metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[1,3-bis­­(di­phenyl­phosphan­yl)propane]­copper(I) tetra­chlorido­gallate(III)

aInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, People's Republic of China, and bDepartment of Applied Chemistry, School of Petrochemical Engineering, Changzhou University, Jiangsu 213164, People's Republic of China
*Correspondence e-mail: zhangqf@ahut.edu.cn

(Received 27 May 2012; accepted 28 May 2012; online 2 June 2012)

In the title compound, [Cu(C27H26P2)2][GaCl4], the CuI atom in the complex cation is P,P′-chelated by two 1,3-bis­(diphenyl­phosphan­yl)propane ligands in a distorted tetra­hedral geometry, while the GaIII cation is coordinated by four chloride anions in a distorted tetra­hedral geometry. In the crystal, weak C—H⋯π inter­actions occur between adjacent complex cations.

Related literature

For background to copper(I) phosphane compounds, see: Bownaker et al. (1995[Bownaker, G. A., Hart, R. D., Jone, B. E., Skelton, B. W. & White, A. H. (1995). J. Chem. Soc., Dalton Trans. pp. 3063-3070.]); Nicola et al. (2005[Nicola, C. D., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta 358, 720-734.]); Lobana et al. (2009[Lobana, T. S., Khanna, S., Hundal, G., Butcher, R. J. & Castineiras, A. (2009). Polyhedron 28, 3899-3906.]). For related structures, see: Xie et al. (1997[Xie, W.-G., Wang, R.-W., Xiong, Y.-F., Yang, R.-N., Wang, D.-M., Jin, D.-M., Chen, L.-R. & Luo, B.-S. (1997). Chin. J. Struct. Chem. 16, 293-297.]); Comba et al. (1999[Comba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777-783.]); Rudawska & Ptasiewicz-Bak (2003[Rudawska, K. & Ptasiewicz-Bak, H. (2003). J. Coord. Chem. 56, 1567-1574.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C27H26P2)2][GaCl4]

  • Mr = 1099.90

  • Monoclinic, P 21 /n

  • a = 21.077 (4) Å

  • b = 11.200 (2) Å

  • c = 22.605 (5) Å

  • β = 99.424 (3)°

  • V = 5264.3 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 296 K

  • 0.40 × 0.25 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.629, Tmax = 0.894

  • 32381 measured reflections

  • 12058 independent reflections

  • 6644 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.159

  • S = 1.04

  • 12058 reflections

  • 577 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21–C26 and C81–C86 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.93 2.77 3.702 (8) 175
C55—H55⋯Cg2ii 0.93 2.66 3.526 (5) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There are a number of published studies of solution equilibria and structures that involve copper(I) compounds with phosphane ligands with copper(I)-to-ligand ratios (Bownaker et al., 1995). Mononuclear phosphane-copper(I) complexes with chelating and bridging phosphine ligands in various coordination modes have been well isolated and structurally characterized (Lobana et al., 2009). For examples, copper(I) nitrate and halide complexes of stoichiometry Cu(dppm)X (dppm = bis(diphenylphosphanyl)methane), Cu2(dppe)3X2 (dppe = bis(diphenylphosphanyl)- ethane), Cu(dppe)2X, and Cu(dppp)X (dppp = bis(diphenylphosphanyl)propane) (X = NO3, Cl, Br, and I) have been prepared and structurally characterized (Nicola et al., 2005; Comba et al., 1999; Xie et al., 1997). It appears that the copper(I) complexes could be stabilized by organic phosphane ligands. Herein, we reported that an anionic complex, [Cu(dppp)2][GaCl4], with tetrahedral copper(I) in the [Cu(dppp)2]+ cation and tetrahedral gallium(III) in the [GaCl4]- anion.

The title compound crystallizes in the monoclinic space group P21/c. The molecular structure consists of the cationic [Cu(dppp)2]+ unit and the anionic [GaCl4]- unit (Fig.1). The central copper(I) atom is coordinated by four phosphorus atoms from two dppp ligands. The strain of six-membered chelating ring is observed from the two low P—Cu—P bond angles of P1—Cu1—P2 = 99.18 (4)° and P3—Cu1—P4 = 98.34 (4)°, compared to the normal bond angle of 109°. The CuP2C3 skeleton is not planar because of the distorted tetrahedrally coordinated copper atom with the average Cu—P bond length of 2.3168 (11) Å, which is similar to that found in [Cu(dppp)2][ClO4] (Xie et al., 1997) and [Cu(dppp)2][BF4] (Comba et al., 1999). In the tetrahedral [GaCl4]- anion, the average Ga—Cl bond length is 2.152 (2) Å and the average Cl—Ga—Cl bond angles is 109.45 (10)°, which are compared with those in the orthorhombic [Bu4N][GaCl4] salt (av. Ga—Cl = 2.169 (2) Å and av. Cl—Ga—Cl = 109.9 (1)°) (Rudawska & Ptasiewicz-Bak, 2003).

Related literature top

For background to copper(I) phosphane compounds, see: Bownaker et al. (1995); Nicola et al. (2005); Lobana et al. (2009). For related structures, see Xie et al. (1997); Comba et al. (1999); Rudawska & Ptasiewicz-Bak (2003).

Experimental top

To a suspension of CuCl (75 mg, 0.75 mmol) in CH3CN (10 mL) was added with the dppp (618 mg, 1.5 mmol) solution in CH2Cl2 (10 mL) and GaCl3 (88 mg, 0.75 mmol). After the mixture was stirred for 6 h at room temperature, the colorless solution with a little white precipitate was obtained. After filtration, colorless block crystals were formed by the slow evaporation of the filtrate at room temperature in two days. Analysis, calculated C54H52Cl4P4GaCu: C 58.96, H 4.76%; found C 58.43, H 4.69%.

Refinement top

H atoms were positioned and refined as riding atoms with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

There are a number of published studies of solution equilibria and structures that involve copper(I) compounds with phosphane ligands with copper(I)-to-ligand ratios (Bownaker et al., 1995). Mononuclear phosphane-copper(I) complexes with chelating and bridging phosphine ligands in various coordination modes have been well isolated and structurally characterized (Lobana et al., 2009). For examples, copper(I) nitrate and halide complexes of stoichiometry Cu(dppm)X (dppm = bis(diphenylphosphanyl)methane), Cu2(dppe)3X2 (dppe = bis(diphenylphosphanyl)- ethane), Cu(dppe)2X, and Cu(dppp)X (dppp = bis(diphenylphosphanyl)propane) (X = NO3, Cl, Br, and I) have been prepared and structurally characterized (Nicola et al., 2005; Comba et al., 1999; Xie et al., 1997). It appears that the copper(I) complexes could be stabilized by organic phosphane ligands. Herein, we reported that an anionic complex, [Cu(dppp)2][GaCl4], with tetrahedral copper(I) in the [Cu(dppp)2]+ cation and tetrahedral gallium(III) in the [GaCl4]- anion.

The title compound crystallizes in the monoclinic space group P21/c. The molecular structure consists of the cationic [Cu(dppp)2]+ unit and the anionic [GaCl4]- unit (Fig.1). The central copper(I) atom is coordinated by four phosphorus atoms from two dppp ligands. The strain of six-membered chelating ring is observed from the two low P—Cu—P bond angles of P1—Cu1—P2 = 99.18 (4)° and P3—Cu1—P4 = 98.34 (4)°, compared to the normal bond angle of 109°. The CuP2C3 skeleton is not planar because of the distorted tetrahedrally coordinated copper atom with the average Cu—P bond length of 2.3168 (11) Å, which is similar to that found in [Cu(dppp)2][ClO4] (Xie et al., 1997) and [Cu(dppp)2][BF4] (Comba et al., 1999). In the tetrahedral [GaCl4]- anion, the average Ga—Cl bond length is 2.152 (2) Å and the average Cl—Ga—Cl bond angles is 109.45 (10)°, which are compared with those in the orthorhombic [Bu4N][GaCl4] salt (av. Ga—Cl = 2.169 (2) Å and av. Cl—Ga—Cl = 109.9 (1)°) (Rudawska & Ptasiewicz-Bak, 2003).

For background to copper(I) phosphane compounds, see: Bownaker et al. (1995); Nicola et al. (2005); Lobana et al. (2009). For related structures, see Xie et al. (1997); Comba et al. (1999); Rudawska & Ptasiewicz-Bak (2003).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids at the 50% probability level.
Bis[1,3-bis(diphenylphosphanyl)propane]copper(I) tetrachloridogallate(III) top
Crystal data top
[Cu(C27H26P2)2][GaCl4]F(000) = 2256
Mr = 1099.90Dx = 1.388 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2316 reflections
a = 21.077 (4) Åθ = 2.3–26.6°
b = 11.200 (2) ŵ = 1.28 mm1
c = 22.605 (5) ÅT = 296 K
β = 99.424 (3)°Block, colorless
V = 5264.3 (18) Å30.40 × 0.25 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12058 independent reflections
Radiation source: fine-focus sealed tube6644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2427
Tmin = 0.629, Tmax = 0.894k = 1414
32381 measured reflectionsl = 2915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0702P)2]
where P = (Fo2 + 2Fc2)/3
12058 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
[Cu(C27H26P2)2][GaCl4]V = 5264.3 (18) Å3
Mr = 1099.90Z = 4
Monoclinic, P21/nMo Kα radiation
a = 21.077 (4) ŵ = 1.28 mm1
b = 11.200 (2) ÅT = 296 K
c = 22.605 (5) Å0.40 × 0.25 × 0.09 mm
β = 99.424 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
12058 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6644 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.894Rint = 0.052
32381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.04Δρmax = 0.85 e Å3
12058 reflectionsΔρmin = 0.76 e Å3
577 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.26361 (2)0.61161 (4)0.99604 (2)0.03896 (14)
P10.20270 (4)0.69588 (8)0.91188 (5)0.0413 (2)
P20.19750 (5)0.65483 (9)1.06579 (5)0.0460 (3)
P30.36310 (5)0.69750 (8)1.02915 (5)0.0450 (3)
P40.29595 (5)0.41400 (8)0.99656 (5)0.0428 (3)
Ga20.49789 (3)0.46820 (5)0.29884 (3)0.0752 (2)
Cl10.47870 (13)0.4662 (3)0.38878 (12)0.2017 (13)
Cl20.59810 (7)0.42905 (15)0.30020 (7)0.0989 (5)
Cl30.48115 (8)0.64747 (16)0.26337 (13)0.1572 (10)
Cl40.43692 (9)0.34578 (17)0.24248 (12)0.1529 (9)
C10.15046 (19)0.8150 (3)0.93223 (19)0.0516 (10)
H1A0.17720.88330.94580.062*
H1B0.12160.83910.89630.062*
C20.11017 (18)0.7853 (4)0.98002 (19)0.0547 (11)
H2A0.09160.70660.97190.066*
H2B0.07500.84200.97720.066*
C30.1471 (2)0.7874 (4)1.0436 (2)0.0599 (11)
H3A0.11650.79581.07100.072*
H3B0.17450.85751.04810.072*
C40.41775 (18)0.5977 (3)1.0782 (2)0.0574 (12)
H4A0.46040.63281.08490.069*
H4B0.40330.59241.11670.069*
C50.42229 (18)0.4713 (3)1.0534 (2)0.0580 (12)
H5A0.46070.43341.07480.070*
H5B0.42720.47691.01160.070*
C60.36415 (18)0.3912 (3)1.05820 (18)0.0505 (10)
H6A0.34980.40691.09610.061*
H6B0.37750.30831.05830.061*
C110.24101 (18)0.7707 (4)0.85571 (18)0.0496 (10)
C120.2625 (2)0.8883 (4)0.8629 (2)0.0743 (14)
H120.25620.93030.89700.089*
C130.2929 (3)0.9441 (6)0.8207 (3)0.096 (2)
H130.30541.02360.82570.115*
C140.3042 (3)0.8823 (7)0.7721 (4)0.104 (2)
H140.32580.91930.74430.125*
C150.2846 (2)0.7664 (6)0.7630 (2)0.0847 (16)
H150.29230.72520.72920.102*
C160.2532 (2)0.7110 (4)0.8047 (2)0.0611 (12)
H160.23990.63220.79850.073*
C210.14454 (17)0.5972 (3)0.86631 (17)0.0428 (9)
C220.14099 (19)0.4790 (3)0.88233 (19)0.0518 (10)
H220.16870.44930.91530.062*
C230.0954 (2)0.4032 (4)0.8488 (2)0.0655 (13)
H230.09260.32370.85990.079*
C240.0555 (2)0.4459 (4)0.8002 (2)0.0692 (13)
H240.02530.39580.77810.083*
C250.0598 (2)0.5641 (4)0.7834 (2)0.0666 (13)
H250.03280.59300.74970.080*
C260.10338 (18)0.6381 (4)0.81616 (18)0.0559 (11)
H260.10560.71750.80470.067*
C310.2376 (2)0.6914 (4)1.14128 (19)0.0567 (11)
C320.2286 (3)0.7988 (5)1.1707 (2)0.0942 (18)
H320.20010.85551.15170.113*
C330.2614 (4)0.8213 (7)1.2271 (3)0.122 (3)
H330.25550.89341.24590.147*
C340.3018 (4)0.7398 (7)1.2553 (3)0.115 (2)
H340.32370.75641.29350.138*
C350.3119 (3)0.6313 (6)1.2289 (2)0.0916 (18)
H350.33940.57451.24930.110*
C360.2799 (2)0.6096 (4)1.1717 (2)0.0649 (12)
H360.28700.53801.15310.078*
C410.13728 (18)0.5439 (4)1.07994 (19)0.0514 (10)
C420.1243 (2)0.5200 (5)1.1367 (2)0.0769 (15)
H420.14600.56061.16980.092*
C430.0779 (3)0.4342 (6)1.1436 (3)0.099 (2)
H430.06990.41671.18190.119*
C440.0448 (2)0.3763 (5)1.0965 (3)0.0865 (17)
H440.01410.31961.10230.104*
C450.0561 (2)0.4005 (4)1.0402 (3)0.0734 (14)
H450.03260.36191.00730.088*
C460.1030 (2)0.4834 (4)1.0320 (2)0.0598 (11)
H460.11130.49830.99360.072*
C510.36291 (18)0.8328 (3)1.07411 (19)0.0499 (10)
C520.3953 (2)0.8472 (4)1.1319 (2)0.0687 (13)
H520.42020.78531.15070.082*
C530.3906 (2)0.9544 (4)1.1619 (2)0.0781 (15)
H530.41230.96281.20090.094*
C540.3552 (2)1.0470 (4)1.1357 (3)0.0768 (15)
H540.35231.11781.15660.092*
C550.3237 (2)1.0344 (4)1.0779 (3)0.0794 (15)
H550.29981.09771.05920.095*
C560.3272 (2)0.9281 (4)1.0473 (2)0.0633 (12)
H560.30530.92051.00820.076*
C610.41146 (17)0.7433 (3)0.97288 (19)0.0498 (10)
C620.4624 (2)0.8252 (4)0.9865 (2)0.0701 (13)
H620.47240.85731.02490.084*
C630.4974 (2)0.8575 (4)0.9422 (3)0.0820 (16)
H630.53050.91290.95080.098*
C640.4840 (2)0.8093 (5)0.8859 (3)0.0754 (14)
H640.50800.83130.85660.090*
C650.4352 (2)0.7288 (5)0.8733 (2)0.0738 (14)
H650.42610.69550.83520.089*
C660.39951 (19)0.6964 (4)0.9160 (2)0.0601 (12)
H660.36640.64140.90630.072*
C710.32982 (18)0.3581 (4)0.93295 (19)0.0513 (10)
C720.3667 (2)0.2540 (5)0.9363 (2)0.0847 (16)
H720.37190.20790.97100.102*
C730.3957 (3)0.2188 (7)0.8882 (3)0.116 (3)
H730.42080.15020.89110.140*
C740.3872 (3)0.2847 (7)0.8368 (3)0.106 (2)
H740.40710.26160.80480.127*
C750.3500 (3)0.3833 (6)0.8322 (2)0.0883 (17)
H750.34430.42740.79680.106*
C760.3203 (2)0.4198 (4)0.8791 (2)0.0621 (12)
H760.29370.48650.87450.075*
C810.23877 (18)0.2965 (3)1.00825 (19)0.0466 (9)
C820.2207 (2)0.2798 (4)1.0643 (2)0.0596 (11)
H820.23950.32511.09690.072*
C830.1746 (3)0.1953 (4)1.0710 (3)0.0769 (14)
H830.16350.18261.10860.092*
C840.1448 (2)0.1297 (4)1.0230 (3)0.0789 (16)
H840.11340.07411.02800.095*
C850.1614 (2)0.1466 (4)0.9687 (3)0.0690 (14)
H850.14090.10310.93600.083*
C860.20858 (19)0.2280 (3)0.9610 (2)0.0570 (11)
H860.22030.23690.92330.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0391 (2)0.0343 (2)0.0418 (3)0.00349 (18)0.0020 (2)0.0011 (2)
P10.0429 (5)0.0365 (5)0.0425 (6)0.0022 (4)0.0011 (4)0.0055 (4)
P20.0477 (6)0.0460 (6)0.0441 (6)0.0099 (4)0.0070 (5)0.0008 (5)
P30.0404 (5)0.0371 (5)0.0540 (7)0.0011 (4)0.0030 (5)0.0014 (5)
P40.0486 (6)0.0330 (5)0.0459 (6)0.0049 (4)0.0053 (5)0.0012 (4)
Ga20.0661 (3)0.0693 (4)0.0929 (5)0.0040 (3)0.0211 (3)0.0132 (3)
Cl10.181 (2)0.303 (3)0.148 (2)0.065 (2)0.1092 (19)0.041 (2)
Cl20.0807 (9)0.1157 (12)0.1036 (12)0.0257 (8)0.0252 (9)0.0116 (9)
Cl30.0886 (11)0.0875 (11)0.281 (3)0.0012 (9)0.0143 (15)0.0303 (15)
Cl40.1225 (14)0.1156 (14)0.210 (2)0.0219 (11)0.0029 (15)0.0690 (15)
C10.057 (2)0.041 (2)0.055 (3)0.0115 (18)0.002 (2)0.0033 (19)
C20.050 (2)0.051 (2)0.061 (3)0.0162 (19)0.003 (2)0.000 (2)
C30.062 (3)0.057 (3)0.063 (3)0.020 (2)0.018 (2)0.001 (2)
C40.047 (2)0.044 (2)0.074 (3)0.0046 (18)0.012 (2)0.005 (2)
C50.047 (2)0.050 (2)0.073 (3)0.0144 (19)0.003 (2)0.000 (2)
C60.060 (2)0.038 (2)0.050 (2)0.0100 (18)0.000 (2)0.0004 (18)
C110.043 (2)0.055 (2)0.047 (2)0.0014 (18)0.0035 (19)0.013 (2)
C120.073 (3)0.066 (3)0.081 (4)0.018 (3)0.005 (3)0.016 (3)
C130.087 (4)0.089 (4)0.110 (5)0.028 (3)0.013 (4)0.039 (4)
C140.067 (3)0.133 (6)0.116 (6)0.009 (4)0.026 (4)0.064 (5)
C150.063 (3)0.130 (5)0.064 (3)0.019 (3)0.021 (3)0.025 (4)
C160.053 (2)0.073 (3)0.057 (3)0.001 (2)0.010 (2)0.017 (2)
C210.043 (2)0.047 (2)0.038 (2)0.0015 (16)0.0036 (17)0.0028 (17)
C220.055 (2)0.047 (2)0.052 (3)0.0027 (19)0.006 (2)0.0012 (19)
C230.073 (3)0.046 (2)0.075 (3)0.010 (2)0.004 (3)0.009 (2)
C240.056 (3)0.079 (3)0.069 (3)0.009 (2)0.000 (3)0.021 (3)
C250.053 (3)0.082 (3)0.059 (3)0.005 (2)0.009 (2)0.003 (3)
C260.050 (2)0.063 (3)0.051 (3)0.0043 (19)0.005 (2)0.014 (2)
C310.060 (3)0.062 (3)0.047 (3)0.007 (2)0.009 (2)0.010 (2)
C320.125 (5)0.090 (4)0.061 (3)0.032 (3)0.004 (3)0.024 (3)
C330.162 (7)0.136 (6)0.062 (4)0.036 (5)0.002 (4)0.034 (4)
C340.145 (6)0.137 (6)0.054 (4)0.020 (5)0.012 (4)0.024 (4)
C350.081 (4)0.122 (5)0.062 (3)0.007 (3)0.015 (3)0.019 (3)
C360.062 (3)0.077 (3)0.053 (3)0.003 (2)0.002 (2)0.001 (2)
C410.044 (2)0.061 (3)0.050 (3)0.0123 (19)0.012 (2)0.003 (2)
C420.060 (3)0.119 (4)0.054 (3)0.014 (3)0.015 (3)0.003 (3)
C430.068 (3)0.164 (6)0.071 (4)0.011 (4)0.024 (3)0.027 (4)
C440.052 (3)0.108 (4)0.098 (5)0.012 (3)0.007 (3)0.024 (4)
C450.057 (3)0.075 (3)0.086 (4)0.006 (2)0.007 (3)0.004 (3)
C460.066 (3)0.059 (3)0.055 (3)0.003 (2)0.014 (2)0.001 (2)
C510.044 (2)0.040 (2)0.062 (3)0.0019 (17)0.001 (2)0.0009 (19)
C520.076 (3)0.056 (3)0.067 (3)0.007 (2)0.011 (3)0.003 (2)
C530.095 (4)0.063 (3)0.068 (3)0.003 (3)0.010 (3)0.015 (3)
C540.086 (3)0.054 (3)0.090 (4)0.000 (3)0.013 (3)0.017 (3)
C550.087 (3)0.043 (3)0.105 (5)0.013 (2)0.007 (3)0.002 (3)
C560.069 (3)0.048 (2)0.069 (3)0.010 (2)0.001 (3)0.005 (2)
C610.038 (2)0.045 (2)0.063 (3)0.0073 (17)0.001 (2)0.000 (2)
C620.063 (3)0.067 (3)0.082 (4)0.022 (2)0.018 (3)0.017 (3)
C630.059 (3)0.070 (3)0.121 (5)0.020 (2)0.026 (3)0.008 (3)
C640.064 (3)0.082 (4)0.086 (4)0.007 (3)0.027 (3)0.019 (3)
C650.056 (3)0.098 (4)0.066 (3)0.005 (3)0.005 (3)0.002 (3)
C660.043 (2)0.074 (3)0.061 (3)0.009 (2)0.003 (2)0.003 (2)
C710.046 (2)0.053 (2)0.055 (3)0.0011 (18)0.010 (2)0.007 (2)
C720.094 (4)0.086 (4)0.074 (4)0.039 (3)0.013 (3)0.018 (3)
C730.098 (4)0.148 (6)0.099 (5)0.053 (4)0.000 (4)0.057 (5)
C740.080 (4)0.164 (7)0.078 (5)0.008 (4)0.027 (4)0.058 (5)
C750.097 (4)0.115 (5)0.057 (3)0.015 (4)0.026 (3)0.014 (3)
C760.067 (3)0.064 (3)0.056 (3)0.005 (2)0.013 (2)0.002 (2)
C810.050 (2)0.0335 (19)0.055 (3)0.0083 (17)0.005 (2)0.0035 (19)
C820.070 (3)0.042 (2)0.069 (3)0.003 (2)0.020 (3)0.001 (2)
C830.091 (4)0.064 (3)0.083 (4)0.003 (3)0.039 (3)0.006 (3)
C840.075 (3)0.049 (3)0.113 (5)0.010 (2)0.018 (3)0.015 (3)
C850.074 (3)0.044 (2)0.085 (4)0.007 (2)0.001 (3)0.000 (2)
C860.067 (3)0.036 (2)0.065 (3)0.0003 (19)0.003 (2)0.008 (2)
Geometric parameters (Å, º) top
Cu1—P12.3148 (11)C33—C341.337 (8)
Cu1—P42.3154 (11)C33—H330.9300
Cu1—P32.3170 (11)C34—C351.386 (8)
Cu1—P22.3198 (12)C34—H340.9300
P1—C111.817 (4)C35—C361.378 (6)
P1—C11.835 (4)C35—H350.9300
P1—C211.836 (4)C36—H360.9300
P2—C311.822 (4)C41—C461.378 (6)
P2—C411.842 (4)C41—C421.381 (6)
P2—C31.847 (4)C42—C431.397 (7)
P3—C511.825 (4)C42—H420.9300
P3—C611.829 (4)C43—C441.342 (8)
P3—C41.840 (4)C43—H430.9300
P4—C711.818 (4)C44—C451.360 (7)
P4—C811.833 (4)C44—H440.9300
P4—C61.849 (4)C45—C461.390 (6)
Ga2—Cl12.137 (2)C45—H450.9300
Ga2—Cl42.1491 (18)C46—H460.9300
Ga2—Cl22.1524 (15)C51—C521.380 (6)
Ga2—Cl32.1694 (19)C51—C561.388 (5)
C1—C21.516 (6)C52—C531.390 (6)
C1—H1A0.9700C52—H520.9300
C1—H1B0.9700C53—C541.356 (6)
C2—C31.517 (6)C53—H530.9300
C2—H2A0.9700C54—C551.372 (7)
C2—H2B0.9700C54—H540.9300
C3—H3A0.9700C55—C561.386 (6)
C3—H3B0.9700C55—H550.9300
C4—C51.531 (5)C56—H560.9300
C4—H4A0.9700C61—C661.373 (6)
C4—H4B0.9700C61—C621.407 (5)
C5—C61.537 (5)C62—C631.387 (7)
C5—H5A0.9700C62—H620.9300
C5—H5B0.9700C63—C641.368 (7)
C6—H6A0.9700C63—H630.9300
C6—H6B0.9700C64—C651.362 (7)
C11—C161.392 (6)C64—H640.9300
C11—C121.393 (6)C65—C661.368 (6)
C12—C131.383 (7)C65—H650.9300
C12—H120.9300C66—H660.9300
C13—C141.354 (9)C71—C761.386 (6)
C13—H130.9300C71—C721.397 (6)
C14—C151.367 (8)C72—C731.387 (8)
C14—H140.9300C72—H720.9300
C15—C161.384 (6)C73—C741.365 (9)
C15—H150.9300C73—H730.9300
C16—H160.9300C74—C751.349 (8)
C21—C221.378 (5)C74—H740.9300
C21—C261.388 (5)C75—C761.378 (7)
C22—C231.407 (5)C75—H750.9300
C22—H220.9300C76—H760.9300
C23—C241.357 (6)C81—C861.383 (5)
C23—H230.9300C81—C821.394 (6)
C24—C251.383 (6)C82—C831.382 (6)
C24—H240.9300C82—H820.9300
C25—C261.363 (6)C83—C841.374 (7)
C25—H250.9300C83—H830.9300
C26—H260.9300C84—C851.344 (7)
C31—C361.381 (6)C84—H840.9300
C31—C321.402 (6)C85—C861.381 (6)
C32—C331.370 (7)C85—H850.9300
C32—H320.9300C86—H860.9300
P1—Cu1—P4121.14 (4)C36—C31—C32117.3 (4)
P1—Cu1—P3116.55 (4)C36—C31—P2118.7 (3)
P4—Cu1—P398.34 (4)C32—C31—P2124.1 (4)
P1—Cu1—P299.18 (4)C33—C32—C31120.9 (5)
P4—Cu1—P2113.90 (4)C33—C32—H32119.6
P3—Cu1—P2107.84 (4)C31—C32—H32119.6
C11—P1—C1101.16 (19)C34—C33—C32120.2 (6)
C11—P1—C21102.58 (18)C34—C33—H33119.9
C1—P1—C21101.84 (18)C32—C33—H33119.9
C11—P1—Cu1120.82 (12)C33—C34—C35121.6 (6)
C1—P1—Cu1111.41 (14)C33—C34—H34119.2
C21—P1—Cu1116.42 (12)C35—C34—H34119.2
C31—P2—C41102.5 (2)C36—C35—C34118.2 (5)
C31—P2—C3103.4 (2)C36—C35—H35120.9
C41—P2—C3101.98 (19)C34—C35—H35120.9
C31—P2—Cu1116.47 (14)C35—C36—C31121.8 (5)
C41—P2—Cu1119.01 (14)C35—C36—H36119.1
C3—P2—Cu1111.45 (15)C31—C36—H36119.1
C51—P3—C61101.95 (19)C46—C41—C42118.5 (4)
C51—P3—C4103.15 (18)C46—C41—P2118.9 (3)
C61—P3—C4102.94 (19)C42—C41—P2122.6 (4)
C51—P3—Cu1116.12 (13)C41—C42—C43119.1 (5)
C61—P3—Cu1118.01 (13)C41—C42—H42120.5
C4—P3—Cu1112.72 (13)C43—C42—H42120.5
C71—P4—C81102.67 (19)C44—C43—C42121.8 (5)
C71—P4—C6101.01 (19)C44—C43—H43119.1
C81—P4—C6103.92 (18)C42—C43—H43119.1
C71—P4—Cu1118.60 (14)C43—C44—C45119.9 (5)
C81—P4—Cu1119.15 (12)C43—C44—H44120.1
C6—P4—Cu1109.15 (12)C45—C44—H44120.1
Cl1—Ga2—Cl4111.68 (11)C44—C45—C46119.7 (5)
Cl1—Ga2—Cl2108.81 (10)C44—C45—H45120.2
Cl4—Ga2—Cl2111.63 (8)C46—C45—H45120.2
Cl1—Ga2—Cl3108.46 (12)C41—C46—C45121.1 (5)
Cl4—Ga2—Cl3109.03 (9)C41—C46—H46119.4
Cl2—Ga2—Cl3107.08 (7)C45—C46—H46119.4
C2—C1—P1116.6 (3)C52—C51—C56118.2 (4)
C2—C1—H1A108.1C52—C51—P3125.3 (3)
P1—C1—H1A108.1C56—C51—P3116.5 (3)
C2—C1—H1B108.1C51—C52—C53119.9 (4)
P1—C1—H1B108.1C51—C52—H52120.0
H1A—C1—H1B107.3C53—C52—H52120.0
C1—C2—C3114.3 (3)C54—C53—C52121.8 (5)
C1—C2—H2A108.7C54—C53—H53119.1
C3—C2—H2A108.7C52—C53—H53119.1
C1—C2—H2B108.7C53—C54—C55118.8 (5)
C3—C2—H2B108.7C53—C54—H54120.6
H2A—C2—H2B107.6C55—C54—H54120.6
C2—C3—P2115.3 (3)C54—C55—C56120.5 (4)
C2—C3—H3A108.4C54—C55—H55119.8
P2—C3—H3A108.4C56—C55—H55119.8
C2—C3—H3B108.4C55—C56—C51120.8 (4)
P2—C3—H3B108.4C55—C56—H56119.6
H3A—C3—H3B107.5C51—C56—H56119.6
C5—C4—P3114.3 (3)C66—C61—C62118.1 (4)
C5—C4—H4A108.7C66—C61—P3120.4 (3)
P3—C4—H4A108.7C62—C61—P3121.5 (4)
C5—C4—H4B108.7C63—C62—C61119.3 (5)
P3—C4—H4B108.7C63—C62—H62120.4
H4A—C4—H4B107.6C61—C62—H62120.4
C4—C5—C6114.6 (3)C64—C63—C62121.0 (5)
C4—C5—H5A108.6C64—C63—H63119.5
C6—C5—H5A108.6C62—C63—H63119.5
C4—C5—H5B108.6C65—C64—C63119.3 (5)
C6—C5—H5B108.6C65—C64—H64120.3
H5A—C5—H5B107.6C63—C64—H64120.3
C5—C6—P4113.4 (3)C64—C65—C66120.8 (5)
C5—C6—H6A108.9C64—C65—H65119.6
P4—C6—H6A108.9C66—C65—H65119.6
C5—C6—H6B108.9C65—C66—C61121.5 (4)
P4—C6—H6B108.9C65—C66—H66119.3
H6A—C6—H6B107.7C61—C66—H66119.3
C16—C11—C12116.8 (4)C76—C71—C72117.6 (4)
C16—C11—P1121.4 (3)C76—C71—P4120.3 (3)
C12—C11—P1121.8 (4)C72—C71—P4122.1 (4)
C13—C12—C11121.7 (6)C73—C72—C71120.4 (6)
C13—C12—H12119.2C73—C72—H72119.8
C11—C12—H12119.2C71—C72—H72119.8
C14—C13—C12119.5 (6)C74—C73—C72120.1 (6)
C14—C13—H13120.2C74—C73—H73119.9
C12—C13—H13120.2C72—C73—H73119.9
C13—C14—C15121.2 (6)C75—C74—C73120.1 (6)
C13—C14—H14119.4C75—C74—H74120.0
C15—C14—H14119.4C73—C74—H74120.0
C14—C15—C16119.4 (6)C74—C75—C76121.0 (6)
C14—C15—H15120.3C74—C75—H75119.5
C16—C15—H15120.3C76—C75—H75119.5
C15—C16—C11121.5 (5)C75—C76—C71120.6 (5)
C15—C16—H16119.3C75—C76—H76119.7
C11—C16—H16119.3C71—C76—H76119.7
C22—C21—C26118.6 (4)C86—C81—C82117.9 (4)
C22—C21—P1119.4 (3)C86—C81—P4121.2 (3)
C26—C21—P1122.0 (3)C82—C81—P4120.8 (3)
C21—C22—C23120.0 (4)C83—C82—C81119.6 (5)
C21—C22—H22120.0C83—C82—H82120.2
C23—C22—H22120.0C81—C82—H82120.2
C24—C23—C22120.1 (4)C84—C83—C82121.2 (5)
C24—C23—H23119.9C84—C83—H83119.4
C22—C23—H23119.9C82—C83—H83119.4
C23—C24—C25120.0 (4)C85—C84—C83119.6 (5)
C23—C24—H24120.0C85—C84—H84120.2
C25—C24—H24120.0C83—C84—H84120.2
C26—C25—C24120.0 (4)C84—C85—C86120.5 (5)
C26—C25—H25120.0C84—C85—H85119.7
C24—C25—H25120.0C86—C85—H85119.7
C25—C26—C21121.3 (4)C85—C86—C81121.3 (5)
C25—C26—H26119.4C85—C86—H86119.4
C21—C26—H26119.4C81—C86—H86119.4
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C81–C86 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.773.702 (8)175
C55—H55···Cg2ii0.932.663.526 (5)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C27H26P2)2][GaCl4]
Mr1099.90
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)21.077 (4), 11.200 (2), 22.605 (5)
β (°) 99.424 (3)
V3)5264.3 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.40 × 0.25 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.629, 0.894
No. of measured, independent and
observed [I > 2σ(I)] reflections
32381, 12058, 6644
Rint0.052
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.159, 1.04
No. of reflections12058
No. of parameters577
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.76

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C21–C26 and C81–C86 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···Cg1i0.932.77323.702 (8)175
C55—H55···Cg2ii0.932.66333.526 (5)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x, y+1, z.
 

Acknowledgements

This project was supported by the Program for New Century Excellent Talents in Universities of China (NCET-08–0618).

References

First citationBownaker, G. A., Hart, R. D., Jone, B. E., Skelton, B. W. & White, A. H. (1995). J. Chem. Soc., Dalton Trans. pp. 3063–3070.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationComba, P., Katsichtis, C., Nuber, B. & Pritzkow, H. (1999). Eur. J. Inorg. Chem. pp. 777–783.  CrossRef Google Scholar
First citationLobana, T. S., Khanna, S., Hundal, G., Butcher, R. J. & Castineiras, A. (2009). Polyhedron 28, 3899–3906.  Web of Science CSD CrossRef CAS Google Scholar
First citationNicola, C. D., Effendy, Fazaroh, F., Pettinari, C., Skelton, B. W., Somers, N. & White, A. H. (2005). Inorg. Chim. Acta 358, 720–734.  Web of Science CSD CrossRef Google Scholar
First citationRudawska, K. & Ptasiewicz-Bak, H. (2003). J. Coord. Chem. 56, 1567–1574.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, W.-G., Wang, R.-W., Xiong, Y.-F., Yang, R.-N., Wang, D.-M., Jin, D.-M., Chen, L.-R. & Luo, B.-S. (1997). Chin. J. Struct. Chem. 16, 293–297.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds