organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis[(1H-imidazol-1-yl)meth­yl]-2,2′-(disulfanedi­yl)dianiline

aNational Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058
*Correspondence e-mail: ychorng@cc.ncue.edu.tw

(Received 1 June 2012; accepted 4 June 2012; online 13 June 2012)

The symmetrical title compound, C20H20N6S2, contains a disulfide bond of 2.0884 (6) Å. The C—S—S—C torsion angle is −59.57 (7)°. In the crystal, classical N—H⋯N and non-classical C—H⋯N hydrogen bonds link the compounds into chains along the a axis.

Related literature

For transition metal complexes having related ligands, see: Hsieh et al. (2009a[Hsieh, C.-C., Chao, W.-J. & Horng, Y.-C. (2009a). Inorg. Chem. Commun. 12, 778-781.],b[Hsieh, C.-C., Chao, W.-J., Horng, Y.-C. & Lee, H. M. (2009b). J. Chin. Chem. Soc. 56, 435-442.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N6S2

  • Mr = 408.56

  • Monoclinic, P 21 /c

  • a = 11.2009 (10) Å

  • b = 11.6067 (10) Å

  • c = 15.5230 (14) Å

  • β = 97.162 (2)°

  • V = 2002.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.38 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.954

  • 23330 measured reflections

  • 4970 independent reflections

  • 3844 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.128

  • S = 0.96

  • 4970 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H22⋯N4i 0.818 (17) 2.252 (17) 2.9825 (19) 148.9 (15)
C1—H1⋯N2ii 0.93 2.58 3.448 (2) 155
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Comment top

In our research, we have focused on the synthesis of low-molecular-weight complexes, which exhibited the structural and functional features of the active sites in particular enzymes, such as Ni-containing methyl coenzyme M reductase (Hsieh et al., 2009b) and Fe-containing nitrile hydratase (Hsieh et al., 2009a). The synthesis and crystal structure determination of the title compound are reported here. This compound will be used as a coordination ligand in related studies.

The disulfide bond length is 2.0884 (6) Å and the C—S—S—C torsion angle is 59.56 (7)° (Fig. 1). In the crystal structure the compound does not exhibit crystallographic symmetry. Classical N—H···N and non-classical C—H···N hydrogen bonds (Table 1) link the compounds into one-dimensional chains along the a-axis (Fig. 2).

Related literature top

For transition metal complexes having related ligands, see: Hsieh et al. (2009a,b).

Experimental top

Pyrazole (1.0 g, 14.7 mmol) was dissolved in 50 ml CH2Cl2 and treated with formaldehyde (37%, 1.19 g, 14.7 mmol). After stirring at room temperature for 10 min, the mixture was added to a batch of 2-aminophenyl disulfide (1.82 g, 7.32 mmol) and stirred for a further 12 h. After completion of the reaction, the solution was extracted with distilled water. Portions of the CH2Cl2 extract were collected and dried using anhydrous MgSO4. The solvent was then removed under vacuum to afford a yellow powder (2.56 g, 86%). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a tetrahydrofuran solution of the compound at -4 °C.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding, with Caryl—H = 0.93 and Cmethylene—H = 0.97 Å; Uiso(H) = 1.2Ueq(C). N-bound H atoms were located in a difference Fourier map and freely refined (N5—H21 = 0.833 (17) Å and N6—H22 = 0.818 (17) Å.

Structure description top

In our research, we have focused on the synthesis of low-molecular-weight complexes, which exhibited the structural and functional features of the active sites in particular enzymes, such as Ni-containing methyl coenzyme M reductase (Hsieh et al., 2009b) and Fe-containing nitrile hydratase (Hsieh et al., 2009a). The synthesis and crystal structure determination of the title compound are reported here. This compound will be used as a coordination ligand in related studies.

The disulfide bond length is 2.0884 (6) Å and the C—S—S—C torsion angle is 59.56 (7)° (Fig. 1). In the crystal structure the compound does not exhibit crystallographic symmetry. Classical N—H···N and non-classical C—H···N hydrogen bonds (Table 1) link the compounds into one-dimensional chains along the a-axis (Fig. 2).

For transition metal complexes having related ligands, see: Hsieh et al. (2009a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids for the non-hydrogen atoms. The H atoms are depicted as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the one-dimensional hydrogen-bonded chain, showing the hydrogen bonds as dashed lines.
N,N'-Bis[(1H-imidazol-1-yl)methyl]-2,2'- (disulfanediyl)dianiline top
Crystal data top
C20H20N6S2F(000) = 840
Mr = 408.56Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.2009 (10) ÅCell parameters from 6226 reflections
b = 11.6067 (10) Åθ = 2.2–27.2°
c = 15.5230 (14) ŵ = 0.28 mm1
β = 97.162 (2)°T = 150 K
V = 2002.3 (3) Å3Block, yellow
Z = 40.38 × 0.32 × 0.24 mm
Data collection top
Bruker SMART APEXII
diffractometer
4970 independent reflections
Radiation source: fine-focus sealed tube3844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.888, Tmax = 0.954k = 1515
23330 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.1P)2 + 0.0208P]
where P = (Fo2 + 2Fc2)/3
4970 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C20H20N6S2V = 2002.3 (3) Å3
Mr = 408.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2009 (10) ŵ = 0.28 mm1
b = 11.6067 (10) ÅT = 150 K
c = 15.5230 (14) Å0.38 × 0.32 × 0.24 mm
β = 97.162 (2)°
Data collection top
Bruker SMART APEXII
diffractometer
4970 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3844 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.954Rint = 0.026
23330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.27 e Å3
4970 reflectionsΔρmin = 0.26 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02094 (3)0.08013 (3)0.76606 (3)0.03264 (13)
S20.01131 (3)0.25438 (3)0.79328 (3)0.03404 (13)
N30.20015 (10)0.01306 (11)1.07381 (8)0.0302 (3)
N10.36181 (11)0.17778 (11)0.86130 (8)0.0317 (3)
N40.14835 (12)0.08760 (11)1.04385 (10)0.0390 (3)
N20.47440 (12)0.20760 (14)0.84774 (10)0.0460 (4)
N60.10991 (11)0.15689 (12)0.97273 (8)0.0338 (3)
N50.21637 (11)0.02980 (11)0.82527 (8)0.0312 (3)
C70.33157 (12)0.05670 (13)0.87099 (10)0.0309 (3)
H7A0.33160.03920.93210.037*
H7B0.39230.00910.84910.037*
C80.13251 (13)0.12062 (13)1.06103 (10)0.0321 (3)
H8A0.05610.11121.08360.039*
H8B0.17680.18081.09460.039*
C10.30946 (13)0.00488 (16)1.12009 (10)0.0384 (4)
H10.36050.05121.14690.046*
C30.22890 (16)0.16789 (15)1.07264 (12)0.0446 (4)
H30.21820.24631.06220.053*
C20.33048 (15)0.12061 (16)1.12002 (11)0.0455 (4)
H20.39820.15941.14610.055*
C40.29052 (19)0.26996 (15)0.86760 (14)0.0490 (4)
H40.20980.26870.87620.059*
C50.3583 (2)0.36500 (17)0.85913 (13)0.0607 (6)
H50.33480.44170.86130.073*
C60.4712 (2)0.32236 (18)0.84645 (13)0.0595 (6)
H60.53650.36860.83810.071*
C130.16083 (13)0.25746 (12)0.84587 (10)0.0288 (3)
C150.19876 (12)0.00747 (12)0.73713 (9)0.0277 (3)
C140.19334 (12)0.21299 (12)0.93032 (9)0.0271 (3)
C160.09108 (13)0.04528 (12)0.69947 (10)0.0304 (3)
C90.31319 (13)0.22646 (13)0.96785 (10)0.0317 (3)
H90.33680.19821.02340.038*
C100.39688 (14)0.28116 (14)0.92343 (11)0.0372 (4)
H100.47540.29020.95000.045*
C110.36564 (16)0.32242 (15)0.84051 (12)0.0429 (4)
H110.42250.35780.81050.052*
C200.28490 (14)0.03762 (13)0.68293 (10)0.0342 (3)
H200.35580.07360.70630.041*
C170.07364 (16)0.06746 (13)0.61034 (11)0.0389 (4)
H170.00260.10230.58590.047*
C180.15999 (17)0.03861 (14)0.55792 (11)0.0433 (4)
H180.14780.05440.49870.052*
C190.26499 (16)0.01419 (14)0.59480 (11)0.0415 (4)
H190.32320.03430.55970.050*
C120.24702 (15)0.31009 (14)0.80253 (10)0.0382 (4)
H120.22510.33790.74660.046*
H220.0410 (15)0.1489 (14)0.9491 (11)0.029 (4)*
H210.1641 (15)0.0085 (15)0.8556 (11)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02746 (19)0.0298 (2)0.0386 (2)0.00133 (13)0.00418 (14)0.00020 (15)
S20.0400 (2)0.0265 (2)0.0330 (2)0.00832 (14)0.00588 (16)0.00215 (14)
N30.0269 (6)0.0364 (7)0.0274 (6)0.0039 (5)0.0033 (5)0.0034 (5)
N10.0289 (6)0.0306 (7)0.0343 (7)0.0044 (5)0.0016 (5)0.0033 (5)
N40.0324 (7)0.0366 (7)0.0478 (8)0.0018 (5)0.0038 (6)0.0016 (6)
N20.0330 (7)0.0521 (9)0.0504 (9)0.0144 (6)0.0048 (6)0.0143 (7)
N60.0277 (6)0.0436 (8)0.0283 (7)0.0016 (5)0.0029 (5)0.0089 (5)
N50.0277 (6)0.0371 (7)0.0282 (6)0.0087 (5)0.0018 (5)0.0003 (5)
C70.0282 (7)0.0285 (7)0.0346 (8)0.0019 (5)0.0018 (6)0.0058 (6)
C80.0311 (7)0.0373 (8)0.0278 (7)0.0064 (6)0.0034 (6)0.0037 (6)
C10.0323 (7)0.0538 (10)0.0279 (8)0.0103 (7)0.0009 (6)0.0002 (7)
C30.0440 (9)0.0375 (9)0.0533 (11)0.0108 (7)0.0104 (8)0.0060 (8)
C20.0422 (9)0.0565 (11)0.0370 (9)0.0210 (8)0.0023 (7)0.0054 (8)
C40.0564 (11)0.0355 (9)0.0553 (12)0.0075 (8)0.0083 (9)0.0083 (8)
C50.0962 (17)0.0302 (9)0.0521 (12)0.0047 (10)0.0055 (11)0.0059 (8)
C60.0685 (13)0.0504 (11)0.0531 (11)0.0337 (10)0.0175 (10)0.0168 (9)
C130.0360 (7)0.0219 (7)0.0275 (7)0.0029 (5)0.0001 (6)0.0020 (5)
C150.0316 (7)0.0211 (7)0.0296 (7)0.0043 (5)0.0005 (5)0.0017 (5)
C140.0308 (7)0.0230 (7)0.0272 (7)0.0027 (5)0.0025 (5)0.0017 (5)
C160.0340 (7)0.0235 (7)0.0318 (8)0.0052 (5)0.0033 (6)0.0024 (6)
C90.0328 (7)0.0318 (8)0.0295 (8)0.0011 (6)0.0006 (6)0.0012 (6)
C100.0331 (8)0.0364 (8)0.0422 (9)0.0037 (6)0.0050 (6)0.0063 (7)
C110.0450 (9)0.0420 (10)0.0435 (10)0.0103 (7)0.0125 (7)0.0004 (7)
C200.0358 (7)0.0285 (8)0.0385 (9)0.0057 (6)0.0057 (6)0.0043 (6)
C170.0489 (9)0.0294 (8)0.0349 (9)0.0063 (7)0.0089 (7)0.0011 (6)
C180.0642 (11)0.0355 (9)0.0290 (8)0.0150 (8)0.0010 (7)0.0001 (7)
C190.0542 (10)0.0348 (8)0.0378 (9)0.0143 (7)0.0146 (7)0.0071 (7)
C120.0510 (9)0.0346 (8)0.0289 (8)0.0041 (7)0.0051 (7)0.0033 (6)
Geometric parameters (Å, º) top
S1—C161.7691 (16)C4—C51.355 (3)
S1—S22.0884 (6)C4—H40.9300
S2—C131.7697 (15)C5—C61.394 (3)
N3—C11.3562 (18)C5—H50.9300
N3—N41.3605 (18)C6—H60.9300
N3—C81.4609 (18)C13—C121.385 (2)
N1—C41.346 (2)C13—C141.414 (2)
N1—N21.3493 (18)C15—C201.401 (2)
N1—C71.4577 (19)C15—C161.4127 (19)
N4—C31.335 (2)C14—C91.4039 (19)
N2—C61.333 (3)C16—C171.397 (2)
N6—C141.3727 (19)C9—C101.385 (2)
N6—C81.4260 (19)C9—H90.9300
N6—H220.818 (17)C10—C111.377 (3)
N5—C151.3823 (18)C10—H100.9300
N5—C71.4276 (17)C11—C121.392 (2)
N5—H210.833 (17)C11—H110.9300
C7—H7A0.9700C20—C191.385 (2)
C7—H7B0.9700C20—H200.9300
C8—H8A0.9700C17—C181.381 (3)
C8—H8B0.9700C17—H170.9300
C1—C21.364 (2)C18—C191.385 (3)
C1—H10.9300C18—H180.9300
C3—C21.389 (3)C19—H190.9300
C3—H30.9300C12—H120.9300
C2—H20.9300
C16—S1—S2102.84 (5)C4—C5—H5127.6
C13—S2—S1104.05 (5)C6—C5—H5127.6
C1—N3—N4111.56 (13)N2—C6—C5112.10 (16)
C1—N3—C8128.45 (14)N2—C6—H6123.9
N4—N3—C8119.71 (12)C5—C6—H6123.9
C4—N1—N2112.46 (15)C12—C13—C14119.78 (14)
C4—N1—C7127.68 (14)C12—C13—S2117.49 (12)
N2—N1—C7119.81 (13)C14—C13—S2122.68 (11)
C3—N4—N3104.09 (14)N5—C15—C20121.57 (13)
C6—N2—N1103.56 (15)N5—C15—C16120.00 (13)
C14—N6—C8123.45 (13)C20—C15—C16118.43 (14)
C14—N6—H22120.0 (11)N6—C14—C9121.79 (13)
C8—N6—H22116.2 (11)N6—C14—C13120.39 (13)
C15—N5—C7122.80 (13)C9—C14—C13117.81 (13)
C15—N5—H21118.7 (12)C17—C16—C15119.77 (14)
C7—N5—H21116.1 (12)C17—C16—S1120.99 (12)
N5—C7—N1111.52 (12)C15—C16—S1119.24 (11)
N5—C7—H7A109.3C10—C9—C14121.06 (14)
N1—C7—H7A109.3C10—C9—H9119.5
N5—C7—H7B109.3C14—C9—H9119.5
N1—C7—H7B109.3C11—C10—C9121.06 (15)
H7A—C7—H7B108.0C11—C10—H10119.5
N6—C8—N3114.18 (12)C9—C10—H10119.5
N6—C8—H8A108.7C10—C11—C12118.55 (15)
N3—C8—H8A108.7C10—C11—H11120.7
N6—C8—H8B108.7C12—C11—H11120.7
N3—C8—H8B108.7C19—C20—C15120.38 (15)
H8A—C8—H8B107.6C19—C20—H20119.8
N3—C1—C2107.18 (15)C15—C20—H20119.8
N3—C1—H1126.4C18—C17—C16121.16 (16)
C2—C1—H1126.4C18—C17—H17119.4
N4—C3—C2112.12 (16)C16—C17—H17119.4
N4—C3—H3123.9C17—C18—C19119.00 (15)
C2—C3—H3123.9C17—C18—H18120.5
C1—C2—C3105.04 (14)C19—C18—H18120.5
C1—C2—H2127.5C18—C19—C20121.26 (16)
C3—C2—H2127.5C18—C19—H19119.4
N1—C4—C5107.17 (19)C20—C19—H19119.4
N1—C4—H4126.4C13—C12—C11121.72 (15)
C5—C4—H4126.4C13—C12—H12119.1
C4—C5—C6104.70 (18)C11—C12—H12119.1
C16—S1—S2—C1359.57 (8)C8—N6—C14—C13173.15 (14)
C1—N3—N4—C30.24 (18)C12—C13—C14—N6177.59 (14)
C8—N3—N4—C3174.71 (13)S2—C13—C14—N65.04 (19)
C4—N1—N2—C60.47 (19)C12—C13—C14—C91.3 (2)
C7—N1—N2—C6177.01 (14)S2—C13—C14—C9176.10 (10)
C15—N5—C7—N181.64 (17)N5—C15—C16—C17179.88 (13)
C4—N1—C7—N544.9 (2)C20—C15—C16—C170.9 (2)
N2—N1—C7—N5138.08 (14)N5—C15—C16—S10.91 (19)
C14—N6—C8—N380.33 (18)C20—C15—C16—S1178.09 (10)
C1—N3—C8—N6118.43 (16)S2—S1—C16—C1783.60 (12)
N4—N3—C8—N668.13 (18)S2—S1—C16—C1597.44 (11)
N4—N3—C1—C20.44 (18)N6—C14—C9—C10178.62 (14)
C8—N3—C1—C2174.31 (14)C13—C14—C9—C100.2 (2)
N3—N4—C3—C20.06 (19)C14—C9—C10—C111.1 (2)
N3—C1—C2—C30.44 (18)C9—C10—C11—C121.3 (2)
N4—C3—C2—C10.3 (2)N5—C15—C20—C19179.97 (14)
N2—N1—C4—C50.8 (2)C16—C15—C20—C191.0 (2)
C7—N1—C4—C5176.40 (15)C15—C16—C17—C180.1 (2)
N1—C4—C5—C60.8 (2)S1—C16—C17—C18178.89 (12)
N1—N2—C6—C50.1 (2)C16—C17—C18—C190.6 (2)
C4—C5—C6—N20.6 (2)C17—C18—C19—C200.4 (2)
S1—S2—C13—C12112.56 (11)C15—C20—C19—C180.4 (2)
S1—S2—C13—C1470.02 (12)C14—C13—C12—C111.1 (2)
C7—N5—C15—C2016.4 (2)S2—C13—C12—C11176.41 (13)
C7—N5—C15—C16164.62 (13)C10—C11—C12—C130.2 (3)
C8—N6—C14—C98.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H22···N4i0.818 (17)2.252 (17)2.9825 (19)148.9 (15)
C1—H1···N2ii0.932.583.448 (2)155
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC20H20N6S2
Mr408.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)11.2009 (10), 11.6067 (10), 15.5230 (14)
β (°) 97.162 (2)
V3)2002.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.38 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.888, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
23330, 4970, 3844
Rint0.026
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.128, 0.96
No. of reflections4970
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H22···N4i0.818 (17)2.252 (17)2.9825 (19)148.9 (15)
C1—H1···N2ii0.932.583.448 (2)155
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

We thank the National Science Council of Taiwan for financial support of this work.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsieh, C.-C., Chao, W.-J. & Horng, Y.-C. (2009a). Inorg. Chem. Commun. 12, 778–781.  Web of Science CSD CrossRef CAS Google Scholar
First citationHsieh, C.-C., Chao, W.-J., Horng, Y.-C. & Lee, H. M. (2009b). J. Chin. Chem. Soc. 56, 435–442.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds