organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[5-Methyl-1-(4-methyl­phen­yl)-1H-1,2,3-triazol-4-yl]-N-phenyl-5-[4-(piperidin-1-yl)phen­yl]-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide di­methyl­formamide hemisolvate

aApplied Organic Chemistry Department, National Research Centre, Dokki, 12622 Giza, Egypt, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 29 May 2012; accepted 29 May 2012; online 2 June 2012)

The essentially planar pyrazole ring (r.m.s. deviation = 0.013 Å) in the title hemisolvate, C31H33N7S·0.5C3H7NO, is almost coplanar with the pendant thio­urea residue [N—N—C—S torsion angle = −173.2 (4)°] and slightly twisted with respect to the triazole ring [dihedral angle = 7.7 (3)°]. An intra­molecular thio­urea–pyrazole N—H⋯N hydrogen bond, via an S(5) loop, is formed. Supra­molecular chains along the c axis are formed in the crystal via piperidine–triazole C—H⋯N inter­actions. These are bridged into loosely associated double chains via C—H⋯O inter­actions involving the disordered (over two positions) dimethyl­formamide solvent mol­ecules. The thio­urea-bound phenyl ring is also disordered over two positions of equal occupancy.

Related literature

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632-2635.], 2012a[Abdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263-268.]). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b[Abdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1954-o1955.]).

[Scheme 1]

Experimental

Crystal data
  • C31H33N7S·0.5C3H7NO

  • Mr = 522.26

  • Monoclinic, C 2

  • a = 42.077 (4) Å

  • b = 5.9274 (5) Å

  • c = 12.0737 (11) Å

  • β = 105.665 (9)°

  • V = 2899.5 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.29 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.661, Tmax = 0.938

  • 10437 measured reflections

  • 3317 independent reflections

  • 3229 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.214

  • S = 1.11

  • 3317 reflections

  • 396 parameters

  • 41 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.06 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3 0.88 2.13 2.597 (8) 112
C13—H13A⋯O1 0.98 2.56 3.466 (14) 154
C28—H28B⋯N5i 0.99 2.57 3.355 (10) 137
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis and crystallographic characterization of the title compound was motivated by the established biological activities exhibited by related 3-(benzofuran-2-yl)-4,5-dihydro-5-phenyl-1-(4-phenylthiazol-2-yl)-1H-pyrazole and 1,2,3-triazol-4-yl-pyrazolylthiazoles (Abdel-Wahab et al. 2012a; Abdel-Wahab et al. 2009) and accompanying structural studies (Abdel-Wahab et al., 2012b).

In (I), Fig. 1, the pyrazole ring is planar with a r.m.s. deviation = 0.013 Å; the maximum deviation is 0.005 (6) Å for the N2 atom. The thiourea group is close to co-planar with the ring [the N3—N2—C7—S1 torsion angle = -173.2 (4)°] and the connected triazole ring is slightly twisted out of the plane [dihedral angle = 7.7 (3)°]. There is a significant twist between the triazole and attached benzene rings with the dihedral angle being 49.4 (3)°. The conformation of the piperidinyl ring is close to a chair. The thiourea-N—H atom is orientated towards the pyrazole-N3 atom and forms a hydrogen bond via an S(5) loop, Table 1.

In the crystal packing, connections between molecules are of the type piperidinyl-C—H···N(triazole), Table 1, leading to the formation of a supramolecular chain along the c axis. Two chains are connected by the (disordered) dimethylformamide molecules via methyl-C13—H···O1 interactions into a loosely associated double chain, Fig. 2 and Table 1.

Related literature top

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009, 2012a). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b).

Experimental top

The title compound was prepared according to the reported method (Abdel-Wahab et al., 2012a). Crystals were obtained from its DMF solution by slow evaporation at room temperature.

Refinement top

The H-atoms were placed in calculated positions [N—H = 0.88 Å; C—H = 0.95 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(N,C)] and were included in the refinement in the riding model approximation.

The phenyl ring is disordered over two positions in an assumed 1:1 ratio; the ring was refined as a rigid hexagon with 1.39 Å sides. The displacement factors of the primed atoms were set to those of the unprimed ones.

The DMF molecule is disordered over a twofold rotation axis. The C—O distance was restrained to 1.25±0.01 Å and the N–Ccarbonyl distance to 1.35±0.01 Å; the other two N–C distances were restrained to 1.45±0.01 Å. Additionally, the 1,3-related distances were also restrained. The anisotropic displacement parameters were tightly restrained to be nearly isotropic.

The absolute structure could not be refined despite the presence of a sulfur atom as the crystal is a racemic twin; 1153 Friedel pairs were merged.

The maximum and minimum residual electron density peaks of 0.71 and 1.06 e Å-3, respectively, were located 0.71 Å and 0.82 Å, respectively, from the S1 atom.

A reflection, i.e. (-3 1 3), was omitted owing to poor agreement.

Structure description top

The synthesis and crystallographic characterization of the title compound was motivated by the established biological activities exhibited by related 3-(benzofuran-2-yl)-4,5-dihydro-5-phenyl-1-(4-phenylthiazol-2-yl)-1H-pyrazole and 1,2,3-triazol-4-yl-pyrazolylthiazoles (Abdel-Wahab et al. 2012a; Abdel-Wahab et al. 2009) and accompanying structural studies (Abdel-Wahab et al., 2012b).

In (I), Fig. 1, the pyrazole ring is planar with a r.m.s. deviation = 0.013 Å; the maximum deviation is 0.005 (6) Å for the N2 atom. The thiourea group is close to co-planar with the ring [the N3—N2—C7—S1 torsion angle = -173.2 (4)°] and the connected triazole ring is slightly twisted out of the plane [dihedral angle = 7.7 (3)°]. There is a significant twist between the triazole and attached benzene rings with the dihedral angle being 49.4 (3)°. The conformation of the piperidinyl ring is close to a chair. The thiourea-N—H atom is orientated towards the pyrazole-N3 atom and forms a hydrogen bond via an S(5) loop, Table 1.

In the crystal packing, connections between molecules are of the type piperidinyl-C—H···N(triazole), Table 1, leading to the formation of a supramolecular chain along the c axis. Two chains are connected by the (disordered) dimethylformamide molecules via methyl-C13—H···O1 interactions into a loosely associated double chain, Fig. 2 and Table 1.

For the biological activity of related compounds, see: Abdel-Wahab et al. (2009, 2012a). For a related pyrazolyl-1,2,3-triazole structure, see: Abdel-Wahab et al. (2012b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of a supramolecular chain along the c axis in (I). The dimethylformamide molecule is disordered over two positions. The C—H···O and C—H···N interactions are shown as orange and blue dashed lines, respectively.
3-[5-Methyl-1-(4-methylphenyl)-1H-1,2,3-triazol-4-yl]-N-phenyl- 5-[4-(piperidin-1-yl)phenyl]-4,5-dihydro-1H-pyrazole-1-carbothioamide dimethylformamide hemisolvate top
Crystal data top
C31H33N7S·0.5C3H7NOF(000) = 1216
Mr = 522.26Dx = 1.311 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54184 Å
Hall symbol: C 2yCell parameters from 6358 reflections
a = 42.077 (4) Åθ = 3.8–76.9°
b = 5.9274 (5) ŵ = 1.29 mm1
c = 12.0737 (11) ÅT = 100 K
β = 105.665 (9)°Prism, light-brown
V = 2899.5 (4) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3317 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3229 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 77.1°, θmin = 3.8°
ω scanh = 5249
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 57
Tmin = 0.661, Tmax = 0.938l = 1415
10437 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.091H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.0422P)2 + 29.4613P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3317 reflectionsΔρmax = 0.71 e Å3
396 parametersΔρmin = 1.06 e Å3
41 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00150 (17)
Crystal data top
C31H33N7S·0.5C3H7NOV = 2899.5 (4) Å3
Mr = 522.26Z = 4
Monoclinic, C2Cu Kα radiation
a = 42.077 (4) ŵ = 1.29 mm1
b = 5.9274 (5) ÅT = 100 K
c = 12.0737 (11) Å0.35 × 0.15 × 0.05 mm
β = 105.665 (9)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3317 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3229 reflections with I > 2σ(I)
Tmin = 0.661, Tmax = 0.938Rint = 0.037
10437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09141 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0422P)2 + 29.4613P]
where P = (Fo2 + 2Fc2)/3
3317 reflectionsΔρmax = 0.71 e Å3
396 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.59659 (4)0.0014 (4)0.47105 (16)0.0329 (5)
N10.56945 (14)0.4011 (13)0.5037 (5)0.0306 (14)
H10.57260.52850.54260.037*
N20.61985 (13)0.3203 (11)0.6223 (5)0.0250 (13)
N30.61644 (13)0.5210 (12)0.6819 (5)0.0251 (12)
N40.67600 (14)0.7524 (12)0.9292 (5)0.0282 (13)
N50.67224 (14)0.9126 (13)1.0004 (5)0.0304 (14)
N60.64025 (13)0.9852 (13)0.9628 (5)0.0267 (13)
N70.72517 (13)0.4072 (12)0.3176 (5)0.0261 (13)
C10.53887 (17)0.3838 (17)0.4206 (10)0.0259 (16)0.50
C20.5261 (2)0.2040 (15)0.3484 (10)0.029 (2)0.50
H20.53910.07270.34890.035*0.50
C30.4944 (2)0.2165 (17)0.2753 (9)0.036 (3)0.50
H30.48560.09360.22590.043*0.50
C40.47537 (19)0.409 (2)0.2745 (10)0.032 (3)0.50
H40.45370.41720.22450.038*0.50
C50.4881 (2)0.5885 (16)0.3467 (10)0.034 (3)0.50
H50.47520.71990.34620.041*0.50
C60.5199 (2)0.5761 (14)0.4198 (9)0.029 (2)0.50
H60.52860.69890.46920.035*0.50
C1'0.53743 (17)0.3832 (17)0.4284 (9)0.0259 (16)0.50
C2'0.5190 (2)0.1876 (15)0.4256 (9)0.029 (2)0.50
H2'0.52790.06500.47490.035*0.50
C3'0.4875 (2)0.1716 (15)0.3507 (10)0.036 (3)0.50
H3'0.47490.03800.34890.043*0.50
C4'0.4745 (2)0.3511 (19)0.2787 (10)0.032 (3)0.50
H4'0.45300.34010.22750.038*0.50
C5'0.4929 (2)0.5466 (16)0.2814 (9)0.034 (3)0.50
H5'0.48400.66930.23220.041*0.50
C6'0.5244 (2)0.5627 (14)0.3563 (10)0.029 (2)0.50
H6'0.53700.69630.35820.035*0.50
C70.59446 (16)0.2551 (14)0.5330 (6)0.0261 (15)
C80.65420 (15)0.2319 (14)0.6552 (6)0.0252 (15)
H80.65430.06620.67080.030*
C90.66858 (15)0.3640 (15)0.7684 (6)0.0281 (16)
H9A0.67070.26630.83660.034*
H9B0.69040.42940.77100.034*
C100.64330 (16)0.5443 (13)0.7621 (5)0.0240 (15)
C110.64669 (17)0.7263 (13)0.8469 (6)0.0246 (14)
C120.62375 (16)0.8719 (14)0.8666 (6)0.0263 (15)
C130.58794 (16)0.9065 (15)0.8053 (6)0.0305 (16)
H13A0.57580.94650.86120.046*
H13B0.57880.76700.76560.046*
H13C0.58581.02850.74900.046*
C140.62887 (16)1.1423 (14)1.0318 (6)0.0276 (16)
C150.61095 (18)1.3329 (15)0.9829 (7)0.0327 (17)
H150.60651.36110.90270.039*
C160.59990 (19)1.4774 (16)1.0516 (7)0.0354 (17)
H160.58721.60411.01730.043*
C170.6065 (2)1.4476 (13)1.1719 (8)0.0363 (19)
C180.6245 (2)1.2523 (16)1.2175 (7)0.0360 (18)
H180.62921.22391.29770.043*
C190.63557 (19)1.1015 (16)1.1493 (6)0.0343 (17)
H190.64760.97121.18220.041*
C200.5944 (2)1.6067 (17)1.2460 (8)0.047 (2)
H20A0.58271.52271.29290.071*
H20B0.57931.71561.19770.071*
H20C0.61311.68711.29640.071*
C210.67202 (16)0.2810 (14)0.5649 (6)0.0269 (16)
C220.67004 (19)0.4876 (16)0.5091 (7)0.0350 (17)
H220.65650.60260.52730.042*
C230.68695 (17)0.5317 (14)0.4285 (6)0.0305 (16)
H230.68480.67510.39210.037*
C240.70737 (16)0.3670 (14)0.3994 (6)0.0258 (15)
C250.70995 (18)0.1619 (14)0.4574 (6)0.0291 (16)
H250.72400.04800.44170.035*
C260.69243 (17)0.1197 (13)0.5380 (6)0.0280 (15)
H260.69460.02290.57510.034*
C270.71379 (18)0.5951 (15)0.2389 (7)0.0318 (17)
H27A0.70990.72790.28320.038*
H27B0.69250.55400.18380.038*
C280.73850 (18)0.6574 (14)0.1727 (6)0.0293 (16)
H28A0.75920.71050.22700.035*
H28B0.72950.78180.11870.035*
C290.74577 (18)0.4548 (15)0.1060 (6)0.0333 (19)
H29A0.72540.40550.04860.040*
H29B0.76240.49540.06500.040*
C300.75863 (18)0.2688 (15)0.1902 (6)0.0307 (17)
H30A0.78010.31490.24230.037*
H30B0.76240.13280.14790.037*
C310.73474 (18)0.2102 (14)0.2620 (7)0.0313 (17)
H31A0.71470.13970.21150.038*
H31B0.74530.09850.32150.038*
O10.5327 (3)0.8817 (18)0.9722 (10)0.051 (3)0.50
N80.4987 (3)1.1815 (15)0.9647 (8)0.039 (4)0.50
C320.5278 (3)1.0766 (18)1.0017 (9)0.041 (4)0.50
H320.54551.15471.05280.049*0.50
C330.4703 (3)1.078 (3)0.8870 (13)0.051 (5)0.50
H33A0.47680.93460.85930.077*0.50
H33B0.46151.17890.82150.077*0.50
H33C0.45341.05090.92740.077*0.50
C340.4944 (4)1.4106 (18)1.002 (2)0.043 (5)0.50
H34A0.51551.46731.04990.064*0.50
H34B0.47801.41071.04600.064*0.50
H34C0.48671.50790.93410.064*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0282 (8)0.0365 (10)0.0366 (9)0.0056 (9)0.0133 (7)0.0043 (9)
N10.025 (3)0.035 (4)0.035 (3)0.002 (3)0.013 (2)0.005 (3)
N20.020 (3)0.028 (3)0.029 (3)0.000 (3)0.012 (2)0.006 (3)
N30.024 (3)0.026 (3)0.029 (3)0.003 (3)0.012 (2)0.002 (3)
N40.026 (3)0.027 (3)0.035 (3)0.002 (3)0.013 (2)0.004 (3)
N50.024 (3)0.033 (4)0.036 (3)0.001 (3)0.012 (2)0.004 (3)
N60.023 (3)0.031 (3)0.029 (3)0.001 (3)0.012 (2)0.004 (3)
N70.025 (3)0.026 (3)0.031 (3)0.003 (3)0.013 (2)0.004 (3)
C10.023 (3)0.028 (4)0.030 (4)0.005 (3)0.014 (3)0.000 (3)
C20.029 (5)0.025 (5)0.032 (5)0.000 (4)0.009 (4)0.001 (5)
C30.030 (6)0.033 (6)0.043 (6)0.003 (5)0.006 (5)0.002 (6)
C40.026 (4)0.031 (8)0.036 (4)0.001 (5)0.005 (3)0.002 (5)
C50.030 (5)0.030 (6)0.047 (7)0.000 (5)0.019 (5)0.003 (6)
C60.032 (5)0.022 (5)0.039 (7)0.006 (4)0.017 (5)0.001 (5)
C1'0.023 (3)0.028 (4)0.030 (4)0.005 (3)0.014 (3)0.000 (3)
C2'0.029 (5)0.025 (5)0.032 (5)0.000 (4)0.009 (4)0.001 (5)
C3'0.030 (6)0.033 (6)0.043 (6)0.003 (5)0.006 (5)0.002 (6)
C4'0.026 (4)0.031 (8)0.036 (4)0.001 (5)0.005 (3)0.002 (5)
C5'0.030 (5)0.030 (6)0.047 (7)0.000 (5)0.019 (5)0.003 (6)
C6'0.032 (5)0.022 (5)0.039 (7)0.006 (4)0.017 (5)0.001 (5)
C70.024 (3)0.032 (4)0.030 (3)0.003 (3)0.019 (3)0.000 (3)
C80.016 (3)0.031 (4)0.030 (3)0.001 (3)0.010 (3)0.002 (3)
C90.016 (3)0.040 (5)0.030 (3)0.001 (3)0.008 (2)0.001 (3)
C100.023 (3)0.029 (4)0.024 (3)0.000 (3)0.012 (2)0.001 (3)
C110.026 (3)0.024 (4)0.027 (3)0.004 (3)0.011 (3)0.001 (3)
C120.022 (3)0.034 (4)0.024 (3)0.006 (3)0.009 (3)0.006 (3)
C130.024 (3)0.033 (4)0.038 (4)0.001 (3)0.014 (3)0.006 (4)
C140.021 (3)0.027 (4)0.039 (4)0.003 (3)0.014 (3)0.005 (3)
C150.028 (4)0.031 (4)0.044 (4)0.004 (3)0.019 (3)0.004 (4)
C160.037 (4)0.028 (4)0.048 (4)0.001 (4)0.023 (3)0.002 (4)
C170.048 (4)0.014 (4)0.057 (5)0.002 (3)0.032 (4)0.009 (3)
C180.045 (4)0.034 (4)0.035 (4)0.005 (4)0.020 (3)0.002 (4)
C190.037 (4)0.034 (4)0.034 (4)0.001 (4)0.012 (3)0.001 (4)
C200.065 (6)0.034 (5)0.058 (5)0.000 (5)0.044 (5)0.001 (5)
C210.020 (3)0.029 (4)0.032 (4)0.003 (3)0.007 (3)0.000 (3)
C220.036 (4)0.026 (4)0.050 (4)0.003 (4)0.025 (3)0.002 (4)
C230.031 (3)0.025 (4)0.041 (4)0.000 (3)0.019 (3)0.001 (3)
C240.019 (3)0.027 (4)0.033 (3)0.000 (3)0.012 (3)0.004 (3)
C250.029 (4)0.024 (4)0.040 (4)0.004 (3)0.019 (3)0.002 (3)
C260.029 (3)0.021 (4)0.040 (4)0.004 (3)0.018 (3)0.005 (3)
C270.031 (4)0.030 (4)0.038 (4)0.001 (3)0.017 (3)0.006 (4)
C280.026 (3)0.032 (4)0.033 (4)0.002 (3)0.014 (3)0.005 (3)
C290.029 (3)0.041 (5)0.032 (3)0.003 (3)0.011 (3)0.005 (4)
C300.027 (3)0.032 (4)0.037 (4)0.001 (3)0.015 (3)0.004 (4)
C310.030 (4)0.027 (4)0.043 (4)0.001 (3)0.020 (3)0.000 (3)
O10.046 (6)0.048 (7)0.059 (6)0.003 (6)0.017 (5)0.019 (6)
N80.038 (6)0.033 (6)0.050 (7)0.003 (6)0.017 (6)0.012 (5)
C320.038 (7)0.041 (8)0.043 (7)0.012 (6)0.010 (6)0.009 (6)
C330.048 (8)0.052 (9)0.056 (8)0.000 (7)0.019 (7)0.006 (7)
C340.045 (11)0.039 (7)0.055 (7)0.005 (6)0.032 (7)0.003 (8)
Geometric parameters (Å, º) top
S1—C71.693 (8)C13—H13C0.9800
N1—C71.334 (10)C14—C191.391 (10)
N1—C11.405 (8)C14—C151.398 (11)
N1—C1'1.411 (8)C15—C161.359 (11)
N1—H10.8800C15—H150.9500
N2—C71.354 (9)C16—C171.414 (11)
N2—N31.417 (8)C16—H160.9500
N2—C81.487 (8)C17—C181.412 (12)
N3—C101.282 (8)C17—C201.482 (11)
N4—N51.318 (9)C18—C191.378 (11)
N4—C111.368 (9)C18—H180.9500
N5—N61.369 (8)C19—H190.9500
N6—C121.359 (9)C20—H20A0.9800
N6—C141.416 (10)C20—H20B0.9800
N7—C241.411 (8)C20—H20C0.9800
N7—C311.458 (10)C21—C261.382 (10)
N7—C271.458 (10)C21—C221.389 (12)
C1—C21.3900C22—C231.378 (10)
C1—C61.3900C22—H220.9500
C2—C31.3900C23—C241.406 (10)
C2—H20.9500C23—H230.9500
C3—C41.3900C24—C251.393 (11)
C3—H30.9500C25—C261.392 (9)
C4—C51.3900C25—H250.9500
C4—H40.9500C26—H260.9500
C5—C61.3900C27—C281.518 (9)
C5—H50.9500C27—H27A0.9900
C6—H60.9500C27—H27B0.9900
C1'—C2'1.3900C28—C291.522 (11)
C1'—C6'1.3900C28—H28A0.9900
C2'—C3'1.3900C28—H28B0.9900
C2'—H2'0.9500C29—C301.498 (11)
C3'—C4'1.3900C29—H29A0.9900
C3'—H3'0.9500C29—H29B0.9900
C4'—C5'1.3900C30—C311.534 (9)
C4'—H4'0.9500C30—H30A0.9900
C5'—C6'1.3900C30—H30B0.9900
C5'—H5'0.9500C31—H31A0.9900
C6'—H6'0.9500C31—H31B0.9900
C8—C211.509 (9)O1—C321.242 (9)
C8—C91.550 (10)N8—C321.338 (8)
C8—H81.0000N8—C331.442 (9)
C9—C101.495 (10)N8—C341.456 (9)
C9—H9A0.9900C32—H320.9500
C9—H9B0.9900C33—H33A0.9800
C10—C111.467 (10)C33—H33B0.9800
C11—C121.363 (10)C33—H33C0.9800
C12—C131.503 (9)C34—H34A0.9800
C13—H13A0.9800C34—H34B0.9800
C13—H13B0.9800C34—H34C0.9800
C7—N1—C1130.3 (8)C12—C13—H13C109.5
C7—N1—C1'132.0 (8)H13A—C13—H13C109.5
C1—N1—C1'5.1 (9)H13B—C13—H13C109.5
C7—N1—H1114.9C19—C14—C15120.6 (7)
C1—N1—H1114.9C19—C14—N6118.5 (7)
C1'—N1—H1112.9C15—C14—N6120.8 (7)
C7—N2—N3118.5 (6)C16—C15—C14119.1 (7)
C7—N2—C8127.8 (6)C16—C15—H15120.5
N3—N2—C8112.6 (5)C14—C15—H15120.5
C10—N3—N2106.5 (6)C15—C16—C17123.0 (8)
N5—N4—C11108.2 (6)C15—C16—H16118.5
N4—N5—N6106.9 (6)C17—C16—H16118.5
C12—N6—N5111.0 (6)C18—C17—C16116.0 (7)
C12—N6—C14130.6 (6)C18—C17—C20121.5 (8)
N5—N6—C14118.1 (6)C16—C17—C20122.5 (8)
C24—N7—C31116.9 (6)C19—C18—C17122.1 (7)
C24—N7—C27116.2 (6)C19—C18—H18119.0
C31—N7—C27113.2 (6)C17—C18—H18119.0
C2—C1—C6120.0C18—C19—C14119.2 (8)
C2—C1—N1128.9 (7)C18—C19—H19120.4
C6—C1—N1111.0 (7)C14—C19—H19120.4
C1—C2—C3120.0C17—C20—H20A109.5
C1—C2—H2120.0C17—C20—H20B109.5
C3—C2—H2120.0H20A—C20—H20B109.5
C4—C3—C2120.0C17—C20—H20C109.5
C4—C3—H3120.0H20A—C20—H20C109.5
C2—C3—H3120.0H20B—C20—H20C109.5
C5—C4—C3120.0C26—C21—C22117.1 (6)
C5—C4—H4120.0C26—C21—C8119.9 (7)
C3—C4—H4120.0C22—C21—C8122.9 (7)
C4—C5—C6120.0C23—C22—C21122.3 (8)
C4—C5—H5120.0C23—C22—H22118.8
C6—C5—H5120.0C21—C22—H22118.8
C5—C6—C1120.0C22—C23—C24120.8 (8)
C5—C6—H6120.0C22—C23—H23119.6
C1—C6—H6120.0C24—C23—H23119.6
C2'—C1'—C6'120.0C25—C24—C23116.7 (6)
C2'—C1'—N1120.5 (7)C25—C24—N7121.0 (6)
C6'—C1'—N1119.5 (7)C23—C24—N7122.2 (7)
C3'—C2'—C1'120.0C24—C25—C26121.6 (7)
C3'—C2'—H2'120.0C24—C25—H25119.2
C1'—C2'—H2'120.0C26—C25—H25119.2
C4'—C3'—C2'120.0C21—C26—C25121.3 (7)
C4'—C3'—H3'120.0C21—C26—H26119.3
C2'—C3'—H3'120.0C25—C26—H26119.3
C5'—C4'—C3'120.0N7—C27—C28112.2 (6)
C5'—C4'—H4'120.0N7—C27—H27A109.2
C3'—C4'—H4'120.0C28—C27—H27A109.2
C4'—C5'—C6'120.0N7—C27—H27B109.2
C4'—C5'—H5'120.0C28—C27—H27B109.2
C6'—C5'—H5'120.0H27A—C27—H27B107.9
C5'—C6'—C1'120.0C27—C28—C29110.5 (7)
C5'—C6'—H6'120.0C27—C28—H28A109.5
C1'—C6'—H6'120.0C29—C28—H28A109.5
N2—C7—N1115.0 (7)C27—C28—H28B109.5
N2—C7—S1118.8 (6)C29—C28—H28B109.5
N1—C7—S1126.2 (6)H28A—C28—H28B108.1
N2—C8—C21112.1 (6)C30—C29—C28108.0 (6)
N2—C8—C9100.2 (5)C30—C29—H29A110.1
C21—C8—C9112.9 (6)C28—C29—H29A110.1
N2—C8—H8110.4C30—C29—H29B110.1
C21—C8—H8110.4C28—C29—H29B110.1
C9—C8—H8110.4H29A—C29—H29B108.4
C10—C9—C8102.3 (5)C29—C30—C31112.2 (6)
C10—C9—H9A111.3C29—C30—H30A109.2
C8—C9—H9A111.3C31—C30—H30A109.2
C10—C9—H9B111.3C29—C30—H30B109.2
C8—C9—H9B111.3C31—C30—H30B109.2
H9A—C9—H9B109.2H30A—C30—H30B107.9
N3—C10—C11120.4 (6)N7—C31—C30112.6 (7)
N3—C10—C9115.6 (6)N7—C31—H31A109.1
C11—C10—C9123.8 (6)C30—C31—H31A109.1
C12—C11—N4110.1 (6)N7—C31—H31B109.1
C12—C11—C10130.3 (6)C30—C31—H31B109.1
N4—C11—C10119.3 (6)H31A—C31—H31B107.8
N6—C12—C11103.9 (6)C32—N8—C33122.9 (9)
N6—C12—C13124.6 (7)C32—N8—C34120.7 (10)
C11—C12—C13131.6 (7)C33—N8—C34116.4 (12)
C12—C13—H13A109.5O1—C32—N8123.0 (10)
C12—C13—H13B109.5O1—C32—H32118.5
H13A—C13—H13B109.5N8—C32—H32118.5
C7—N2—N3—C10179.4 (6)C9—C10—C11—N48.2 (10)
C8—N2—N3—C1011.2 (7)N5—N6—C12—C110.3 (8)
C11—N4—N5—N60.6 (8)C14—N6—C12—C11173.0 (8)
N4—N5—N6—C120.6 (8)N5—N6—C12—C13178.3 (7)
N4—N5—N6—C14173.7 (6)C14—N6—C12—C135.0 (12)
C7—N1—C1—C22.2 (15)N4—C11—C12—N60.1 (8)
C1'—N1—C1—C2110 (7)C10—C11—C12—N6173.6 (7)
C7—N1—C1—C6179.2 (7)N4—C11—C12—C13177.7 (7)
C1'—N1—C1—C667 (7)C10—C11—C12—C134.2 (13)
C6—C1—C2—C30.0C12—N6—C14—C19125.9 (8)
N1—C1—C2—C3176.8 (13)N5—N6—C14—C1947.1 (10)
C1—C2—C3—C40.0C12—N6—C14—C1553.4 (11)
C2—C3—C4—C50.0N5—N6—C14—C15133.7 (7)
C3—C4—C5—C60.0C19—C14—C15—C160.5 (11)
C4—C5—C6—C10.0N6—C14—C15—C16178.7 (7)
C2—C1—C6—C50.0C14—C15—C16—C171.8 (12)
N1—C1—C6—C5177.4 (11)C15—C16—C17—C182.1 (12)
C7—N1—C1'—C2'41.5 (13)C15—C16—C17—C20179.8 (8)
C1—N1—C1'—C2'114 (7)C16—C17—C18—C191.1 (12)
C7—N1—C1'—C6'138.2 (8)C20—C17—C18—C19179.2 (8)
C1—N1—C1'—C6'66 (7)C17—C18—C19—C140.1 (12)
C6'—C1'—C2'—C3'0.0C15—C14—C19—C180.5 (11)
N1—C1'—C2'—C3'179.8 (11)N6—C14—C19—C18179.7 (7)
C1'—C2'—C3'—C4'0.0N2—C8—C21—C26139.9 (7)
C2'—C3'—C4'—C5'0.0C9—C8—C21—C26107.8 (8)
C3'—C4'—C5'—C6'0.0N2—C8—C21—C2242.8 (10)
C4'—C5'—C6'—C1'0.0C9—C8—C21—C2269.5 (9)
C2'—C1'—C6'—C5'0.0C26—C21—C22—C231.3 (12)
N1—C1'—C6'—C5'179.8 (11)C8—C21—C22—C23178.7 (7)
N3—N2—C7—N15.7 (9)C21—C22—C23—C240.4 (12)
C8—N2—C7—N1161.8 (6)C22—C23—C24—C251.2 (11)
N3—N2—C7—S1173.2 (4)C22—C23—C24—N7179.6 (7)
C8—N2—C7—S119.2 (9)C31—N7—C24—C2524.7 (10)
C1—N1—C7—N2176.3 (9)C27—N7—C24—C25162.7 (7)
C1'—N1—C7—N2169.9 (9)C31—N7—C24—C23156.9 (7)
C1—N1—C7—S12.6 (12)C27—N7—C24—C2318.9 (10)
C1'—N1—C7—S18.9 (12)C23—C24—C25—C261.8 (11)
C7—N2—C8—C2164.7 (10)N7—C24—C25—C26179.7 (7)
N3—N2—C8—C21103.4 (7)C22—C21—C26—C250.7 (11)
C7—N2—C8—C9175.3 (7)C8—C21—C26—C25178.2 (7)
N3—N2—C8—C916.5 (7)C24—C25—C26—C210.9 (12)
N2—C8—C9—C1014.7 (7)C24—N7—C27—C28167.4 (6)
C21—C8—C9—C10104.7 (7)C31—N7—C27—C2853.1 (8)
N2—N3—C10—C11174.5 (6)N7—C27—C28—C2957.4 (8)
N2—N3—C10—C90.0 (8)C27—C28—C29—C3058.0 (8)
C8—C9—C10—N310.2 (8)C28—C29—C30—C3155.9 (9)
C8—C9—C10—C11175.6 (6)C24—N7—C31—C30170.6 (6)
N5—N4—C11—C120.5 (8)C27—N7—C31—C3050.2 (8)
N5—N4—C11—C10174.8 (6)C29—C30—C31—N752.8 (9)
N3—C10—C11—C129.2 (11)C33—N8—C32—O10.1 (4)
C9—C10—C11—C12164.8 (7)C34—N8—C32—O1179.8 (3)
N3—C10—C11—N4177.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.882.132.597 (8)112
C13—H13A···O10.982.563.466 (14)154
C28—H28B···N5i0.992.573.355 (10)137
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC31H33N7S·0.5C3H7NO
Mr522.26
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)42.077 (4), 5.9274 (5), 12.0737 (11)
β (°) 105.665 (9)
V3)2899.5 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.29
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.661, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
10437, 3317, 3229
Rint0.037
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.214, 1.11
No. of reflections3317
No. of parameters396
No. of restraints41
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0422P)2 + 29.4613P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.71, 1.06

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N30.882.132.597 (8)112
C13—H13A···O10.982.563.466 (14)154
C28—H28B···N5i0.992.573.355 (10)137
Symmetry code: (i) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: bakrfatehy@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635.  Web of Science PubMed CAS Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Mohamed, H. A. & Awad, G. E. A. (2012a). Eur. J. Med. Chem. 52, 263–268.  Web of Science CAS PubMed Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Latif, E., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, o1954-o1955.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds