organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-O-Ethyl­yunaconitine from the roots of Aconitum carmichaeli Debx.

aDepartment of Chemistry and Life Sciences, Leshan Teachers College, Leshan 614004, People's Republic of China
*Correspondence e-mail: liufang9029@163.com

(Received 11 May 2012; accepted 11 June 2012; online 30 June 2012)

The title compound [systematic name: (1α,3α,6α,8β,13β,14α,16β)-20-ethyl-8-eth­oxy-3,13-dihy­droxy-1,6,16-trimeth­oxy-4-(meth­oxy­meth­yl)aconitan-14-yl 4-meth­oxy­benzoate], C35H51NO10, was isolated from roots of Aconitum carmichaeli Debx., which is a typical C19-diterpenoid alkaloid. The mol­ecule has an aconitane carbon skeleton with four six-membered rings and two five-membered rings. The six-membered rings adopt chair conformations or boat conformations, while the five-membered rings have envelope conformations. Intra­molecular O—H⋯O and O—H⋯N hydrogen bonds help to stabilize the mol­ecular structure. Weak inter­molecular C—H⋯O inter­actions occur in the crystal structure.

Related literature

For a related structure, see: Wang et al. (2009[Wang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2009). The Alkaloids: Chemistry and Bioloy, Vol. 67, edited by G. A. Cordell, pp. 1-78. New York: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C35H51NO10

  • Mr = 645.77

  • Monoclinic, P 21

  • a = 10.0176 (4) Å

  • b = 11.7075 (5) Å

  • c = 14.3449 (5) Å

  • β = 92.528 (3)°

  • V = 1680.75 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.41 × 0.40 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • 7371 measured reflections

  • 3609 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.06

  • 3609 reflections

  • 438 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.89 (6) 2.32 (6) 2.932 (4) 126 (5)
O2—H2⋯N1 0.89 (6) 2.21 (6) 2.845 (4) 128 (5)
O5—H5⋯O7 0.91 (5) 1.99 (6) 2.562 (5) 120 (4)
C35—H35B⋯O2i 0.96 2.56 3.245 (5) 129
Symmetry code: (i) x-1, y, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 8-O-ethylyunaconitine, was previously isolated from Aconitumcarmichaeli Debx., and its structure was established from the NMR and MS data. In our recent investigation, it was isolation from the root of Aconitum carmichaeli Debx, collected in the E'mei Mountain, Sichuan Province of China in August 2010, and its crystal structure was determined (Wang et al., 2009).

The molecular structure of the title compound is shown in Fig. 1. Six-membered rings A (C1/C2/C3/C4/C5/C11) and D (C8/C9/C14/C13/C16/C15) adopt boat conformations; six-membered ring B (C7/C8/C9/C10/C11/C17) adopts chair conformation; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation, in which, the C14 and C11 act as the "envelope" respectively. The crystal structure contains intermolecular O—H···O and O—H···N hydrogen bonds. The intermolecular hydrogen bonds may be effective in the stabilization of the structure.

The absolute configuration of the title compound can not be confirmed by the present MoKa diffraction data. But it can be assumed to be the same as that reported for C19-diterpenoid alkaloids from the nature (Wang et al., 2009).

Related literature top

For a related structure, see: Wang et al. (2009).

Experimental top

Air-dried and powdered roots (600 g) were percolated with 0.1 M HCl (6 L). The obtained acid aqueous solution was basified with 10% aqueous NH4OH to pH 11 and then extracted with ethyl acetate (6 L × 3). Removal of the solvent under reduced pressure afforded the total crude alkaloids (5.2 g) as a yellowish amorphous powder, which was chromatographed over a silica gel column, eluting with cyclohexane-acetone (7:11:2) gradient system, to afford 8-O-ethylyunaconitine (256 mg). The crystals suitable for X-ray structure analysis was obtained by slow evaporation from an acetone solution at room temperature.

Refinement top

moiety Hydroxyl H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were located geometrically with C—H = 0.93–0.98 Å, and refined using a riding model with Uiso(H) =1.2Ueq(C). The absolute configuration has not been determined for the structure.

Structure description top

The title compound, 8-O-ethylyunaconitine, was previously isolated from Aconitumcarmichaeli Debx., and its structure was established from the NMR and MS data. In our recent investigation, it was isolation from the root of Aconitum carmichaeli Debx, collected in the E'mei Mountain, Sichuan Province of China in August 2010, and its crystal structure was determined (Wang et al., 2009).

The molecular structure of the title compound is shown in Fig. 1. Six-membered rings A (C1/C2/C3/C4/C5/C11) and D (C8/C9/C14/C13/C16/C15) adopt boat conformations; six-membered ring B (C7/C8/C9/C10/C11/C17) adopts chair conformation; six-membered heterocyclic ring E (C4/C5/C11/C17/N1/C19) adopts the same chair conformation; the five-membered rings C (C9/C10/C12/C13/C14) and F (C5/C6/C7/C17/C11) display an envelope conformation, in which, the C14 and C11 act as the "envelope" respectively. The crystal structure contains intermolecular O—H···O and O—H···N hydrogen bonds. The intermolecular hydrogen bonds may be effective in the stabilization of the structure.

The absolute configuration of the title compound can not be confirmed by the present MoKa diffraction data. But it can be assumed to be the same as that reported for C19-diterpenoid alkaloids from the nature (Wang et al., 2009).

For a related structure, see: Wang et al. (2009).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Molecular packing of the title compound.
(1α,3α,6α,8β,13β,14α,16β)-20-ethyl-8-ethoxy-3,13-dihydroxy-1,6,16- trimethoxy-4-(methoxymethyl)aconitan-14-yl 4-methoxybenzoate top
Crystal data top
C35H51NO10F(000) = 696
Mr = 645.77Dx = 1.276 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.7107 Å
a = 10.0176 (4) ÅCell parameters from 2465 reflections
b = 11.7075 (5) Åθ = 3.1–29.1°
c = 14.3449 (5) ŵ = 0.09 mm1
β = 92.528 (3)°T = 293 K
V = 1680.75 (11) Å3Block, colorless
Z = 20.41 × 0.40 × 0.38 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2756 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.031
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
Detector resolution: 16.0874 pixels mm-1h = 612
ω scansk = 1314
7371 measured reflectionsl = 1717
3609 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.155P]
where P = (Fo2 + 2Fc2)/3
3609 reflections(Δ/σ)max < 0.001
438 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C35H51NO10V = 1680.75 (11) Å3
Mr = 645.77Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.0176 (4) ŵ = 0.09 mm1
b = 11.7075 (5) ÅT = 293 K
c = 14.3449 (5) Å0.41 × 0.40 × 0.38 mm
β = 92.528 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2756 reflections with I > 2σ(I)
7371 measured reflectionsRint = 0.031
3609 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
3609 reflectionsΔρmin = 0.17 e Å3
438 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9158 (3)0.3357 (2)0.61833 (17)0.0491 (7)
O20.9122 (3)0.2281 (3)0.4337 (2)0.0669 (9)
H20.913 (6)0.209 (5)0.494 (4)0.10 (2)*
O30.3907 (3)0.1776 (2)0.49126 (19)0.0521 (7)
O40.3297 (3)0.2344 (2)0.73091 (18)0.0494 (7)
O50.6836 (3)0.4867 (3)0.9172 (2)0.0599 (8)
H50.680 (5)0.446 (5)0.971 (3)0.081 (18)*
O60.4041 (3)0.4066 (3)0.87839 (16)0.0475 (7)
O70.6399 (3)0.2797 (3)0.96522 (19)0.0672 (9)
O80.5552 (4)0.3419 (3)0.3044 (2)0.0729 (9)
O90.2353 (3)0.5058 (3)0.8094 (2)0.0594 (8)
O100.0418 (3)0.2759 (4)1.1522 (2)0.0881 (12)
N10.7470 (3)0.1413 (3)0.5736 (2)0.0465 (8)
C10.8099 (4)0.3994 (4)0.5738 (2)0.0451 (9)
H10.81120.47570.60180.054*
C20.8247 (5)0.4144 (4)0.4702 (3)0.0565 (11)
H2A0.76060.47070.44670.068*
H2B0.91350.44310.45940.068*
C30.8031 (4)0.3045 (4)0.4177 (3)0.0559 (11)
H30.80090.32390.35120.067*
C40.6623 (4)0.2487 (4)0.4374 (3)0.0474 (9)
C50.5815 (4)0.3212 (3)0.5059 (2)0.0418 (8)
H5A0.55150.39310.47690.050*
C60.4632 (4)0.2573 (3)0.5496 (2)0.0411 (8)
H60.39970.31510.56970.049*
C70.5253 (4)0.1991 (3)0.6387 (2)0.0403 (8)
H70.50670.11690.63760.048*
C80.4703 (4)0.2537 (3)0.7257 (2)0.0405 (8)
C90.4799 (4)0.3852 (3)0.7156 (2)0.0405 (9)
H90.40180.41420.67950.049*
C100.6107 (4)0.4228 (3)0.6692 (2)0.0372 (8)
H100.59210.49640.63870.045*
C110.6739 (3)0.3439 (3)0.5953 (2)0.0370 (8)
C120.7097 (4)0.4468 (4)0.7546 (2)0.0453 (9)
H12A0.78900.39980.75100.054*
H12B0.73650.52640.75560.054*
C130.6353 (4)0.4177 (4)0.8417 (3)0.0457 (9)
C140.4927 (4)0.4450 (3)0.8096 (2)0.0425 (9)
H140.48270.52760.80080.051*
C150.5436 (4)0.2116 (3)0.8176 (3)0.0464 (9)
H15A0.47590.19540.86210.056*
H15B0.58660.13970.80400.056*
C160.6492 (4)0.2893 (4)0.8665 (3)0.0493 (10)
H160.73800.26330.84980.059*
C170.6762 (4)0.2208 (3)0.6342 (2)0.0398 (8)
H170.71800.22000.69720.048*
C190.6822 (5)0.1301 (4)0.4802 (3)0.0539 (11)
H19A0.59640.09250.48450.065*
H19B0.73740.08410.44090.065*
C200.7676 (5)0.0285 (4)0.6163 (3)0.0635 (13)
H20A0.80170.02310.57010.076*
H20B0.68210.00100.63450.076*
C210.8631 (7)0.0297 (5)0.7004 (4)0.105 (2)
H21A0.93880.07660.68780.157*
H21B0.89250.04670.71410.157*
H21C0.81870.06010.75300.157*
C221.0347 (4)0.3991 (5)0.6345 (3)0.0698 (13)
H22A1.07030.42020.57590.105*
H22B1.09900.35340.66940.105*
H22C1.01570.46680.66930.105*
C230.5861 (5)0.2339 (4)0.3427 (3)0.0587 (11)
H23A0.499 (5)0.194 (4)0.343 (3)0.063 (13)*
H23B0.651 (4)0.192 (4)0.298 (3)0.054 (12)*
C240.4958 (8)0.3360 (7)0.2134 (4)0.118 (3)
H24A0.55390.29530.17350.177*
H24B0.48140.41190.18970.177*
H24C0.41180.29680.21510.177*
C250.2723 (5)0.2212 (5)0.4519 (4)0.0827 (16)
H25A0.22630.16250.41650.124*
H25B0.29180.28390.41160.124*
H25C0.21690.24740.50050.124*
C260.2866 (5)0.1196 (4)0.7395 (3)0.0647 (13)
H26A0.36290.07180.75640.078*
H26B0.24930.09350.67970.078*
C270.1869 (9)0.1074 (8)0.8093 (6)0.152 (4)
H27A0.11930.16480.79960.228*
H27B0.22870.11610.87040.228*
H27C0.14680.03310.80400.228*
C280.2758 (4)0.4412 (4)0.8697 (2)0.0443 (9)
C290.1965 (4)0.3935 (4)0.9440 (2)0.0457 (9)
C300.0640 (5)0.4273 (5)0.9512 (3)0.0725 (15)
H300.02660.47910.90830.087*
C310.0113 (5)0.3857 (6)1.0199 (4)0.0841 (18)
H310.10000.40831.02300.101*
C320.0418 (4)0.3107 (5)1.0848 (3)0.0608 (12)
C330.1710 (4)0.2724 (5)1.0780 (3)0.0645 (13)
H330.20630.21821.11960.077*
C340.2476 (4)0.3163 (4)1.0078 (3)0.0577 (11)
H340.33580.29261.00410.069*
C350.0086 (5)0.1992 (5)1.2220 (3)0.0764 (15)
H35A0.04230.13191.19290.115*
H35B0.06180.17841.26190.115*
H35C0.07940.23551.25820.115*
C360.6919 (7)0.1752 (5)1.0015 (4)0.100 (2)
H36A0.77640.15970.97510.149*
H36B0.63060.11440.98590.149*
H36C0.70380.18081.06810.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (15)0.0442 (16)0.0588 (15)0.0045 (13)0.0015 (12)0.0027 (14)
O20.0565 (19)0.077 (2)0.068 (2)0.0097 (19)0.0158 (15)0.0040 (19)
O30.0478 (16)0.0418 (16)0.0661 (16)0.0040 (13)0.0061 (13)0.0134 (14)
O40.0397 (14)0.0444 (15)0.0647 (16)0.0053 (13)0.0112 (12)0.0001 (14)
O50.068 (2)0.060 (2)0.0502 (16)0.0028 (17)0.0112 (14)0.0109 (16)
O60.0440 (14)0.0554 (17)0.0433 (13)0.0083 (14)0.0046 (11)0.0043 (13)
O70.086 (2)0.067 (2)0.0473 (15)0.0082 (19)0.0039 (15)0.0120 (15)
O80.099 (3)0.065 (2)0.0528 (16)0.001 (2)0.0128 (16)0.0016 (17)
O90.0577 (18)0.0659 (19)0.0540 (16)0.0144 (16)0.0042 (13)0.0077 (15)
O100.063 (2)0.122 (4)0.081 (2)0.006 (2)0.0232 (17)0.026 (2)
N10.054 (2)0.0347 (18)0.0518 (18)0.0082 (16)0.0081 (15)0.0010 (15)
C10.045 (2)0.040 (2)0.050 (2)0.0021 (18)0.0019 (16)0.0039 (18)
C20.058 (3)0.056 (3)0.056 (2)0.004 (2)0.0084 (19)0.009 (2)
C30.058 (3)0.063 (3)0.048 (2)0.003 (2)0.0096 (18)0.002 (2)
C40.051 (2)0.046 (2)0.0460 (19)0.000 (2)0.0048 (16)0.0061 (18)
C50.049 (2)0.0318 (19)0.0441 (18)0.0024 (18)0.0002 (16)0.0022 (17)
C60.0419 (19)0.0340 (19)0.0474 (19)0.0031 (17)0.0014 (15)0.0055 (17)
C70.043 (2)0.0269 (18)0.051 (2)0.0019 (16)0.0044 (16)0.0024 (16)
C80.0381 (19)0.033 (2)0.050 (2)0.0009 (16)0.0018 (15)0.0008 (17)
C90.041 (2)0.036 (2)0.0446 (19)0.0041 (17)0.0035 (15)0.0027 (16)
C100.0421 (19)0.0269 (18)0.0429 (17)0.0009 (16)0.0065 (15)0.0006 (15)
C110.0391 (19)0.0306 (18)0.0410 (17)0.0024 (16)0.0007 (14)0.0006 (15)
C120.046 (2)0.041 (2)0.050 (2)0.0084 (18)0.0030 (16)0.0012 (18)
C130.046 (2)0.046 (2)0.0450 (19)0.0033 (19)0.0018 (16)0.0037 (18)
C140.050 (2)0.0351 (19)0.0427 (19)0.0018 (18)0.0045 (16)0.0020 (17)
C150.049 (2)0.041 (2)0.050 (2)0.0055 (19)0.0087 (17)0.0095 (18)
C160.049 (2)0.051 (3)0.048 (2)0.005 (2)0.0001 (17)0.0098 (19)
C170.043 (2)0.0332 (19)0.0431 (18)0.0003 (17)0.0022 (15)0.0013 (16)
C190.060 (3)0.040 (2)0.063 (2)0.003 (2)0.016 (2)0.007 (2)
C200.074 (3)0.041 (2)0.077 (3)0.018 (2)0.018 (2)0.003 (2)
C210.139 (6)0.073 (4)0.100 (4)0.046 (4)0.024 (4)0.020 (3)
C220.046 (2)0.073 (3)0.091 (3)0.017 (3)0.003 (2)0.006 (3)
C230.070 (3)0.053 (3)0.052 (2)0.002 (3)0.001 (2)0.014 (2)
C240.181 (8)0.097 (5)0.071 (3)0.002 (6)0.042 (4)0.008 (4)
C250.081 (3)0.051 (3)0.112 (4)0.000 (3)0.047 (3)0.021 (3)
C260.064 (3)0.053 (3)0.079 (3)0.019 (2)0.016 (2)0.002 (2)
C270.167 (8)0.120 (6)0.175 (7)0.090 (6)0.083 (6)0.012 (6)
C280.051 (2)0.044 (2)0.0372 (18)0.0057 (19)0.0053 (16)0.0086 (18)
C290.043 (2)0.053 (2)0.0401 (17)0.0025 (19)0.0028 (15)0.0024 (18)
C300.052 (3)0.094 (4)0.072 (3)0.018 (3)0.004 (2)0.023 (3)
C310.049 (3)0.112 (5)0.092 (4)0.021 (3)0.014 (2)0.029 (4)
C320.053 (2)0.074 (3)0.055 (2)0.005 (3)0.0042 (19)0.005 (2)
C330.053 (3)0.083 (4)0.058 (2)0.007 (3)0.001 (2)0.015 (3)
C340.045 (2)0.073 (3)0.056 (2)0.012 (2)0.0083 (18)0.005 (2)
C350.084 (4)0.080 (4)0.066 (3)0.009 (3)0.016 (3)0.005 (3)
C360.139 (6)0.083 (4)0.074 (3)0.019 (4)0.023 (3)0.036 (3)
Geometric parameters (Å, º) top
O1—C11.425 (5)C12—C131.521 (5)
O1—C221.414 (5)C13—C141.516 (5)
O2—H20.89 (6)C13—C161.550 (6)
O2—C31.424 (5)C14—H140.9800
O3—C61.430 (4)C15—H15A0.9700
O3—C251.388 (6)C15—H15B0.9700
O4—C81.431 (4)C15—C161.541 (6)
O4—C261.419 (5)C16—H160.9800
O5—H50.91 (5)C17—H170.9800
O5—C131.419 (5)C19—H19A0.9700
O6—C141.429 (4)C19—H19B0.9700
O6—C281.348 (5)C20—H20A0.9700
O7—C161.427 (4)C20—H20B0.9700
O7—C361.419 (6)C20—C211.507 (7)
O8—C231.407 (6)C21—H21A0.9600
O8—C241.412 (6)C21—H21B0.9600
O9—C281.206 (5)C21—H21C0.9600
O10—C321.369 (5)C22—H22A0.9600
O10—C351.420 (6)C22—H22B0.9600
N1—C171.475 (5)C22—H22C0.9600
N1—C191.469 (5)C23—H23A0.99 (5)
N1—C201.466 (5)C23—H23B1.05 (4)
C1—H10.9800C24—H24A0.9600
C1—C21.511 (5)C24—H24B0.9600
C1—C111.553 (5)C24—H24C0.9600
C2—H2A0.9700C25—H25A0.9600
C2—H2B0.9700C25—H25B0.9600
C2—C31.502 (6)C25—H25C0.9600
C3—H30.9800C26—H26A0.9700
C3—C41.590 (6)C26—H26B0.9700
C4—C51.553 (5)C26—C271.452 (8)
C4—C191.528 (6)C27—H27A0.9600
C4—C231.539 (6)C27—H27B0.9600
C5—H5A0.9800C27—H27C0.9600
C5—C61.556 (5)C28—C291.468 (5)
C5—C111.571 (5)C29—C301.394 (6)
C6—H60.9800C29—C341.369 (6)
C6—C71.554 (5)C30—H300.9300
C7—H70.9800C30—C311.359 (7)
C7—C81.528 (5)C31—H310.9300
C7—C171.537 (5)C31—C321.370 (7)
C8—C91.549 (5)C32—C331.377 (6)
C8—C151.560 (5)C33—H330.9300
C9—H90.9800C33—C341.391 (6)
C9—C101.559 (5)C34—H340.9300
C9—C141.520 (5)C35—H35A0.9600
C10—H100.9800C35—H35B0.9600
C10—C111.561 (5)C35—H35C0.9600
C10—C121.568 (5)C36—H36A0.9600
C11—C171.545 (5)C36—H36B0.9600
C12—H12A0.9700C36—H36C0.9600
C12—H12B0.9700
C22—O1—C1113.9 (3)C16—C15—H15B107.5
C3—O2—H2107 (4)O7—C16—C13107.2 (3)
C25—O3—C6113.6 (3)O7—C16—C15109.4 (3)
C26—O4—C8117.3 (3)O7—C16—H16108.6
C13—O5—H5109 (3)C13—C16—H16108.6
C28—O6—C14117.3 (3)C15—C16—C13114.5 (3)
C36—O7—C16113.1 (4)C15—C16—H16108.6
C23—O8—C24113.2 (4)N1—C17—C7114.8 (3)
C32—O10—C35118.4 (4)N1—C17—C11112.1 (3)
C19—N1—C17112.9 (3)N1—C17—H17109.9
C20—N1—C17112.7 (3)C7—C17—C1199.8 (3)
C20—N1—C19110.4 (3)C7—C17—H17109.9
O1—C1—H1107.3C11—C17—H17109.9
O1—C1—C2113.5 (3)N1—C19—C4109.3 (3)
O1—C1—C11109.6 (3)N1—C19—H19A109.8
C2—C1—H1107.3N1—C19—H19B109.8
C2—C1—C11111.7 (3)C4—C19—H19A109.8
C11—C1—H1107.3C4—C19—H19B109.8
C1—C2—H2A109.2H19A—C19—H19B108.3
C1—C2—H2B109.2N1—C20—H20A108.9
H2A—C2—H2B107.9N1—C20—H20B108.9
C3—C2—C1112.1 (4)N1—C20—C21113.5 (4)
C3—C2—H2A109.2H20A—C20—H20B107.7
C3—C2—H2B109.2C21—C20—H20A108.9
O2—C3—C2111.4 (4)C21—C20—H20B108.9
O2—C3—H3106.7C20—C21—H21A109.5
O2—C3—C4113.2 (4)C20—C21—H21B109.5
C2—C3—H3106.7C20—C21—H21C109.5
C2—C3—C4111.8 (3)H21A—C21—H21B109.5
C4—C3—H3106.7H21A—C21—H21C109.5
C5—C4—C3112.3 (3)H21B—C21—H21C109.5
C19—C4—C3110.1 (4)O1—C22—H22A109.5
C19—C4—C5107.7 (3)O1—C22—H22B109.5
C19—C4—C23107.6 (4)O1—C22—H22C109.5
C23—C4—C3107.4 (3)H22A—C22—H22B109.5
C23—C4—C5111.6 (3)H22A—C22—H22C109.5
C4—C5—H5A111.1H22B—C22—H22C109.5
C4—C5—C6114.9 (3)O8—C23—C4109.6 (4)
C4—C5—C11107.7 (3)O8—C23—H23A104 (3)
C6—C5—H5A111.1O8—C23—H23B108 (2)
C6—C5—C11100.6 (3)C4—C23—H23A117 (2)
C11—C5—H5A111.1C4—C23—H23B107 (2)
O3—C6—C5117.0 (3)H23A—C23—H23B111 (4)
O3—C6—H6107.6O8—C24—H24A109.5
O3—C6—C7111.7 (3)O8—C24—H24B109.5
C5—C6—H6107.6O8—C24—H24C109.5
C7—C6—C5104.9 (3)H24A—C24—H24B109.5
C7—C6—H6107.6H24A—C24—H24C109.5
C6—C7—H7110.4H24B—C24—H24C109.5
C8—C7—C6110.1 (3)O3—C25—H25A109.5
C8—C7—H7110.4O3—C25—H25B109.5
C8—C7—C17110.9 (3)O3—C25—H25C109.5
C17—C7—C6104.6 (3)H25A—C25—H25B109.5
C17—C7—H7110.4H25A—C25—H25C109.5
O4—C8—C7111.6 (3)H25B—C25—H25C109.5
O4—C8—C9103.1 (3)O4—C26—H26A109.2
O4—C8—C15109.5 (3)O4—C26—H26B109.2
C7—C8—C9108.2 (3)O4—C26—C27112.0 (5)
C7—C8—C15112.7 (3)H26A—C26—H26B107.9
C9—C8—C15111.4 (3)C27—C26—H26A109.2
C8—C9—H9110.0C27—C26—H26B109.2
C8—C9—C10112.2 (3)C26—C27—H27A109.5
C10—C9—H9110.0C26—C27—H27B109.5
C14—C9—C8112.2 (3)C26—C27—H27C109.5
C14—C9—H9110.0H27A—C27—H27B109.5
C14—C9—C10102.1 (3)H27A—C27—H27C109.5
C9—C10—H10107.0H27B—C27—H27C109.5
C9—C10—C11119.7 (3)O6—C28—C29111.2 (3)
C9—C10—C12103.4 (3)O9—C28—O6123.0 (4)
C11—C10—H10107.0O9—C28—C29125.7 (4)
C11—C10—C12112.0 (3)C30—C29—C28119.5 (4)
C12—C10—H10107.0C34—C29—C28122.6 (4)
C1—C11—C5113.5 (3)C34—C29—C30117.9 (4)
C1—C11—C10105.8 (3)C29—C30—H30119.6
C10—C11—C5114.4 (3)C31—C30—C29120.8 (5)
C17—C11—C1117.6 (3)C31—C30—H30119.6
C17—C11—C597.8 (3)C30—C31—H31119.6
C17—C11—C10107.9 (3)C30—C31—C32120.8 (5)
C10—C12—H12A110.4C32—C31—H31119.6
C10—C12—H12B110.4O10—C32—C31116.0 (4)
H12A—C12—H12B108.6O10—C32—C33124.0 (4)
C13—C12—C10106.6 (3)C31—C32—C33120.0 (4)
C13—C12—H12A110.4C32—C33—H33120.6
C13—C12—H12B110.4C32—C33—C34118.7 (4)
O5—C13—C12109.6 (3)C34—C33—H33120.6
O5—C13—C14113.4 (3)C29—C34—C33121.8 (4)
O5—C13—C16110.6 (3)C29—C34—H34119.1
C12—C13—C16111.3 (3)C33—C34—H34119.1
C14—C13—C12101.1 (3)O10—C35—H35A109.5
C14—C13—C16110.4 (3)O10—C35—H35B109.5
O6—C14—C9115.9 (3)O10—C35—H35C109.5
O6—C14—C13109.2 (3)H35A—C35—H35B109.5
O6—C14—H14109.7H35A—C35—H35C109.5
C9—C14—H14109.7H35B—C35—H35C109.5
C13—C14—C9102.3 (3)O7—C36—H36A109.5
C13—C14—H14109.7O7—C36—H36B109.5
C8—C15—H15A107.5O7—C36—H36C109.5
C8—C15—H15B107.5H36A—C36—H36B109.5
H15A—C15—H15B107.0H36A—C36—H36C109.5
C16—C15—C8119.1 (3)H36B—C36—H36C109.5
C16—C15—H15A107.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.89 (6)2.32 (6)2.932 (4)126 (5)
O2—H2···N10.89 (6)2.21 (6)2.845 (4)128 (5)
O5—H5···O70.91 (5)1.99 (6)2.562 (5)120 (4)
C35—H35B···O2i0.962.563.245 (5)129
Symmetry code: (i) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC35H51NO10
Mr645.77
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.0176 (4), 11.7075 (5), 14.3449 (5)
β (°) 92.528 (3)
V3)1680.75 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.40 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7371, 3609, 2756
Rint0.031
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.06
No. of reflections3609
No. of parameters438
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.89 (6)2.32 (6)2.932 (4)126 (5)
O2—H2···N10.89 (6)2.21 (6)2.845 (4)128 (5)
O5—H5···O70.91 (5)1.99 (6)2.562 (5)120 (4)
C35—H35B···O2i0.962.563.245 (5)129
Symmetry code: (i) x1, y, z+1.
 

Acknowledgements

This project was supported by the Leshan Science and Technology Administration of China (12SZD128).

References

First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, F.-P., Chen, Q.-H. & Liu, X.-Y. (2009). The Alkaloids: Chemistry and Bioloy, Vol. 67, edited by G. A. Cordell, pp. 1–78. New York: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds