organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-{N-[2-(2,4-di­chloro­phen­­oxy)acet­yl]-4-[(4,6-dimeth­­oxy­pyrimidin-2-yl)­­oxy]anilino}propano­ate

aKey Laboratory of Pesticide and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 25 May 2012; accepted 5 June 2012; online 13 June 2012)

In the title mol­ecule, C24H23Cl2N3O7, the central benzene ring forms dihedral angles of 65.71 (1) and 44.42 (1)° with the pyrimidine ring and the terminal benzene ring, respectively. In the crystal, molecules are linked via C—H⋯O hydrogen bonds.

Related literature

For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the synthesis of 4-(4,6-dimeth­oxy­pyrimidin-2-yl­oxy)benzen­amine, see: Jin et al. (2011[Jin, C. F., Liang, Y. J., He, H. W. & Fu, L. W. (2011). Eur. J. Med. Chem. 46, 429-432.]). For biological properties of fungicides, see: Gozzo & Garlaschelli (1985[Gozzo, F. & Garlaschelli, L. (1985). Pestic. Sci. 16, 227-286.]).

[Scheme 1]

Experimental

Crystal data
  • C24H23Cl2N3O7

  • Mr = 536.35

  • Triclinic, [P \overline 1]

  • a = 8.2438 (9) Å

  • b = 11.2405 (12) Å

  • c = 14.2502 (15) Å

  • α = 85.178 (2)°

  • β = 78.702 (2)°

  • γ = 80.032 (2)°

  • V = 1273.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 298 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 15581 measured reflections

  • 6204 independent reflections

  • 4390 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.174

  • S = 1.06

  • 6204 reflections

  • 329 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O4i 0.93 2.57 3.402 (3) 150
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

N-acylalanine fungicides are mainly used in crop protection because of their systemic properties, with both curative and protective activity against fungal pathogens of the Peronosporales (Gozzo & Garlaschelli, 1985). The pyrimidinyl group is widely used in fungicides and drug molecular design (Jin et al., 2011), so we have introduced the pyrimidinyl group into acylalanine derivatives in order to decrease resistance and increase activity.

Here we report the crystal structure of the title compound (Fig.1). The bond lengths (Allen et al., 1987) and angles show normal values. The central benzene ring forms dihedral angles of 65.71 (1)° and 44.42 (1)° with the pyrimidinyl ring and the terminal benzene ring, respectively. The C9—H9···O4 intermolecular hydrogen bond plays an important role in determining the crystal structure.

Related literature top

For reference bond-length data, see: Allen et al. (1987). For the synthesis of 4-(4,6-dimethoxypyrimidin-2-yloxy)benzenamine, see: Jin et al. (2011). For biological properties of fungicides, see: Gozzo & Garlaschelli (1985).

Experimental top

4-(4,6-Dimethoxypyrimidin-2-yloxy)benzenamine (Jin et al., 2011) (1 mmol) and methyl 2-chloropropanoate (1.2 mmol) were dissolved in 15 ml dimethylformamide, then 1 mmol K2CO3 was added with constant stirring. The temperature was maintained at 100 °C for 10 h. The reaction mixture was poured into water and extracted with ethyl acetate, dried with Na2SO4, then purified by column chromatography on silica gel with petroleum ether/ethyl acetate (4:1) to give the compound methyl 2-(N-(4-(4,6-dimethoxypyrimidin-2-yloxy)phenyl)amino)propanoate.

To a mixture of methyl 2-(N-(4-(4,6-dimethoxypyrimidin-2-yloxy) phenyl)amino)propanoate (2 mmol) and triethylamine (2 mmol) in CH2Cl2 (20 ml), 2,4-dichlorophenoxyacetyl chloride (2 mmol) was added at 2–5 °C and the mixture was stirred for another 3 h, then washed with saturated sodium hydrogen carbonate solution and dried with Na2SO4. The residue was purified by column chromatography on silica gel with petroleum ether/ethyl acetate (3:1) to give the pure title compound as a white solid. Recrystallization from ethanol over a period of one week gave colourless crystals of the title compound.

Refinement top

H atoms were geometrically positioned (Csp2—H = 0.93 Å, Cmethine—H = 0.98 Å, Cmethylene—H = 0.97 Å, Cmethyl—H = 0.96 Å) and refined as riding, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Structure description top

N-acylalanine fungicides are mainly used in crop protection because of their systemic properties, with both curative and protective activity against fungal pathogens of the Peronosporales (Gozzo & Garlaschelli, 1985). The pyrimidinyl group is widely used in fungicides and drug molecular design (Jin et al., 2011), so we have introduced the pyrimidinyl group into acylalanine derivatives in order to decrease resistance and increase activity.

Here we report the crystal structure of the title compound (Fig.1). The bond lengths (Allen et al., 1987) and angles show normal values. The central benzene ring forms dihedral angles of 65.71 (1)° and 44.42 (1)° with the pyrimidinyl ring and the terminal benzene ring, respectively. The C9—H9···O4 intermolecular hydrogen bond plays an important role in determining the crystal structure.

For reference bond-length data, see: Allen et al. (1987). For the synthesis of 4-(4,6-dimethoxypyrimidin-2-yloxy)benzenamine, see: Jin et al. (2011). For biological properties of fungicides, see: Gozzo & Garlaschelli (1985).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS-97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with 50% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.
Methyl 2-{N-[2-(2,4-dichlorophenoxy)acetyl]- 4-[(4,6-dimethoxypyrimidin-2-yl)oxy]anilino}propanoate top
Crystal data top
C24H23Cl2N3O7Z = 2
Mr = 536.35F(000) = 556
Triclinic, P1Dx = 1.399 Mg m3
a = 8.2438 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2405 (12) ÅCell parameters from 5848 reflections
c = 14.2502 (15) Åθ = 2.4–27.7°
α = 85.178 (2)°µ = 0.30 mm1
β = 78.702 (2)°T = 298 K
γ = 80.032 (2)°Block, colourless
V = 1273.6 (2) Å30.16 × 0.12 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4390 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.3°, θmin = 1.8°
phi and ω scansh = 1010
15581 measured reflectionsk = 1414
6204 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0812P)2 + 0.2621P]
where P = (Fo2 + 2Fc2)/3
6204 reflections(Δ/σ)max < 0.001
329 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C24H23Cl2N3O7γ = 80.032 (2)°
Mr = 536.35V = 1273.6 (2) Å3
Triclinic, P1Z = 2
a = 8.2438 (9) ÅMo Kα radiation
b = 11.2405 (12) ŵ = 0.30 mm1
c = 14.2502 (15) ÅT = 298 K
α = 85.178 (2)°0.16 × 0.12 × 0.10 mm
β = 78.702 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4390 reflections with I > 2σ(I)
15581 measured reflectionsRint = 0.050
6204 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.06Δρmax = 0.77 e Å3
6204 reflectionsΔρmin = 0.35 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1814 (4)0.1820 (3)0.55913 (16)0.0750 (7)
C20.1019 (5)0.0866 (3)0.60971 (18)0.0888 (9)
H20.16130.03430.65140.107*
C30.0693 (5)0.0735 (2)0.59483 (17)0.0809 (8)
C40.0665 (3)0.2312 (2)0.49075 (15)0.0619 (5)
C50.4294 (4)0.3007 (4)0.5202 (3)0.1131 (12)
H5A0.41540.37490.54420.170*
H5B0.54670.29640.52850.170*
H5C0.38050.29830.45330.170*
C60.3282 (7)0.0322 (4)0.6277 (3)0.1322 (16)
H6A0.37450.05430.56320.198*
H6B0.36900.09450.67160.198*
H6C0.36100.04260.63850.198*
C70.0948 (3)0.3856 (2)0.36520 (15)0.0582 (5)
C80.0267 (3)0.34724 (19)0.29442 (15)0.0576 (5)
H80.01060.26730.29530.069*
C90.0170 (3)0.42863 (18)0.22240 (14)0.0529 (5)
H90.06510.40420.17490.063*
C100.0107 (2)0.54753 (17)0.22072 (14)0.0508 (4)
C110.0755 (3)0.5849 (2)0.29330 (16)0.0621 (5)
H110.09110.66490.29320.075*
C120.1170 (3)0.5032 (2)0.36626 (16)0.0646 (6)
H120.15990.52810.41570.077*
C130.0662 (2)0.62200 (17)0.05341 (15)0.0512 (4)
C140.2208 (3)0.52456 (19)0.04013 (15)0.0557 (5)
H14A0.28630.52930.08890.067*
H14B0.18680.44540.04720.067*
C150.3997 (2)0.63889 (18)0.06993 (14)0.0522 (5)
C160.4732 (2)0.6621 (2)0.16498 (15)0.0564 (5)
C170.5604 (3)0.7573 (2)0.19099 (17)0.0650 (6)
H170.60830.77210.25470.078*
C180.5757 (3)0.8305 (2)0.1213 (2)0.0724 (7)
C190.5045 (3)0.8096 (2)0.0276 (2)0.0744 (6)
H190.51560.85940.01890.089*
C200.4161 (3)0.7144 (2)0.00201 (17)0.0644 (6)
H200.36720.70110.06170.077*
C210.1595 (3)0.7360 (2)0.1557 (2)0.0687 (6)
H210.21500.74270.10010.082*
C220.2918 (4)0.7281 (3)0.2402 (3)0.1095 (12)
H22A0.32920.65130.24380.164*
H22B0.38420.79190.23550.164*
H22C0.24860.73600.29690.164*
C230.0768 (3)0.84909 (18)0.14879 (15)0.0550 (5)
C240.1183 (4)1.0605 (2)0.1175 (2)0.0823 (8)
H24A0.07901.07300.17440.124*
H24B0.20631.12530.10700.124*
H24C0.02751.05840.06360.124*
Cl10.45524 (9)0.57030 (7)0.25189 (5)0.0857 (2)
Cl20.68469 (11)0.95120 (8)0.15360 (8)0.1130 (3)
N10.0971 (3)0.25673 (18)0.49818 (12)0.0639 (5)
N20.1583 (3)0.14535 (19)0.53514 (13)0.0715 (5)
N30.0284 (2)0.62954 (15)0.14216 (13)0.0542 (4)
O10.3482 (3)0.2002 (2)0.57170 (15)0.1022 (7)
O20.1513 (4)0.0183 (2)0.64236 (15)0.1119 (8)
O30.1632 (2)0.30374 (17)0.43166 (13)0.0761 (5)
O40.03226 (19)0.69051 (14)0.01316 (11)0.0641 (4)
O50.32022 (19)0.54002 (13)0.05232 (10)0.0600 (4)
O60.1820 (2)0.94630 (14)0.12870 (13)0.0702 (4)
O70.0634 (2)0.84994 (14)0.16004 (13)0.0695 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0984 (19)0.0862 (17)0.0475 (12)0.0416 (15)0.0091 (12)0.0017 (11)
C20.137 (3)0.0818 (19)0.0513 (13)0.0444 (18)0.0113 (15)0.0159 (12)
C30.131 (3)0.0653 (15)0.0478 (12)0.0171 (16)0.0222 (14)0.0056 (11)
C40.0814 (16)0.0601 (13)0.0479 (11)0.0198 (11)0.0157 (10)0.0018 (9)
C50.084 (2)0.147 (3)0.109 (3)0.036 (2)0.0128 (18)0.016 (2)
C60.172 (4)0.110 (3)0.093 (2)0.044 (3)0.037 (3)0.011 (2)
C70.0544 (11)0.0615 (13)0.0562 (11)0.0144 (9)0.0044 (9)0.0091 (9)
C80.0619 (12)0.0471 (11)0.0625 (12)0.0166 (9)0.0049 (9)0.0055 (9)
C90.0548 (11)0.0507 (11)0.0524 (10)0.0144 (9)0.0041 (8)0.0001 (8)
C100.0508 (10)0.0454 (10)0.0512 (10)0.0091 (8)0.0024 (8)0.0015 (8)
C110.0707 (14)0.0491 (11)0.0658 (13)0.0169 (10)0.0047 (10)0.0026 (10)
C120.0714 (14)0.0676 (14)0.0577 (12)0.0214 (11)0.0097 (10)0.0045 (10)
C130.0521 (10)0.0417 (10)0.0588 (11)0.0099 (8)0.0093 (8)0.0053 (8)
C140.0563 (11)0.0481 (11)0.0544 (11)0.0052 (8)0.0018 (9)0.0098 (8)
C150.0463 (10)0.0480 (10)0.0555 (11)0.0004 (8)0.0037 (8)0.0094 (8)
C160.0437 (10)0.0631 (13)0.0553 (11)0.0009 (9)0.0026 (8)0.0052 (9)
C170.0448 (11)0.0729 (15)0.0679 (13)0.0074 (10)0.0026 (9)0.0153 (11)
C180.0541 (13)0.0674 (15)0.0905 (18)0.0168 (11)0.0003 (11)0.0081 (13)
C190.0710 (15)0.0701 (15)0.0822 (16)0.0164 (12)0.0097 (12)0.0049 (13)
C200.0667 (13)0.0620 (13)0.0588 (12)0.0073 (10)0.0039 (10)0.0059 (10)
C210.0489 (11)0.0513 (12)0.0969 (17)0.0032 (9)0.0011 (11)0.0020 (11)
C220.0783 (18)0.0708 (18)0.159 (3)0.0151 (14)0.0354 (19)0.0167 (19)
C230.0559 (12)0.0469 (11)0.0537 (11)0.0005 (9)0.0002 (9)0.0059 (8)
C240.0913 (18)0.0461 (12)0.0980 (19)0.0044 (12)0.0036 (14)0.0163 (12)
Cl10.0820 (4)0.1117 (6)0.0616 (4)0.0311 (4)0.0092 (3)0.0140 (3)
Cl20.1001 (6)0.0934 (6)0.1411 (8)0.0505 (5)0.0159 (5)0.0014 (5)
N10.0801 (13)0.0671 (12)0.0487 (9)0.0268 (10)0.0111 (8)0.0028 (8)
N20.1018 (16)0.0628 (12)0.0512 (10)0.0095 (11)0.0233 (10)0.0038 (9)
N30.0520 (9)0.0426 (9)0.0618 (10)0.0045 (7)0.0012 (7)0.0035 (7)
O10.0946 (15)0.137 (2)0.0777 (12)0.0521 (14)0.0042 (11)0.0191 (12)
O20.174 (3)0.0830 (14)0.0698 (12)0.0018 (15)0.0302 (14)0.0235 (10)
O30.0694 (10)0.0823 (12)0.0788 (11)0.0230 (9)0.0233 (8)0.0288 (9)
O40.0676 (9)0.0551 (8)0.0673 (9)0.0059 (7)0.0180 (7)0.0156 (7)
O50.0649 (9)0.0527 (8)0.0548 (8)0.0097 (7)0.0049 (6)0.0042 (6)
O60.0625 (9)0.0498 (9)0.0895 (11)0.0002 (7)0.0083 (8)0.0141 (8)
O70.0671 (10)0.0522 (9)0.0904 (12)0.0080 (7)0.0223 (8)0.0041 (8)
Geometric parameters (Å, º) top
C1—O11.334 (3)C13—N31.350 (3)
C1—N11.336 (3)C13—C141.522 (3)
C1—C21.382 (4)C14—O51.423 (2)
C2—C31.369 (4)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—N21.326 (4)C15—O51.367 (2)
C3—O21.342 (3)C15—C201.380 (3)
C4—N11.315 (3)C15—C161.394 (3)
C4—N21.317 (3)C16—C171.376 (3)
C4—O31.363 (3)C16—Cl11.721 (2)
C5—O11.433 (4)C17—C181.379 (4)
C5—H5A0.9600C17—H170.9300
C5—H5B0.9600C18—C191.368 (4)
C5—H5C0.9600C18—Cl21.737 (2)
C6—O21.415 (5)C19—C201.381 (3)
C6—H6A0.9600C19—H190.9300
C6—H6B0.9600C20—H200.9300
C6—H6C0.9600C21—N31.465 (3)
C7—C121.368 (3)C21—C221.466 (4)
C7—C81.377 (3)C21—C231.531 (3)
C7—O31.395 (3)C21—H210.9800
C8—C91.376 (3)C22—H22A0.9600
C8—H80.9300C22—H22B0.9600
C9—C101.392 (3)C22—H22C0.9600
C9—H90.9300C23—O71.199 (3)
C10—C111.378 (3)C23—O61.321 (2)
C10—N31.439 (3)C24—O61.454 (3)
C11—C121.383 (3)C24—H24A0.9600
C11—H110.9300C24—H24B0.9600
C12—H120.9300C24—H24C0.9600
C13—O41.216 (2)
O1—C1—N1118.8 (2)H14A—C14—H14B108.1
O1—C1—C2118.8 (2)O5—C15—C20125.74 (18)
N1—C1—C2122.4 (3)O5—C15—C16116.07 (19)
C3—C2—C1116.1 (2)C20—C15—C16118.2 (2)
C3—C2—H2121.9C17—C16—C15121.3 (2)
C1—C2—H2121.9C17—C16—Cl1119.07 (17)
N2—C3—O2118.4 (3)C15—C16—Cl1119.64 (17)
N2—C3—C2123.6 (2)C16—C17—C18119.1 (2)
O2—C3—C2118.0 (3)C16—C17—H17120.5
N1—C4—N2130.0 (2)C18—C17—H17120.5
N1—C4—O3118.5 (2)C19—C18—C17120.7 (2)
N2—C4—O3111.5 (2)C19—C18—Cl2119.9 (2)
O1—C5—H5A109.5C17—C18—Cl2119.39 (19)
O1—C5—H5B109.5C18—C19—C20120.0 (3)
H5A—C5—H5B109.5C18—C19—H19120.0
O1—C5—H5C109.5C20—C19—H19120.0
H5A—C5—H5C109.5C15—C20—C19120.8 (2)
H5B—C5—H5C109.5C15—C20—H20119.6
O2—C6—H6A109.5C19—C20—H20119.6
O2—C6—H6B109.5N3—C21—C22115.3 (2)
H6A—C6—H6B109.5N3—C21—C23108.87 (17)
O2—C6—H6C109.5C22—C21—C23114.0 (2)
H6A—C6—H6C109.5N3—C21—H21105.9
H6B—C6—H6C109.5C22—C21—H21105.9
C12—C7—C8121.4 (2)C23—C21—H21105.9
C12—C7—O3116.8 (2)C21—C22—H22A109.5
C8—C7—O3121.4 (2)C21—C22—H22B109.5
C9—C8—C7119.2 (2)H22A—C22—H22B109.5
C9—C8—H8120.4C21—C22—H22C109.5
C7—C8—H8120.4H22A—C22—H22C109.5
C8—C9—C10119.9 (2)H22B—C22—H22C109.5
C8—C9—H9120.0O7—C23—O6124.5 (2)
C10—C9—H9120.0O7—C23—C21125.12 (18)
C11—C10—C9119.99 (19)O6—C23—C21110.36 (19)
C11—C10—N3121.04 (18)O6—C24—H24A109.5
C9—C10—N3118.97 (18)O6—C24—H24B109.5
C10—C11—C12119.8 (2)H24A—C24—H24B109.5
C10—C11—H11120.1O6—C24—H24C109.5
C12—C11—H11120.1H24A—C24—H24C109.5
C7—C12—C11119.6 (2)H24B—C24—H24C109.5
C7—C12—H12120.2C4—N1—C1114.2 (2)
C11—C12—H12120.2C4—N2—C3113.7 (2)
O4—C13—N3122.16 (19)C13—N3—C10122.15 (16)
O4—C13—C14120.86 (18)C13—N3—C21115.18 (17)
N3—C13—C14116.98 (17)C10—N3—C21122.20 (18)
O5—C14—C13110.13 (16)C1—O1—C5118.3 (2)
O5—C14—H14A109.6C3—O2—C6118.4 (3)
C13—C14—H14A109.6C4—O3—C7120.35 (18)
O5—C14—H14B109.6C15—O5—C14117.63 (16)
C13—C14—H14B109.6C23—O6—C24116.33 (18)
O1—C1—C2—C3179.1 (2)N2—C4—N1—C11.4 (4)
N1—C1—C2—C30.8 (4)O3—C4—N1—C1178.7 (2)
C1—C2—C3—N20.8 (4)O1—C1—N1—C4179.9 (2)
C1—C2—C3—O2179.8 (2)C2—C1—N1—C40.1 (3)
C12—C7—C8—C91.1 (3)N1—C4—N2—C31.4 (4)
O3—C7—C8—C9170.65 (19)O3—C4—N2—C3178.9 (2)
C7—C8—C9—C101.3 (3)O2—C3—N2—C4178.8 (2)
C8—C9—C10—C112.7 (3)C2—C3—N2—C40.2 (4)
C8—C9—C10—N3176.97 (18)O4—C13—N3—C10179.28 (19)
C9—C10—C11—C121.8 (3)C14—C13—N3—C101.8 (3)
N3—C10—C11—C12177.89 (19)O4—C13—N3—C218.4 (3)
C8—C7—C12—C112.0 (3)C14—C13—N3—C21170.50 (19)
O3—C7—C12—C11170.1 (2)C11—C10—N3—C13107.0 (2)
C10—C11—C12—C70.6 (3)C9—C10—N3—C1372.7 (3)
O4—C13—C14—O57.9 (3)C11—C10—N3—C2164.8 (3)
N3—C13—C14—O5171.06 (18)C9—C10—N3—C21115.5 (2)
O5—C15—C16—C17178.33 (17)C22—C21—N3—C13162.8 (3)
C20—C15—C16—C170.1 (3)C23—C21—N3—C1367.6 (3)
O5—C15—C16—Cl11.7 (2)C22—C21—N3—C1024.9 (3)
C20—C15—C16—Cl1179.85 (16)C23—C21—N3—C10104.8 (2)
C15—C16—C17—C180.4 (3)N1—C1—O1—C51.0 (4)
Cl1—C16—C17—C18179.63 (18)C2—C1—O1—C5178.9 (3)
C16—C17—C18—C190.4 (4)N2—C3—O2—C61.2 (4)
C16—C17—C18—Cl2179.73 (16)C2—C3—O2—C6179.7 (3)
C17—C18—C19—C200.0 (4)N1—C4—O3—C714.1 (3)
Cl2—C18—C19—C20179.26 (19)N2—C4—O3—C7168.1 (2)
O5—C15—C20—C19177.7 (2)C12—C7—O3—C4127.6 (2)
C16—C15—C20—C190.6 (3)C8—C7—O3—C460.3 (3)
C18—C19—C20—C150.6 (4)C20—C15—O5—C1411.7 (3)
N3—C21—C23—O720.9 (3)C16—C15—O5—C14169.97 (17)
C22—C21—C23—O7109.4 (3)C13—C14—O5—C1568.7 (2)
N3—C21—C23—O6159.17 (19)O7—C23—O6—C241.6 (3)
C22—C21—C23—O670.5 (3)C21—C23—O6—C24178.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.932.573.402 (3)150
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H23Cl2N3O7
Mr536.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2438 (9), 11.2405 (12), 14.2502 (15)
α, β, γ (°)85.178 (2), 78.702 (2), 80.032 (2)
V3)1273.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15581, 6204, 4390
Rint0.050
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.174, 1.06
No. of reflections6204
No. of parameters329
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.35

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS-97 (Sheldrick, 2008), SHELXL-97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O4i0.932.573.402 (3)149.8
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We gratefully acknowledge financial support of this work by the National Basic Research Program of China (2010CB126100) and the National Natural Science Foundation of China (Nos. 21172090 and 21002037). The research was supported in part by the PCSIRT (No. IRT0953) and the self-determined research funds of CCNU from the college's basic research and operation of MOE (No. CCNU10A01007).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGozzo, F. & Garlaschelli, L. (1985). Pestic. Sci. 16, 227–286.  CrossRef Web of Science Google Scholar
First citationJin, C. F., Liang, Y. J., He, H. W. & Fu, L. W. (2011). Eur. J. Med. Chem. 46, 429–432.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds