organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Adamantan-1-yl)(phenyl­sulfan­yl)methanone

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 5 June 2012; accepted 8 June 2012; online 16 June 2012)

Two independent mol­ecules (A and B) comprises the asymmetric unit of the title ester, C17H20OS. The phenyl ring is inclined with respect to the thio­carboxyl group, forming dihedral angles of 58.95 (6) (in mol­ecule A) and 62.28 (6)° (in mol­ecule B). In each independent mol­ecule, one adamantyl methyl­ene C atom is nearly coplanar with the thio­carboxyl group. The major difference between mol­ecules A and B relates to the relationship between the S atom and the coplanar adamantyl methyl­ene C atom [Ca—Cq—Cc—S torsion angles = 178.25 (8) and 6.81 (13)°, respectively; Ca = adamantyl methyl­ene C atom, Cq = quaternary C atom and Cc = carbonyl C atom], whereby the S atom in mol­ecule A has an anti relationship with the methyl­ene C atom and in mol­ecule B, the S atom is syn. In the crystal, C—H⋯π inter­actions are formed leading to supra­molecular layers in the ac plane.

Related literature

For applications of thio­esters in organic synthesis, see: Shah et al. (2002[Shah, S. T. A., Khan, K. M., Heinrich, A. M. & Voelter, W. (2002). Tetrahedron Lett. 43, 8281-8283.]); Manabe et al. (2007[Manabe, S., Sugiokab, T. & Itoa, Y. (2007). Tetrahedron Lett. 48, 849-853.]); Horst et al. (2007[Horst, B., Feringa, B. L. & Minnaard, A. J. (2007). Org. Lett. 9, 3013-3015.]). For the synthesis, see: El-Azab & Abdel-Aziz et al. (2012[El-Azab, A. S. & Abdel-Aziz, A. A.-M. (2012). Phosphorus, Sulfur Silicon Relat. Elem. doi:10.1080/10426507.2012.664220.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20OS

  • Mr = 272.39

  • Monoclinic, P 21 /c

  • a = 6.3545 (1) Å

  • b = 39.4559 (5) Å

  • c = 11.3878 (1) Å

  • β = 99.879 (1)°

  • V = 2812.84 (6) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.94 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.881, Tmax = 1.000

  • 11270 measured reflections

  • 5753 independent reflections

  • 5445 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.02

  • 5753 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C12–C17 and C29–C34 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯Cg1i 1.00 2.81 3.6129 (13) 138
C34—H34⋯Cg1 0.95 2.73 3.4234 (14) 131
C15—H15⋯Cg2ii 0.95 2.86 3.6668 (16) 143
Symmetry codes: (i) x, y, z+1; (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

It is widely known that thioesters are useful building blocks for organic transformations, for example thioesters are important in many areas of organic chemistry, particularly in peptide, protein, and β-lactam synthesis (Shah et al., 2002). Furthermore, they find application in peptide bond formation (Manabe et al., 2007) and in natural product synthesis (Horst et al., 2007). The title compound, S-phenyl adamantane-1-carbothioate (I) was synthesized according to El-Azab & Abdel-Aziz (2012) and herein, we describe its crystal structure determination.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As seen from the overlay diagram, Fig. 2, there are non-trivial differences between the molecules when the S1-containing molecule is superimposed with the inverted S2-containing molecule. The dihedral angle between the plane through the COS atoms and the S-bound phenyl ring is 58.95 (6)° for the S1-containing molecule and 62.28 (6)° for the S2-containing molecule. There is a more dramatic difference in the relative orientations between the COS residue and the adamantyl group. This is best quantified in the values of the C2—C1—C11—S1 and C25—C18—C28—S2 torsion angles of 178.25 (8) and 6.81 (13)°, respectively, i.e. where there is an almost co-planar relationship between the S and one methylene-C atom. The difference arises in the the S1 atom has anti relationship with the co-planar methylene-C atom and the S2 atom has a syn relationship.

In the crystal packing, C—H···π interactions are formed with the C12—C17 ring forming two such interactions, Table 1. The result is the formation of a supramolecular layer in the ac plane with the adamantyl groups inter-digitating along the b axis, Fig. 2.

Related literature top

For applications of thioesters in organic synthesis, see: Shah et al. (2002); Manabe et al. (2007); Horst et al. (2007). For the synthesis, see: El-Azab & Abdel-Aziz et al. (2012).

Experimental top

Trifluoroacetic acid (0.4 equiv.) was added drop-wise to a stirred solution of 1-adamantane carboxylic acid (1 equiv.) and thiophenol (1 equiv) in dry CH3CN (0.01 mol/L) over a period of 15 min. at room temperature. After being stirred for 5 h at 333 K, the mixture was quenched by adding ammonium chloride solution (5 ml), extracted with ethylacetate, washed with brine and dried over anhydrous Na2SO4. The product, obtained after evaporation of the solvent, was purified by column chromatography using mixture of hexane and CHCl3 as eluent. The crystals were obtained by slow evaporation of the eluent. M.pt; 341 K; 86% yield. IR (KBr): 1680 cm-1 (CO). 1H NMR (CDCl3): δ 7.42–7.36 (m, 5H), 2.13–2.11 (m, 3H), 2.04–2.02 (m, 6H), 1.82–1.76 (m, 6H). 13C NMR (CDCl3): δ 28.1, 28.3, 36.4, 39.3, 49.1, 128.0, 129.1, 134.8, 135.1, 204.2.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 1.00 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

It is widely known that thioesters are useful building blocks for organic transformations, for example thioesters are important in many areas of organic chemistry, particularly in peptide, protein, and β-lactam synthesis (Shah et al., 2002). Furthermore, they find application in peptide bond formation (Manabe et al., 2007) and in natural product synthesis (Horst et al., 2007). The title compound, S-phenyl adamantane-1-carbothioate (I) was synthesized according to El-Azab & Abdel-Aziz (2012) and herein, we describe its crystal structure determination.

Two independent molecules comprise the asymmetric unit of (I), Fig. 1. As seen from the overlay diagram, Fig. 2, there are non-trivial differences between the molecules when the S1-containing molecule is superimposed with the inverted S2-containing molecule. The dihedral angle between the plane through the COS atoms and the S-bound phenyl ring is 58.95 (6)° for the S1-containing molecule and 62.28 (6)° for the S2-containing molecule. There is a more dramatic difference in the relative orientations between the COS residue and the adamantyl group. This is best quantified in the values of the C2—C1—C11—S1 and C25—C18—C28—S2 torsion angles of 178.25 (8) and 6.81 (13)°, respectively, i.e. where there is an almost co-planar relationship between the S and one methylene-C atom. The difference arises in the the S1 atom has anti relationship with the co-planar methylene-C atom and the S2 atom has a syn relationship.

In the crystal packing, C—H···π interactions are formed with the C12—C17 ring forming two such interactions, Table 1. The result is the formation of a supramolecular layer in the ac plane with the adamantyl groups inter-digitating along the b axis, Fig. 2.

For applications of thioesters in organic synthesis, see: Shah et al. (2002); Manabe et al. (2007); Horst et al. (2007). For the synthesis, see: El-Azab & Abdel-Aziz et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Superimposition of the S1-containing molecule (red) and the inverted S2-containing molecule (blue) in (I). The COS moieties have been superimposed.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents for (I). The C—H···π interactions are shown as purple dashed lines.
(Adamantan-1-yl)(phenylsulfanyl)methanone top
Crystal data top
C17H20OSF(000) = 1168
Mr = 272.39Dx = 1.286 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7141 reflections
a = 6.3545 (1) Åθ = 4.5–76.4°
b = 39.4559 (5) ŵ = 1.94 mm1
c = 11.3878 (1) ÅT = 100 K
β = 99.879 (1)°Prism, colourless
V = 2812.84 (6) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5753 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5445 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.015
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.5°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 4748
Tmin = 0.881, Tmax = 1.000l = 814
11270 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.0716P]
where P = (Fo2 + 2Fc2)/3
5753 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C17H20OSV = 2812.84 (6) Å3
Mr = 272.39Z = 8
Monoclinic, P21/cCu Kα radiation
a = 6.3545 (1) ŵ = 1.94 mm1
b = 39.4559 (5) ÅT = 100 K
c = 11.3878 (1) Å0.30 × 0.25 × 0.20 mm
β = 99.879 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5753 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
5445 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 1.000Rint = 0.015
11270 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
5753 reflectionsΔρmin = 0.40 e Å3
343 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46660 (5)0.389463 (8)0.15443 (3)0.02399 (9)
S20.08761 (5)0.329812 (7)0.36140 (3)0.02206 (9)
O10.76535 (15)0.39786 (2)0.02056 (8)0.0241 (2)
O20.44170 (15)0.29759 (2)0.45497 (8)0.0251 (2)
C10.76163 (18)0.44208 (3)0.16696 (10)0.0137 (2)
C20.95311 (18)0.45667 (3)0.11779 (10)0.0166 (2)
H2A1.07060.43990.12750.020*
H2B0.91090.46160.03170.020*
C31.02995 (18)0.48936 (3)0.18489 (10)0.0171 (2)
H31.15460.49870.15250.021*
C41.09809 (19)0.48149 (3)0.31807 (11)0.0190 (2)
H4A1.21600.46480.32910.023*
H4B1.14990.50240.36160.023*
C50.90662 (19)0.46717 (3)0.36777 (10)0.0174 (2)
H50.95070.46210.45460.021*
C60.72444 (19)0.49318 (3)0.35115 (10)0.0179 (2)
H6A0.60100.48400.38340.021*
H6B0.77230.51420.39530.021*
C70.65749 (18)0.50116 (3)0.21815 (11)0.0168 (2)
H70.53910.51820.20750.020*
C80.58022 (18)0.46848 (3)0.15095 (10)0.0152 (2)
H8A0.53500.47350.06520.018*
H8B0.45570.45930.18200.018*
C90.82946 (19)0.43447 (3)0.30135 (10)0.0162 (2)
H9A0.70680.42500.33370.019*
H9B0.94560.41740.31290.019*
C100.84922 (19)0.51560 (3)0.16903 (11)0.0182 (2)
H10A0.80630.52110.08350.022*
H10B0.89920.53670.21210.022*
C110.68647 (18)0.40943 (3)0.10050 (10)0.0157 (2)
C120.4232 (2)0.35256 (3)0.06489 (10)0.0186 (2)
C130.2217 (2)0.34757 (3)0.00245 (11)0.0219 (3)
H130.11330.36420.00350.026*
C140.1807 (2)0.31787 (4)0.06838 (12)0.0280 (3)
H140.04290.31410.11400.034*
C150.3390 (3)0.29386 (3)0.06799 (12)0.0310 (3)
H150.31030.27370.11380.037*
C160.5399 (3)0.29911 (3)0.00078 (12)0.0298 (3)
H160.64850.28260.00100.036*
C170.5832 (2)0.32837 (3)0.06684 (11)0.0232 (3)
H170.72010.33180.11380.028*
C180.41351 (18)0.35295 (3)0.54008 (10)0.0144 (2)
C190.61791 (19)0.36792 (3)0.50444 (10)0.0169 (2)
H19A0.72730.35000.50680.020*
H19B0.58550.37690.42210.020*
C200.70394 (19)0.39656 (3)0.59103 (11)0.0183 (2)
H200.83580.40630.56740.022*
C210.7582 (2)0.38215 (3)0.71780 (11)0.0211 (3)
H21A0.86830.36430.72060.025*
H21B0.81630.40030.77400.025*
C220.5563 (2)0.36727 (3)0.75447 (10)0.0197 (2)
H220.59200.35790.83700.024*
C230.3884 (2)0.39527 (3)0.75166 (11)0.0198 (2)
H23A0.25810.38590.77630.024*
H23B0.44460.41350.80800.024*
C240.33386 (19)0.40958 (3)0.62496 (11)0.0174 (2)
H240.22340.42770.62270.021*
C250.24680 (19)0.38120 (3)0.53755 (11)0.0183 (2)
H25A0.11460.37180.55970.022*
H25B0.21100.39060.45590.022*
C260.4675 (2)0.33886 (3)0.66795 (10)0.0180 (2)
H26A0.33720.32920.69180.022*
H26B0.57450.32050.67100.022*
C270.5349 (2)0.42451 (3)0.58783 (11)0.0189 (2)
H27A0.59150.44300.64290.023*
H27B0.49960.43400.50640.023*
C280.33992 (19)0.32324 (3)0.45677 (10)0.0164 (2)
C290.0397 (2)0.29028 (3)0.28765 (11)0.0189 (2)
C300.1416 (2)0.27231 (3)0.30447 (11)0.0228 (3)
H300.22720.28020.35950.027*
C310.1958 (2)0.24277 (3)0.23994 (12)0.0257 (3)
H310.32020.23060.25020.031*
C320.0694 (2)0.23103 (3)0.16072 (11)0.0247 (3)
H320.10730.21080.11690.030*
C330.1126 (2)0.24884 (3)0.14535 (11)0.0232 (3)
H330.20010.24060.09190.028*
C340.1671 (2)0.27874 (3)0.20787 (11)0.0213 (3)
H340.28990.29120.19630.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02653 (17)0.02207 (16)0.02655 (16)0.00994 (12)0.01353 (13)0.01064 (12)
S20.02095 (16)0.01698 (15)0.02578 (16)0.00343 (11)0.00291 (12)0.00611 (11)
O10.0261 (5)0.0264 (5)0.0218 (4)0.0040 (4)0.0103 (4)0.0081 (4)
O20.0249 (5)0.0175 (4)0.0313 (5)0.0064 (4)0.0003 (4)0.0048 (4)
C10.0128 (5)0.0158 (5)0.0128 (5)0.0002 (4)0.0028 (4)0.0004 (4)
C20.0142 (5)0.0201 (6)0.0166 (5)0.0003 (4)0.0056 (4)0.0003 (4)
C30.0122 (5)0.0201 (6)0.0197 (6)0.0026 (4)0.0049 (4)0.0011 (4)
C40.0140 (5)0.0217 (6)0.0200 (6)0.0027 (4)0.0006 (4)0.0001 (5)
C50.0187 (6)0.0194 (6)0.0134 (5)0.0034 (5)0.0012 (4)0.0003 (4)
C60.0182 (6)0.0177 (6)0.0188 (6)0.0042 (4)0.0063 (4)0.0043 (4)
C70.0135 (5)0.0152 (5)0.0222 (6)0.0003 (4)0.0039 (4)0.0001 (4)
C80.0118 (5)0.0166 (5)0.0170 (5)0.0000 (4)0.0019 (4)0.0010 (4)
C90.0181 (6)0.0158 (5)0.0143 (5)0.0007 (4)0.0011 (4)0.0017 (4)
C100.0177 (6)0.0166 (5)0.0208 (6)0.0016 (4)0.0043 (4)0.0031 (4)
C110.0150 (5)0.0176 (5)0.0141 (5)0.0010 (4)0.0015 (4)0.0011 (4)
C120.0259 (6)0.0151 (5)0.0156 (5)0.0034 (5)0.0056 (5)0.0006 (4)
C130.0259 (7)0.0192 (6)0.0207 (6)0.0040 (5)0.0047 (5)0.0023 (5)
C140.0381 (8)0.0264 (7)0.0185 (6)0.0132 (6)0.0022 (5)0.0001 (5)
C150.0594 (10)0.0170 (6)0.0189 (6)0.0095 (6)0.0129 (6)0.0028 (5)
C160.0490 (9)0.0176 (6)0.0266 (7)0.0070 (6)0.0172 (6)0.0043 (5)
C170.0282 (7)0.0225 (6)0.0193 (6)0.0025 (5)0.0051 (5)0.0048 (5)
C180.0143 (5)0.0132 (5)0.0163 (5)0.0014 (4)0.0045 (4)0.0008 (4)
C190.0172 (6)0.0164 (5)0.0188 (5)0.0003 (4)0.0082 (4)0.0011 (4)
C200.0148 (6)0.0181 (6)0.0235 (6)0.0023 (4)0.0077 (4)0.0009 (5)
C210.0165 (6)0.0226 (6)0.0230 (6)0.0021 (5)0.0005 (5)0.0026 (5)
C220.0258 (6)0.0191 (6)0.0142 (5)0.0009 (5)0.0036 (5)0.0022 (4)
C230.0211 (6)0.0202 (6)0.0202 (6)0.0018 (5)0.0094 (5)0.0034 (5)
C240.0154 (6)0.0144 (5)0.0227 (6)0.0022 (4)0.0040 (4)0.0023 (4)
C250.0152 (6)0.0162 (5)0.0226 (6)0.0033 (4)0.0012 (4)0.0025 (4)
C260.0228 (6)0.0152 (5)0.0171 (5)0.0007 (4)0.0061 (5)0.0032 (4)
C270.0219 (6)0.0135 (5)0.0222 (6)0.0010 (4)0.0064 (5)0.0001 (4)
C280.0166 (6)0.0163 (5)0.0173 (5)0.0006 (4)0.0056 (4)0.0015 (4)
C290.0226 (6)0.0155 (5)0.0173 (5)0.0011 (5)0.0002 (4)0.0013 (4)
C300.0231 (6)0.0239 (6)0.0216 (6)0.0000 (5)0.0042 (5)0.0021 (5)
C310.0266 (7)0.0236 (6)0.0271 (7)0.0061 (5)0.0051 (5)0.0014 (5)
C320.0355 (7)0.0171 (6)0.0204 (6)0.0037 (5)0.0019 (5)0.0023 (5)
C330.0338 (7)0.0190 (6)0.0180 (6)0.0010 (5)0.0078 (5)0.0000 (5)
C340.0261 (6)0.0181 (6)0.0203 (6)0.0011 (5)0.0060 (5)0.0024 (5)
Geometric parameters (Å, º) top
S1—C121.7717 (12)C16—C171.3888 (19)
S1—C111.8011 (12)C16—H160.9500
S2—C291.7729 (12)C17—H170.9500
S2—C281.7944 (12)C18—C281.5298 (16)
O1—C111.2021 (15)C18—C251.5348 (15)
O2—C281.2033 (15)C18—C191.5432 (15)
C1—C111.5284 (15)C18—C261.5413 (15)
C1—C21.5360 (15)C19—C201.5373 (16)
C1—C81.5413 (15)C19—H19A0.9900
C1—C91.5465 (15)C19—H19B0.9900
C2—C31.5357 (16)C20—C211.5347 (17)
C2—H2A0.9900C20—C271.5356 (16)
C2—H2B0.9900C20—H201.0000
C3—C101.5337 (16)C21—C221.5331 (17)
C3—C41.5359 (16)C21—H21A0.9900
C3—H31.0000C21—H21B0.9900
C4—C51.5349 (16)C22—C261.5343 (17)
C4—H4A0.9900C22—C231.5322 (17)
C4—H4B0.9900C22—H221.0000
C5—C91.5330 (16)C23—C241.5328 (17)
C5—C61.5343 (17)C23—H23A0.9900
C5—H51.0000C23—H23B0.9900
C6—C71.5339 (16)C24—C271.5308 (16)
C6—H6A0.9900C24—C251.5368 (16)
C6—H6B0.9900C24—H241.0000
C7—C101.5349 (16)C25—H25A0.9900
C7—C81.5362 (16)C25—H25B0.9900
C7—H71.0000C26—H26A0.9900
C8—H8A0.9900C26—H26B0.9900
C8—H8B0.9900C27—H27A0.9900
C9—H9A0.9900C27—H27B0.9900
C9—H9B0.9900C29—C301.3937 (18)
C10—H10A0.9900C29—C341.3926 (18)
C10—H10B0.9900C30—C311.3891 (18)
C12—C131.3894 (18)C30—H300.9500
C12—C171.3917 (18)C31—C321.386 (2)
C13—C141.3919 (18)C31—H310.9500
C13—H130.9500C32—C331.3902 (19)
C14—C151.381 (2)C32—H320.9500
C14—H140.9500C33—C341.3907 (18)
C15—C161.386 (2)C33—H330.9500
C15—H150.9500C34—H340.9500
C12—S1—C11102.49 (6)C12—C17—H17120.4
C29—S2—C28102.86 (6)C28—C18—C25114.10 (10)
C11—C1—C2109.59 (9)C28—C18—C19108.16 (9)
C11—C1—C8110.32 (9)C25—C18—C19109.05 (9)
C2—C1—C8109.07 (9)C28—C18—C26107.72 (9)
C11—C1—C9109.68 (9)C25—C18—C26108.69 (9)
C2—C1—C9109.26 (9)C19—C18—C26109.00 (9)
C8—C1—C9108.91 (9)C20—C19—C18109.60 (9)
C3—C2—C1109.73 (9)C20—C19—H19A109.8
C3—C2—H2A109.7C18—C19—H19A109.8
C1—C2—H2A109.7C20—C19—H19B109.8
C3—C2—H2B109.7C18—C19—H19B109.8
C1—C2—H2B109.7H19A—C19—H19B108.2
H2A—C2—H2B108.2C21—C20—C27109.38 (10)
C10—C3—C2109.92 (10)C21—C20—C19109.20 (10)
C10—C3—C4109.36 (10)C27—C20—C19110.03 (10)
C2—C3—C4109.45 (10)C21—C20—H20109.4
C10—C3—H3109.4C27—C20—H20109.4
C2—C3—H3109.4C19—C20—H20109.4
C4—C3—H3109.4C22—C21—C20109.54 (10)
C5—C4—C3109.37 (9)C22—C21—H21A109.8
C5—C4—H4A109.8C20—C21—H21A109.8
C3—C4—H4A109.8C22—C21—H21B109.8
C5—C4—H4B109.8C20—C21—H21B109.8
C3—C4—H4B109.8H21A—C21—H21B108.2
H4A—C4—H4B108.2C21—C22—C26109.73 (10)
C9—C5—C6109.35 (9)C21—C22—C23109.30 (10)
C9—C5—C4109.55 (10)C26—C22—C23109.58 (10)
C6—C5—C4109.72 (10)C21—C22—H22109.4
C9—C5—H5109.4C26—C22—H22109.4
C6—C5—H5109.4C23—C22—H22109.4
C4—C5—H5109.4C24—C23—C22109.24 (9)
C7—C6—C5109.55 (9)C24—C23—H23A109.8
C7—C6—H6A109.8C22—C23—H23A109.8
C5—C6—H6A109.8C24—C23—H23B109.8
C7—C6—H6B109.8C22—C23—H23B109.8
C5—C6—H6B109.8H23A—C23—H23B108.3
H6A—C6—H6B108.2C27—C24—C23109.71 (10)
C6—C7—C10109.45 (9)C27—C24—C25109.04 (10)
C6—C7—C8109.29 (9)C23—C24—C25109.83 (10)
C10—C7—C8109.63 (10)C27—C24—H24109.4
C6—C7—H7109.5C23—C24—H24109.4
C10—C7—H7109.5C25—C24—H24109.4
C8—C7—H7109.5C18—C25—C24110.28 (9)
C7—C8—C1109.86 (9)C18—C25—H25A109.6
C7—C8—H8A109.7C24—C25—H25A109.6
C1—C8—H8A109.7C18—C25—H25B109.6
C7—C8—H8B109.7C24—C25—H25B109.6
C1—C8—H8B109.7H25A—C25—H25B108.1
H8A—C8—H8B108.2C22—C26—C18109.94 (9)
C5—C9—C1109.64 (9)C22—C26—H26A109.7
C5—C9—H9A109.7C18—C26—H26A109.7
C1—C9—H9A109.7C22—C26—H26B109.7
C5—C9—H9B109.7C18—C26—H26B109.7
C1—C9—H9B109.7H26A—C26—H26B108.2
H9A—C9—H9B108.2C24—C27—C20109.31 (9)
C3—C10—C7109.37 (9)C24—C27—H27A109.8
C3—C10—H10A109.8C20—C27—H27A109.8
C7—C10—H10A109.8C24—C27—H27B109.8
C3—C10—H10B109.8C20—C27—H27B109.8
C7—C10—H10B109.8H27A—C27—H27B108.3
H10A—C10—H10B108.2O2—C28—C18123.17 (11)
O1—C11—C1124.03 (11)O2—C28—S2122.56 (9)
O1—C11—S1122.73 (9)C18—C28—S2114.26 (8)
C1—C11—S1113.24 (8)C30—C29—C34120.65 (11)
C13—C12—C17120.87 (12)C30—C29—S2117.47 (10)
C13—C12—S1118.15 (10)C34—C29—S2121.66 (10)
C17—C12—S1120.90 (10)C31—C30—C29119.34 (12)
C12—C13—C14119.10 (13)C31—C30—H30120.3
C12—C13—H13120.4C29—C30—H30120.3
C14—C13—H13120.4C32—C31—C30120.40 (12)
C15—C14—C13120.47 (13)C32—C31—H31119.8
C15—C14—H14119.8C30—C31—H31119.8
C13—C14—H14119.8C31—C32—C33120.01 (12)
C14—C15—C16120.01 (12)C31—C32—H32120.0
C14—C15—H15120.0C33—C32—H32120.0
C16—C15—H15120.0C34—C33—C32120.26 (12)
C15—C16—C17120.42 (13)C34—C33—H33119.9
C15—C16—H16119.8C32—C33—H33119.9
C17—C16—H16119.8C33—C34—C29119.33 (12)
C16—C17—C12119.13 (13)C33—C34—H34120.3
C16—C17—H17120.4C29—C34—H34120.3
C11—C1—C2—C3179.65 (9)C28—C18—C19—C20176.73 (9)
C8—C1—C2—C359.48 (12)C25—C18—C19—C2058.66 (12)
C9—C1—C2—C359.46 (12)C26—C18—C19—C2059.87 (12)
C1—C2—C3—C1059.96 (12)C18—C19—C20—C2160.67 (12)
C1—C2—C3—C460.17 (12)C18—C19—C20—C2759.40 (12)
C10—C3—C4—C560.16 (12)C27—C20—C21—C2260.01 (13)
C2—C3—C4—C560.31 (12)C19—C20—C21—C2260.45 (12)
C3—C4—C5—C960.34 (12)C20—C21—C22—C2659.90 (13)
C3—C4—C5—C659.71 (12)C20—C21—C22—C2360.30 (13)
C9—C5—C6—C760.61 (12)C21—C22—C23—C2460.27 (12)
C4—C5—C6—C759.56 (12)C26—C22—C23—C2460.02 (12)
C5—C6—C7—C1059.76 (12)C22—C23—C24—C2760.40 (12)
C5—C6—C7—C860.31 (12)C22—C23—C24—C2559.43 (12)
C6—C7—C8—C160.07 (12)C28—C18—C25—C24179.25 (9)
C10—C7—C8—C159.89 (12)C19—C18—C25—C2459.70 (12)
C11—C1—C8—C7179.96 (9)C26—C18—C25—C2459.03 (12)
C2—C1—C8—C759.63 (12)C27—C24—C25—C1860.66 (12)
C9—C1—C8—C759.53 (12)C23—C24—C25—C1859.58 (13)
C6—C5—C9—C160.35 (12)C21—C22—C26—C1859.45 (13)
C4—C5—C9—C159.92 (12)C23—C22—C26—C1860.57 (12)
C11—C1—C9—C5179.52 (9)C28—C18—C26—C22176.34 (9)
C2—C1—C9—C559.38 (12)C25—C18—C26—C2259.56 (12)
C8—C1—C9—C559.66 (12)C19—C18—C26—C2259.20 (12)
C2—C3—C10—C759.66 (12)C23—C24—C27—C2060.11 (12)
C4—C3—C10—C760.52 (12)C25—C24—C27—C2060.21 (12)
C6—C7—C10—C360.32 (12)C21—C20—C27—C2459.75 (13)
C8—C7—C10—C359.55 (12)C19—C20—C27—C2460.20 (12)
C2—C1—C11—O11.39 (16)C25—C18—C28—O2173.14 (11)
C8—C1—C11—O1118.72 (12)C19—C18—C28—O265.32 (14)
C9—C1—C11—O1121.32 (12)C26—C18—C28—O252.37 (15)
C2—C1—C11—S1178.25 (8)C25—C18—C28—S26.81 (13)
C8—C1—C11—S161.65 (10)C19—C18—C28—S2114.73 (9)
C9—C1—C11—S158.32 (11)C26—C18—C28—S2127.58 (9)
C12—S1—C11—O11.36 (12)C29—S2—C28—O24.68 (12)
C12—S1—C11—C1178.29 (8)C29—S2—C28—C18175.27 (8)
C11—S1—C12—C13122.88 (10)C28—S2—C29—C30118.64 (10)
C11—S1—C12—C1760.50 (11)C28—S2—C29—C3466.73 (11)
C17—C12—C13—C140.09 (18)C34—C29—C30—C310.55 (19)
S1—C12—C13—C14176.54 (9)S2—C29—C30—C31174.15 (10)
C12—C13—C14—C150.74 (19)C29—C30—C31—C320.8 (2)
C13—C14—C15—C160.6 (2)C30—C31—C32—C330.1 (2)
C14—C15—C16—C170.3 (2)C31—C32—C33—C341.0 (2)
C15—C16—C17—C120.92 (19)C32—C33—C34—C291.24 (19)
C13—C12—C17—C160.74 (18)C30—C29—C34—C330.48 (19)
S1—C12—C17—C16177.27 (10)S2—C29—C34—C33174.95 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C29–C34 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C22—H22···Cg1i1.002.813.6129 (13)138
C34—H34···Cg10.952.733.4234 (14)131
C15—H15···Cg2ii0.952.863.6668 (16)143
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC17H20OS
Mr272.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.3545 (1), 39.4559 (5), 11.3878 (1)
β (°) 99.879 (1)
V3)2812.84 (6)
Z8
Radiation typeCu Kα
µ (mm1)1.94
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.881, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11270, 5753, 5445
Rint0.015
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.02
No. of reflections5753
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.40

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C12–C17 and C29–C34 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C22—H22···Cg1i1.002.813.6129 (13)138
C34—H34···Cg10.952.733.4234 (14)131
C15—H15···Cg2ii0.952.863.6668 (16)143
Symmetry codes: (i) x, y, z+1; (ii) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S. & Abdel-Aziz, A. A.-M. (2012). Phosphorus, Sulfur Silicon Relat. Elem. doi:10.1080/10426507.2012.664220.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHorst, B., Feringa, B. L. & Minnaard, A. J. (2007). Org. Lett. 9, 3013–3015.  Web of Science PubMed Google Scholar
First citationManabe, S., Sugiokab, T. & Itoa, Y. (2007). Tetrahedron Lett. 48, 849–853.  Web of Science CrossRef CAS Google Scholar
First citationShah, S. T. A., Khan, K. M., Heinrich, A. M. & Voelter, W. (2002). Tetrahedron Lett. 43, 8281–8283.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds