metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Oxido[N-(2-oxido­benzyl­­idene-κO)leucinato-κ2N,O](1,10-phenanthroline-κ2N,N′)vanadium(IV)

aResearch Center of Medical Chemistry and Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: chengyuanw@yahoo.cn

(Received 30 May 2012; accepted 4 June 2012; online 13 June 2012)

In the title VIV complex, [VO(C13H15NO3)(C12H8N2)], the oxidovanadium cation is N,N′-chelated by a 1-10-phenanthroline ligand and N,O,O′-chelated by a Schiff base anion in a distorted octa­hedral geometry. Weak inter­molecular C—H⋯O hydrogen bonds occur in the crystal structure which contains solvent-accessible voids of 81 Å3.

Related literature

For the biological and pharmacological properties of vanadium complexes, see: Baran (2003[Baran, E. J. (2003). J. Braz. Chem. Soc. 14, 878-888.]). For the structures of similar six-coordinate oxidovanadium complexes with amino acid Schiff base ligands, see: Bian et al. (2011[Bian, L., Li, L.-Z., Wang, X., Huang, L., Pu, X.-W. & Dong, J.-F. (2011). Chin. J. Inorg. Chem. 27, 649-654.]); Cao et al. (2011[Cao, Y.-Z., Zhao, H.-Y., Bai, F.-Y., Xing, Y.-H., Wei, D.-M., Niu, S.-Y. & Shi, Z. (2011). Inorg. Chim. Acta, 368, 223-230.]); Xu et al. (2005[Xu, T., Li, L.-Z., Zhou, S.-F., Guo, G.-Q. & Niu, M.-J. (2005). J. Chem. Crystallogr. 35, 263-267.]); Li et al. (2006[Li, L.-Z., Jing, B.-Q., Li, L.-W. & Xu, T. (2006). Z. Kristallogr. New Cryst. Struct. 221, 520-.], 2010[Li, L.-Z., Guo, Z.-H., Zhang, Q.-F., Xu, T. & Wang, D.-Q. (2010). Inorg. Chem. Commun. 13, 1166-1169.]); Lu et al. (2011[Lu, L.-P., Yue, J.-J., Yuan, C.-X., Zhu, M.-L., Han, H., Liu, Z.-W. & Guo, M.-L. (2011). J. Inorg. Biochem. 105, 1323-1328.]); Sasmal et al. (2007[Sasmal, P., Patra, A. K., Nethaji, M. & Chakravarty, A. R. (2007). Inorg. Chem. 46, 11112-11121.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C13H15NO3)O(C12H8N2)]

  • Mr = 480.40

  • Hexagonal, [R \overline 3]

  • a = 33.675 (4) Å

  • c = 10.283 (2) Å

  • V = 10099 (3) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 298 K

  • 0.23 × 0.11 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.963

  • 17437 measured reflections

  • 3962 independent reflections

  • 2020 reflections with I > 2σ(I)

  • Rint = 0.137

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.128

  • S = 1.00

  • 3962 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

V1—O1 1.989 (3)
V1—O3 1.941 (3)
V1—O4 1.587 (3)
V1—N1 2.042 (3)
V1—N2 2.125 (3)
V1—N3 2.340 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O4i 0.93 2.44 3.311 (6) 156
C24—H24⋯O1ii 0.93 2.51 3.224 (6) 134
Symmetry codes: (i) y+1, -x+y+1, -z+1; (ii) [-x+{\script{5\over 3}}, -y+{\script{1\over 3}}, -z+{\script{7\over 3}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Vanadium complexes have have been synthesized and characterized continuously due to its biological and pharmacological properties (Baran, 2003). Herein, we report the synthesis and crystal structure of a new oxovanadium(IV) complex with a tridentate Schiff base ligand derived from the condensation of salicylaldehyde and L-Leucine, with a 1,10-phenanthroline coligand.

As shown in Fig. 1, the central V(IV) ion is six-coordinated bound to two O atoms and one N atom of the Schiff base ligand, a vanadyl O atom and two N atoms of the 1,10-phenanthroline ligand, forming a distorted octahedral geometry. Selected bond angles and bond distances of the title complex are given in Table 1.

In the molecular structure of the complex, O1, N1, O3 and N2 atoms are in the equatorial plane, O4 and N3 is in the axial position. The V1 ion lies 0.3485 (17) Å above the equatorial plane towards O4. The V1—N3 bond is significantly longer [2.340 (3) Å] (Table 1), similar to the reported vanadium(V) complex (Bian et al., 2011; Cao et al., 2011; Xu et al., 2005; Li et al., 2010; Li et al., 2006;).

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 2) occur.

Related literature top

For the biological and pharmacological properties of vanadium complexes, see: Baran (2003). For the structures of similar six-coordinate oxidovanadium complexes with amino acid Schiff base ligands, see: Bian et al. (2011); Cao et al. (2011); Xu et al. (2005); Li et al. (2006, 2010); Lu et al. (2011); Sasmal et al. (2007).

Experimental top

L-Leucine (1 mmol, 131.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) with stirring and added successively to a methanol solution (5 ml) of salicylaldehyde (1 mmol, 0.11 ml). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 225.4 mg) was added dropwise and stirred for 2 h continuously. Finally, a methanol solution (5 ml) of 1,10-phenanthroline (1 mmol, 198 mg) was added dropwise and stirred for 2 h. Then the resultant solution was filtered and the filtrate was held at room temperature for several days, whereupon yellow blocky crystals suitable for X-ray diffraction were obtained.

Refinement top

All the H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.98 Å and allowed to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq or 1.5Ueq(Cmethyl).

Structure description top

Vanadium complexes have have been synthesized and characterized continuously due to its biological and pharmacological properties (Baran, 2003). Herein, we report the synthesis and crystal structure of a new oxovanadium(IV) complex with a tridentate Schiff base ligand derived from the condensation of salicylaldehyde and L-Leucine, with a 1,10-phenanthroline coligand.

As shown in Fig. 1, the central V(IV) ion is six-coordinated bound to two O atoms and one N atom of the Schiff base ligand, a vanadyl O atom and two N atoms of the 1,10-phenanthroline ligand, forming a distorted octahedral geometry. Selected bond angles and bond distances of the title complex are given in Table 1.

In the molecular structure of the complex, O1, N1, O3 and N2 atoms are in the equatorial plane, O4 and N3 is in the axial position. The V1 ion lies 0.3485 (17) Å above the equatorial plane towards O4. The V1—N3 bond is significantly longer [2.340 (3) Å] (Table 1), similar to the reported vanadium(V) complex (Bian et al., 2011; Cao et al., 2011; Xu et al., 2005; Li et al., 2010; Li et al., 2006;).

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 2) occur.

For the biological and pharmacological properties of vanadium complexes, see: Baran (2003). For the structures of similar six-coordinate oxidovanadium complexes with amino acid Schiff base ligands, see: Bian et al. (2011); Cao et al. (2011); Xu et al. (2005); Li et al. (2006, 2010); Lu et al. (2011); Sasmal et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, shown 30% probability displacement ellipsoids and the atom-numbering scheme.
Oxido[N-(2-oxidobenzylidene-κO)leucinato- κ2N,O](1,10-phenanthroline-κ2N,N')vanadium(IV) top
Crystal data top
[V(C13H15NO3)O(C12H8N2)]Dx = 1.422 Mg m3
Mr = 480.40Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 3014 reflections
Hall symbol: -R 3θ = 2.4–28.3°
a = 33.675 (4) ŵ = 0.48 mm1
c = 10.283 (2) ÅT = 298 K
V = 10099 (3) Å3Block, yellow
Z = 180.23 × 0.11 × 0.08 mm
F(000) = 4482
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3962 independent reflections
Radiation source: fine-focus sealed tube2020 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.137
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3540
Tmin = 0.898, Tmax = 0.963k = 3939
17437 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0477P)2]
where P = (Fo2 + 2Fc2)/3
3962 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[V(C13H15NO3)O(C12H8N2)]Z = 18
Mr = 480.40Mo Kα radiation
Hexagonal, R3µ = 0.48 mm1
a = 33.675 (4) ÅT = 298 K
c = 10.283 (2) Å0.23 × 0.11 × 0.08 mm
V = 10099 (3) Å3
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3962 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2020 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.963Rint = 0.137
17437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.00Δρmax = 0.40 e Å3
3962 reflectionsΔρmin = 0.38 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.88840 (2)0.14374 (2)0.82377 (7)0.0405 (3)
N10.93728 (11)0.12709 (11)0.7777 (3)0.0400 (9)
N20.85177 (11)0.17154 (11)0.9193 (3)0.0364 (9)
N30.93599 (11)0.19076 (10)0.9904 (3)0.0344 (9)
O10.87689 (9)0.09726 (9)0.9600 (3)0.0488 (8)
O20.89395 (11)0.04585 (11)1.0382 (3)0.0667 (10)
O30.92356 (10)0.20089 (9)0.7295 (3)0.0486 (8)
O40.84766 (10)0.11361 (10)0.7265 (3)0.0594 (9)
C10.89801 (15)0.07417 (16)0.9562 (5)0.0482 (13)
C20.92849 (15)0.08310 (14)0.8356 (5)0.0493 (13)
H20.95750.08500.86050.059*
C30.90355 (16)0.04533 (15)0.7341 (5)0.0632 (15)
H3A0.87580.04540.70960.076*
H3B0.92280.05360.65740.076*
C40.89048 (18)0.00300 (17)0.7707 (6)0.0700 (16)
H40.87090.01120.84790.084*
C50.9313 (2)0.00798 (19)0.8060 (7)0.121 (3)
H5A0.92100.03900.83180.181*
H5B0.94770.01230.87660.181*
H5C0.95120.00040.73210.181*
C60.8627 (2)0.03564 (18)0.6648 (6)0.109 (2)
H6A0.85410.06630.69030.164*
H6B0.88050.02790.58650.164*
H6C0.83560.03370.64980.164*
C70.97293 (15)0.14987 (16)0.7061 (4)0.0469 (12)
H70.99210.13770.69390.056*
C80.98550 (14)0.19273 (15)0.6433 (4)0.0399 (11)
C90.96116 (15)0.21653 (15)0.6601 (4)0.0415 (11)
C100.97886 (17)0.25974 (16)0.6011 (5)0.0570 (14)
H100.96390.27630.61330.068*
C111.01764 (19)0.27800 (19)0.5261 (5)0.0657 (15)
H111.02880.30680.48880.079*
C121.04026 (17)0.2539 (2)0.5057 (5)0.0657 (16)
H121.06590.26590.45220.079*
C131.02484 (15)0.21226 (18)0.5642 (5)0.0563 (14)
H131.04070.19650.55150.068*
C140.80925 (14)0.16091 (14)0.8869 (4)0.0444 (12)
H140.79520.14090.81770.053*
C150.78503 (15)0.17820 (16)0.9513 (5)0.0534 (14)
H150.75540.16980.92570.064*
C160.80519 (17)0.20759 (17)1.0524 (5)0.0536 (14)
H160.78900.21871.09800.064*
C170.85043 (16)0.22109 (15)1.0881 (4)0.0421 (12)
C180.87224 (13)0.20153 (13)1.0202 (4)0.0332 (10)
C190.91747 (13)0.21233 (13)1.0547 (4)0.0329 (10)
C200.94042 (15)0.24385 (14)1.1550 (4)0.0409 (11)
C210.98392 (16)0.25152 (15)1.1888 (5)0.0515 (13)
H211.00030.27191.25540.062*
C221.00214 (15)0.22934 (16)1.1246 (5)0.0491 (13)
H221.03100.23421.14640.059*
C230.97694 (15)0.19928 (14)1.0259 (4)0.0430 (12)
H230.98980.18420.98220.052*
C240.87448 (19)0.25339 (16)1.1893 (5)0.0551 (14)
H240.86020.26671.23460.066*
C250.91796 (18)0.26461 (16)1.2196 (4)0.0565 (14)
H250.93350.28641.28390.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0317 (5)0.0396 (5)0.0497 (5)0.0173 (4)0.0018 (4)0.0068 (4)
N10.030 (2)0.037 (2)0.053 (3)0.0164 (19)0.0006 (19)0.0056 (19)
N20.029 (2)0.036 (2)0.045 (2)0.0169 (18)0.0024 (18)0.0046 (19)
N30.027 (2)0.033 (2)0.045 (2)0.0173 (18)0.0001 (18)0.0003 (17)
O10.0430 (19)0.0417 (19)0.062 (2)0.0215 (17)0.0091 (16)0.0017 (16)
O20.070 (2)0.064 (2)0.068 (3)0.035 (2)0.0031 (19)0.017 (2)
O30.047 (2)0.0468 (19)0.059 (2)0.0287 (17)0.0139 (17)0.0082 (16)
O40.048 (2)0.059 (2)0.071 (2)0.0265 (17)0.0164 (17)0.0237 (18)
C10.037 (3)0.039 (3)0.057 (4)0.011 (3)0.005 (3)0.007 (3)
C20.036 (3)0.035 (3)0.077 (4)0.018 (2)0.001 (3)0.002 (3)
C30.067 (4)0.044 (3)0.083 (4)0.030 (3)0.001 (3)0.005 (3)
C40.065 (4)0.046 (3)0.103 (5)0.030 (3)0.000 (3)0.005 (3)
C50.085 (5)0.068 (4)0.221 (8)0.047 (4)0.010 (5)0.009 (5)
C60.131 (6)0.050 (4)0.136 (6)0.038 (4)0.034 (5)0.031 (4)
C70.041 (3)0.051 (3)0.059 (3)0.031 (3)0.001 (3)0.013 (3)
C80.035 (3)0.040 (3)0.043 (3)0.018 (2)0.003 (2)0.001 (2)
C90.038 (3)0.040 (3)0.037 (3)0.013 (3)0.010 (2)0.010 (2)
C100.070 (4)0.048 (3)0.052 (3)0.028 (3)0.001 (3)0.001 (3)
C110.075 (4)0.066 (4)0.039 (3)0.022 (4)0.001 (3)0.010 (3)
C120.046 (3)0.086 (4)0.043 (4)0.017 (3)0.001 (3)0.006 (3)
C130.037 (3)0.071 (4)0.055 (3)0.023 (3)0.001 (3)0.007 (3)
C140.026 (3)0.040 (3)0.063 (3)0.013 (2)0.005 (2)0.001 (2)
C150.031 (3)0.058 (3)0.082 (4)0.030 (3)0.005 (3)0.014 (3)
C160.054 (4)0.063 (4)0.061 (4)0.042 (3)0.023 (3)0.022 (3)
C170.046 (3)0.044 (3)0.047 (3)0.031 (3)0.014 (3)0.012 (2)
C180.033 (3)0.029 (2)0.038 (3)0.015 (2)0.007 (2)0.010 (2)
C190.031 (3)0.028 (2)0.037 (3)0.012 (2)0.008 (2)0.008 (2)
C200.046 (3)0.039 (3)0.035 (3)0.019 (3)0.006 (2)0.002 (2)
C210.051 (3)0.047 (3)0.047 (3)0.017 (3)0.009 (3)0.007 (2)
C220.029 (3)0.057 (3)0.059 (3)0.020 (3)0.006 (3)0.001 (3)
C230.037 (3)0.040 (3)0.049 (3)0.018 (2)0.002 (2)0.001 (3)
C240.071 (4)0.047 (3)0.057 (4)0.036 (3)0.023 (3)0.005 (3)
C250.066 (4)0.052 (3)0.049 (3)0.028 (3)0.005 (3)0.010 (3)
Geometric parameters (Å, º) top
V1—O11.989 (3)C7—H70.9300
V1—O31.941 (3)C8—C131.407 (6)
V1—O41.587 (3)C8—C91.414 (6)
V1—N12.042 (3)C9—C101.405 (6)
V1—N22.125 (3)C10—C111.369 (6)
V1—N32.340 (3)C10—H100.9300
N1—C71.285 (5)C11—C121.379 (6)
N1—C21.483 (5)C11—H110.9300
N2—C141.333 (5)C12—C131.367 (6)
N2—C181.369 (5)C12—H120.9300
N3—C231.312 (5)C13—H130.9300
N3—C191.344 (5)C14—C151.385 (6)
O1—C11.290 (5)C14—H140.9300
O2—C11.228 (5)C15—C161.360 (6)
O3—C91.313 (5)C15—H150.9300
C1—C21.541 (6)C16—C171.403 (6)
C2—C31.531 (6)C16—H160.9300
C2—H20.9800C17—C181.394 (5)
C3—C41.506 (6)C17—C241.429 (6)
C3—H3A0.9700C18—C191.423 (5)
C3—H3B0.9700C19—C201.403 (5)
C4—C61.497 (7)C20—C211.398 (6)
C4—C51.511 (6)C20—C251.425 (6)
C4—H40.9800C21—C221.352 (6)
C5—H5A0.9600C21—H210.9300
C5—H5B0.9600C22—C231.384 (6)
C5—H5C0.9600C22—H220.9300
C6—H6A0.9600C23—H230.9300
C6—H6B0.9600C24—C251.353 (6)
C6—H6C0.9600C24—H240.9300
C7—C81.438 (6)C25—H250.9300
O4—V1—O3102.90 (15)H6B—C6—H6C109.5
O4—V1—O1100.04 (14)N1—C7—C8125.1 (4)
O3—V1—O1156.11 (12)N1—C7—H7117.5
O4—V1—N1103.66 (14)C8—C7—H7117.5
O3—V1—N188.88 (13)C13—C8—C9118.9 (4)
O1—V1—N179.28 (13)C13—C8—C7117.7 (4)
O4—V1—N293.81 (14)C9—C8—C7123.4 (4)
O3—V1—N289.71 (12)O3—C9—C10118.4 (4)
O1—V1—N295.35 (12)O3—C9—C8123.7 (4)
N1—V1—N2162.35 (14)C10—C9—C8118.0 (4)
O4—V1—N3167.06 (14)C11—C10—C9121.6 (5)
O3—V1—N379.80 (12)C11—C10—H10119.2
O1—V1—N379.32 (11)C9—C10—H10119.2
N1—V1—N388.98 (12)C10—C11—C12120.3 (5)
N2—V1—N373.46 (13)C10—C11—H11119.8
C7—N1—C2119.1 (4)C12—C11—H11119.8
C7—N1—V1127.6 (3)C13—C12—C11119.9 (5)
C2—N1—V1113.3 (3)C13—C12—H12120.1
C14—N2—C18117.7 (4)C11—C12—H12120.1
C14—N2—V1123.2 (3)C12—C13—C8121.3 (5)
C18—N2—V1119.1 (3)C12—C13—H13119.3
C23—N3—C19117.8 (4)C8—C13—H13119.3
C23—N3—V1129.9 (3)N2—C14—C15123.2 (4)
C19—N3—V1112.3 (3)N2—C14—H14118.4
C1—O1—V1120.3 (3)C15—C14—H14118.4
C9—O3—V1131.1 (3)C16—C15—C14119.1 (4)
O2—C1—O1124.5 (5)C16—C15—H15120.4
O2—C1—C2120.6 (5)C14—C15—H15120.4
O1—C1—C2114.9 (4)C15—C16—C17120.1 (4)
N1—C2—C3108.0 (4)C15—C16—H16119.9
N1—C2—C1107.4 (4)C17—C16—H16119.9
C3—C2—C1110.6 (4)C18—C17—C16117.3 (4)
N1—C2—H2110.3C18—C17—C24119.5 (4)
C3—C2—H2110.3C16—C17—C24123.2 (5)
C1—C2—H2110.3N2—C18—C17122.5 (4)
C4—C3—C2118.1 (4)N2—C18—C19117.2 (4)
C4—C3—H3A107.8C17—C18—C19120.2 (4)
C2—C3—H3A107.8N3—C19—C20122.8 (4)
C4—C3—H3B107.8N3—C19—C18117.8 (4)
C2—C3—H3B107.8C20—C19—C18119.4 (4)
H3A—C3—H3B107.1C21—C20—C19116.9 (4)
C6—C4—C3110.4 (5)C21—C20—C25123.9 (4)
C6—C4—C5111.3 (5)C19—C20—C25119.1 (4)
C3—C4—C5112.9 (4)C22—C21—C20120.0 (4)
C6—C4—H4107.3C22—C21—H21120.0
C3—C4—H4107.3C20—C21—H21120.0
C5—C4—H4107.3C21—C22—C23118.7 (4)
C4—C5—H5A109.5C21—C22—H22120.6
C4—C5—H5B109.5C23—C22—H22120.6
H5A—C5—H5B109.5N3—C23—C22123.8 (4)
C4—C5—H5C109.5N3—C23—H23118.1
H5A—C5—H5C109.5C22—C23—H23118.1
H5B—C5—H5C109.5C25—C24—C17120.2 (4)
C4—C6—H6A109.5C25—C24—H24119.9
C4—C6—H6B109.5C17—C24—H24119.9
H6A—C6—H6B109.5C24—C25—C20121.5 (4)
C4—C6—H6C109.5C24—C25—H25119.3
H6A—C6—H6C109.5C20—C25—H25119.3
C1—C2—C3—C462.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.932.443.311 (6)156
C24—H24···O1ii0.932.513.224 (6)134
Symmetry codes: (i) y+1, x+y+1, z+1; (ii) x+5/3, y+1/3, z+7/3.

Experimental details

Crystal data
Chemical formula[V(C13H15NO3)O(C12H8N2)]
Mr480.40
Crystal system, space groupHexagonal, R3
Temperature (K)298
a, c (Å)33.675 (4), 10.283 (2)
V3)10099 (3)
Z18
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.23 × 0.11 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.898, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
17437, 3962, 2020
Rint0.137
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.128, 1.00
No. of reflections3962
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O11.989 (3)V1—N12.042 (3)
V1—O31.941 (3)V1—N22.125 (3)
V1—O41.587 (3)V1—N32.340 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.932.443.311 (6)156
C24—H24···O1ii0.932.513.224 (6)134
Symmetry codes: (i) y+1, x+y+1, z+1; (ii) x+5/3, y+1/3, z+7/3.
 

References

First citationBaran, E. J. (2003). J. Braz. Chem. Soc. 14, 878–888.  Web of Science CrossRef CAS Google Scholar
First citationBian, L., Li, L.-Z., Wang, X., Huang, L., Pu, X.-W. & Dong, J.-F. (2011). Chin. J. Inorg. Chem. 27, 649–654.  CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y.-Z., Zhao, H.-Y., Bai, F.-Y., Xing, Y.-H., Wei, D.-M., Niu, S.-Y. & Shi, Z. (2011). Inorg. Chim. Acta, 368, 223–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L.-Z., Guo, Z.-H., Zhang, Q.-F., Xu, T. & Wang, D.-Q. (2010). Inorg. Chem. Commun. 13, 1166–1169.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L.-Z., Jing, B.-Q., Li, L.-W. & Xu, T. (2006). Z. Kristallogr. New Cryst. Struct. 221, 520–.  CAS Google Scholar
First citationLu, L.-P., Yue, J.-J., Yuan, C.-X., Zhu, M.-L., Han, H., Liu, Z.-W. & Guo, M.-L. (2011). J. Inorg. Biochem. 105, 1323–1328.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSasmal, P., Patra, A. K., Nethaji, M. & Chakravarty, A. R. (2007). Inorg. Chem. 46, 11112–11121.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T., Li, L.-Z., Zhou, S.-F., Guo, G.-Q. & Niu, M.-J. (2005). J. Chem. Crystallogr. 35, 263–267.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds