7160
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.74

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), XCIF in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—N12.084 (2)Co1—N402.175 (2)
Co1—N22.091 (2)Co1—N102.197 (2)
Co1—N202.174 (2)Co1—N302.204 (2)
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/3–1) and the State of Schleswig-Holstein. We also thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBoeckmann, J., Jess, I., Reinert, T. & Näther, C. (2011). Eur. J. Inorg. Chem. pp. 5502–5511.  Web of Science CSD CrossRef Google Scholar
First citationBoeckmann, J. & Näther, C. (2010). Dalton Trans. 39, 11019–11026.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoeckmann, J. & Näther, C. (2011). Chem. Commun. 47, 7104-7106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationLloret, F., Munno, G., Julve, M., Cano, J., Ruiz, R. & Caneschi, A. (1998). Angew. Chem. Int. Ed. 37, 135–138.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWöhlert, S., Boeckmann, J., Wriedt, M. & Näther, C. (2011). Angew. Chem. Int. Ed. 50, 6920–6923.  Google Scholar
First citationWöhlert, S., Wriedt, M., Jess, I. & Näther, C. (2012). Acta Cryst. E68, m793.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds