organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-Methyl-3-(2-methyl­phen­yl)-4-oxo-3,4-di­hydro­quinazolin-8-yl]­­oxy}aceto­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt, cDepartment of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt, dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and eChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 6 June 2012; accepted 9 June 2012; online 16 June 2012)

In the title compound, C18H15N3O2, the fused ring system is almost planar [the dihedral angle between the six-membered rings is 1.81 (6)°]. The 2-tolyl ring is approximately orthogonal to this plane [dihedral angle = 83.03 (7)°] as is the acetonitrile group [C—O—C—C torsion angle = 79.24 (14)°] which is also syn to the methyl substituent of the tolyl group. In the crystal, supra­molecular layers are formed in the bc plane mediated by C—H⋯O, C—H⋯N and C—H⋯π inter­actions. The tolyl group is disordered over two positions in a 0.852 (3):0.148 (3) ratio.

Related literature

For the biological activity of quinazoline-4(3H)-one derivatives, see: El-Azab et al. (2010[El-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188-4198.], 2011[El-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837-848.]); El-Azab & ElTahir (2012[El-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327-333.]). For a related structure, see: Abdel-Aziz et al. (2012[Abdel-Aziz, A. A.-M., El-Azab, A. S., El-Sherbeny, M. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2032.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15N3O2

  • Mr = 305.33

  • Monoclinic, P 21 /c

  • a = 15.4721 (3) Å

  • b = 6.7775 (1) Å

  • c = 15.0124 (4) Å

  • β = 109.143 (3)°

  • V = 1487.18 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.808, Tmax = 0.866

  • 10100 measured reflections

  • 3088 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.123

  • S = 1.09

  • 3088 reflections

  • 233 parameters

  • 58 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C11–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.95 2.49 3.275 (2) 140
C8—H8C⋯O1ii 0.98 2.47 3.2048 (18) 132
C17—H17B⋯O2iii 0.99 2.52 3.1768 (16) 124
C17—H17B⋯N1iii 0.99 2.34 3.2976 (18) 163
C3—H3⋯Cg1iv 0.95 2.95 3.6775 (18) 134
C17—H17ACg2v 0.99 2.83 3.4979 (15) 125
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x, y-1, z; (iii) -x+1, -y, -z+1; (iv) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinazoline-4(3H)-one derivatives attract interest owing to their various biological activities (El-Azab et al., 2010; El-Azab & ElTahir, 2012). It was in this context that the title compound, 2-[3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yloxy]acetonitrile (I), one of a series of methaqualone analogues, was originally synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2011). Herein, the crystal and molecular structure of (I) is described as part of on-going structural investigations (Abdel-Aziz et al., 2012).

In (I), Fig. 1, the dihedral angle between the (N1,N2,C9–C11,C16) and C11–C16 rings is 1.81 (6)°. The 2-tolyl ring is almost orthogonal to this plane, forming a dihedral angle of 83.03 (7)° with the adjacent pyrimidine ring. The acetonitrile group projects almost normal to the benzene ring to which it is connected as seen in the C15—O2—C17—C18 torsion angle of 79.24 (14)° and is syn with respect to the methyl substituent of the tolyl group.

In the crystal packing, supramolecular layers are formed in the bc plane mediated by C—H···O, C—H···N and C—H···π interactions, Table 1. Layers inter-digitate along the a axis without specific intermolecular interactions between them, Fig. 2.

Related literature top

For the biological activity of quinazoline-4(3H)-one derivatives, see: El-Azab et al. (2010, 2011); El-Azab & ElTahir (2012). For a related structure, see: Abdel-Aziz et al. (2012).

Experimental top

A mixture of 8-hydroxymethaqualone (532 mg, 2 mmol) and 2-chloroacetonitrile (159 mg, 2.1 mmol) in acetone (15 ml) containing anhydrous potassium carbonate (415 mg, 3 mmol) was heated under reflux for 10 h. The reaction mixture was filtered while hot, the solvent was removed under reduced pressure, and the solid obtained was dried and recrystallized from AcOH. Yield 88%; M.pt: 489–491 K. 1H NMR (500 MHz, DMSO-d6): δ = 7.81–7.37 (m, 7H), 5.38 (s, 2H), 2.08 (s, 3H), 2.01 (s, 3H) p.p.m.. 13C NMR (DMSO-d6): δ = 17.3, 24.1, 55.4, 117.0, 119.0, 120.6, 122.4, 127.0, 127.9, 128.8, 129.8, 131.5, 135.5, 137.2, 139.0, 151.5, 154.4, 160.8 p.p.m.. MS (70 eV): m/z = 305.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The tolyl group is disordered over two positions in a 0.852 (3):0.148 (3) ratio. The N—C1 and N—C1' bond lengths were restrained to within 0.01 Å of each other, and the anisotropic displacement parameters of the primed atoms were restrained to be nearly isotropic and were set to those of the unprimed ones. The 1,2-related C—C distances were restrained to within 0.01 Å and the 1,3-related ones to within 0.02 Å.

Structure description top

Quinazoline-4(3H)-one derivatives attract interest owing to their various biological activities (El-Azab et al., 2010; El-Azab & ElTahir, 2012). It was in this context that the title compound, 2-[3,4-dihydro-2-methyl-3-(2-methylphenyl)-4-oxoquinazolin-8-yloxy]acetonitrile (I), one of a series of methaqualone analogues, was originally synthesized and evaluated for its anti-convulsant activity (El-Azab et al., 2011). Herein, the crystal and molecular structure of (I) is described as part of on-going structural investigations (Abdel-Aziz et al., 2012).

In (I), Fig. 1, the dihedral angle between the (N1,N2,C9–C11,C16) and C11–C16 rings is 1.81 (6)°. The 2-tolyl ring is almost orthogonal to this plane, forming a dihedral angle of 83.03 (7)° with the adjacent pyrimidine ring. The acetonitrile group projects almost normal to the benzene ring to which it is connected as seen in the C15—O2—C17—C18 torsion angle of 79.24 (14)° and is syn with respect to the methyl substituent of the tolyl group.

In the crystal packing, supramolecular layers are formed in the bc plane mediated by C—H···O, C—H···N and C—H···π interactions, Table 1. Layers inter-digitate along the a axis without specific intermolecular interactions between them, Fig. 2.

For the biological activity of quinazoline-4(3H)-one derivatives, see: El-Azab et al. (2010, 2011); El-Azab & ElTahir (2012). For a related structure, see: Abdel-Aziz et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the c axis of the unit-cell contents for (I). The C—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.
2-{[2-Methyl-3-(2-methylphenyl)-4-oxo-3,4-dihydroquinazolin-8- yl]oxy}acetonitrile top
Crystal data top
C18H15N3O2F(000) = 640
Mr = 305.33Dx = 1.364 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 5616 reflections
a = 15.4721 (3) Åθ = 3.0–76.1°
b = 6.7775 (1) ŵ = 0.74 mm1
c = 15.0124 (4) ÅT = 100 K
β = 109.143 (3)°Prism, colourless
V = 1487.18 (5) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3088 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2908 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 76.3°, θmin = 3.0°
ω scanh = 1319
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.808, Tmax = 0.866l = 1818
10100 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.6598P]
where P = (Fo2 + 2Fc2)/3
3088 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 0.27 e Å3
58 restraintsΔρmin = 0.20 e Å3
Crystal data top
C18H15N3O2V = 1487.18 (5) Å3
Mr = 305.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 15.4721 (3) ŵ = 0.74 mm1
b = 6.7775 (1) ÅT = 100 K
c = 15.0124 (4) Å0.30 × 0.25 × 0.20 mm
β = 109.143 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
3088 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
2908 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.866Rint = 0.018
10100 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04458 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.09Δρmax = 0.27 e Å3
3088 reflectionsΔρmin = 0.20 e Å3
233 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.85217 (7)0.62011 (15)0.76440 (7)0.0273 (2)
O20.54879 (6)0.18507 (14)0.48673 (6)0.0219 (2)
N10.67419 (7)0.16913 (16)0.65621 (7)0.0191 (2)
N20.79168 (8)0.31930 (17)0.78022 (8)0.0240 (3)
N30.56836 (9)0.0563 (2)0.27639 (9)0.0335 (3)
C10.84789 (10)0.3118 (2)0.88003 (10)0.0198 (3)0.852 (3)
C20.80993 (12)0.3639 (3)0.94860 (12)0.0236 (4)0.852 (3)
H20.74790.40520.93090.028*0.852 (3)
C30.86293 (11)0.3554 (3)1.04297 (11)0.0254 (4)0.852 (3)
H30.83720.38841.09050.031*0.852 (3)
C40.95376 (11)0.2982 (2)1.06740 (12)0.0251 (4)0.852 (3)
H40.99080.29411.13190.030*0.852 (3)
C50.99064 (13)0.2473 (3)0.99821 (12)0.0238 (4)0.852 (3)
H51.05290.20791.01610.029*0.852 (3)
C60.93854 (10)0.2525 (2)0.90252 (11)0.0209 (3)0.852 (3)
C70.97864 (12)0.1972 (3)0.82743 (12)0.0266 (4)0.852 (3)
H7A0.94390.08720.79020.040*0.852 (3)
H7B1.04260.15760.85700.040*0.852 (3)
H7C0.97560.31080.78610.040*0.852 (3)
C1'0.8823 (5)0.2844 (13)0.8555 (5)0.0198 (3)0.148
C2'0.9622 (6)0.2131 (19)0.8473 (7)0.0236 (4)0.148
H2'0.96470.18310.78640.028*0.148 (3)
C3'1.0393 (6)0.1834 (14)0.9251 (5)0.0254 (4)0.148
H3'1.09420.13150.91910.031*0.148 (3)
C4'1.0329 (7)0.2322 (16)1.0114 (6)0.0251 (4)0.148
H4'1.08510.21791.06610.030*0.148 (3)
C5'0.9526 (5)0.3015 (15)1.0207 (7)0.0238 (4)0.148
H5'0.95000.32791.08190.029*0.148 (3)
C6'0.8746 (5)0.3340 (13)0.9418 (5)0.0209 (3)0.148
C7'0.7884 (7)0.4203 (19)0.9493 (9)0.0266 (4)0.148
H7'10.78020.55390.92290.040*0.148 (3)
H7'20.79220.42551.01570.040*0.148 (3)
H7'30.73630.33800.91410.040*0.148 (3)
C80.73758 (10)0.0128 (2)0.80091 (10)0.0269 (3)
H8A0.69140.10890.76650.040*
H8B0.72630.02540.85910.040*
H8C0.79860.07180.81660.040*
C90.73225 (9)0.16577 (19)0.74080 (9)0.0207 (3)
C100.79631 (9)0.49066 (19)0.72958 (9)0.0214 (3)
C110.72916 (8)0.49846 (19)0.63470 (9)0.0194 (3)
C120.72363 (9)0.6660 (2)0.57818 (10)0.0233 (3)
H120.76410.77400.60060.028*
C130.65887 (10)0.6718 (2)0.48982 (10)0.0250 (3)
H130.65460.78480.45120.030*
C140.59904 (9)0.5124 (2)0.45607 (9)0.0226 (3)
H140.55470.51820.39490.027*
C150.60444 (9)0.34748 (19)0.51141 (9)0.0194 (3)
C160.67042 (8)0.33768 (19)0.60284 (9)0.0180 (3)
C170.48506 (9)0.1754 (2)0.39353 (9)0.0214 (3)
H17A0.45660.30650.37500.026*
H17B0.43600.08020.39160.026*
C180.53176 (9)0.1132 (2)0.32659 (9)0.0241 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0235 (5)0.0235 (5)0.0290 (5)0.0051 (4)0.0005 (4)0.0022 (4)
O20.0232 (5)0.0227 (5)0.0156 (4)0.0063 (4)0.0008 (4)0.0008 (3)
N10.0191 (5)0.0192 (5)0.0179 (5)0.0005 (4)0.0045 (4)0.0012 (4)
N20.0230 (6)0.0212 (6)0.0209 (6)0.0026 (4)0.0022 (4)0.0004 (4)
N30.0336 (7)0.0396 (7)0.0273 (6)0.0035 (6)0.0100 (5)0.0055 (5)
C10.0192 (8)0.0207 (7)0.0170 (8)0.0021 (6)0.0028 (6)0.0016 (6)
C20.0183 (8)0.0276 (9)0.0244 (8)0.0003 (6)0.0061 (7)0.0028 (7)
C30.0281 (8)0.0283 (8)0.0214 (7)0.0048 (6)0.0100 (6)0.0036 (6)
C40.0271 (8)0.0258 (8)0.0190 (8)0.0061 (6)0.0029 (6)0.0004 (6)
C50.0174 (8)0.0254 (8)0.0267 (8)0.0020 (7)0.0046 (7)0.0022 (6)
C60.0207 (7)0.0205 (7)0.0212 (7)0.0016 (6)0.0064 (6)0.0004 (6)
C70.0246 (9)0.0314 (9)0.0254 (9)0.0048 (7)0.0105 (6)0.0007 (7)
C1'0.0192 (8)0.0207 (7)0.0170 (8)0.0021 (6)0.0028 (6)0.0016 (6)
C2'0.0183 (8)0.0276 (9)0.0244 (8)0.0003 (6)0.0061 (7)0.0028 (7)
C3'0.0281 (8)0.0283 (8)0.0214 (7)0.0048 (6)0.0100 (6)0.0036 (6)
C4'0.0271 (8)0.0258 (8)0.0190 (8)0.0061 (6)0.0029 (6)0.0004 (6)
C5'0.0174 (8)0.0254 (8)0.0267 (8)0.0020 (7)0.0046 (7)0.0022 (6)
C6'0.0207 (7)0.0205 (7)0.0212 (7)0.0016 (6)0.0064 (6)0.0004 (6)
C7'0.0246 (9)0.0314 (9)0.0254 (9)0.0048 (7)0.0105 (6)0.0007 (7)
C80.0319 (7)0.0218 (7)0.0210 (6)0.0029 (5)0.0006 (5)0.0016 (5)
C90.0201 (6)0.0200 (6)0.0200 (6)0.0005 (5)0.0039 (5)0.0022 (5)
C100.0184 (6)0.0206 (6)0.0235 (6)0.0002 (5)0.0045 (5)0.0023 (5)
C110.0176 (6)0.0208 (6)0.0195 (6)0.0001 (5)0.0058 (5)0.0018 (5)
C120.0229 (6)0.0214 (6)0.0254 (7)0.0038 (5)0.0077 (5)0.0014 (5)
C130.0294 (7)0.0222 (6)0.0235 (7)0.0021 (5)0.0088 (5)0.0038 (5)
C140.0233 (6)0.0252 (7)0.0182 (6)0.0013 (5)0.0051 (5)0.0007 (5)
C150.0191 (6)0.0208 (6)0.0185 (6)0.0026 (5)0.0063 (5)0.0026 (5)
C160.0170 (6)0.0197 (6)0.0180 (6)0.0003 (5)0.0066 (5)0.0011 (5)
C170.0193 (6)0.0264 (7)0.0156 (6)0.0037 (5)0.0017 (5)0.0001 (5)
C180.0231 (6)0.0268 (7)0.0187 (6)0.0042 (5)0.0019 (5)0.0000 (5)
Geometric parameters (Å, º) top
O1—C101.2222 (17)C3'—C4'1.372 (8)
O2—C151.3714 (15)C3'—H3'0.9500
O2—C171.4246 (14)C4'—C5'1.376 (8)
N1—C91.2930 (16)C4'—H4'0.9500
N1—C161.3854 (17)C5'—C6'1.404 (8)
N2—C91.3862 (17)C5'—H5'0.9500
N2—C101.4027 (18)C6'—C7'1.492 (8)
N2—C11.4661 (17)C7'—H7'10.9800
N2—C1'1.504 (7)C7'—H7'20.9800
N3—C181.148 (2)C7'—H7'30.9800
C1—C21.388 (2)C8—C91.4956 (18)
C1—C61.390 (2)C8—H8A0.9800
C2—C31.386 (2)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.386 (2)C10—C111.4631 (17)
C3—H30.9500C11—C161.3990 (18)
C4—C51.383 (2)C11—C121.4030 (19)
C4—H40.9500C12—C131.3760 (19)
C5—C61.398 (2)C12—H120.9500
C5—H50.9500C13—C141.4045 (19)
C6—C71.501 (2)C13—H130.9500
C7—H7A0.9800C14—C151.3788 (19)
C7—H7B0.9800C14—H140.9500
C7—H7C0.9800C15—C161.4183 (17)
C1'—C2'1.369 (8)C17—C181.4785 (19)
C1'—C6'1.382 (7)C17—H17A0.9900
C2'—C3'1.383 (8)C17—H17B0.9900
C2'—H2'0.9500
C15—O2—C17118.25 (10)C6'—C7'—H7'1109.5
C9—N1—C16117.80 (11)C6'—C7'—H7'2109.5
C9—N2—C10122.33 (11)H7'1—C7'—H7'2109.5
C9—N2—C1119.90 (11)C6'—C7'—H7'3109.5
C10—N2—C1117.64 (11)H7'1—C7'—H7'3109.5
C9—N2—C1'121.8 (4)H7'2—C7'—H7'3109.5
C10—N2—C1'109.7 (4)C9—C8—H8A109.5
C2—C1—C6122.15 (14)C9—C8—H8B109.5
C2—C1—N2119.73 (13)H8A—C8—H8B109.5
C6—C1—N2118.11 (13)C9—C8—H8C109.5
C3—C2—C1119.69 (15)H8A—C8—H8C109.5
C3—C2—H2120.2H8B—C8—H8C109.5
C1—C2—H2120.2N1—C9—N2123.78 (12)
C2—C3—C4119.39 (15)N1—C9—C8119.34 (12)
C2—C3—H3120.3N2—C9—C8116.88 (11)
C4—C3—H3120.3O1—C10—N2121.15 (12)
C5—C4—C3120.21 (16)O1—C10—C11124.56 (12)
C5—C4—H4119.9N2—C10—C11114.29 (11)
C3—C4—H4119.9C16—C11—C12121.31 (12)
C4—C5—C6121.65 (17)C16—C11—C10118.62 (12)
C4—C5—H5119.2C12—C11—C10120.07 (12)
C6—C5—H5119.2C13—C12—C11119.14 (12)
C1—C6—C5116.90 (14)C13—C12—H12120.4
C1—C6—C7121.48 (14)C11—C12—H12120.4
C5—C6—C7121.62 (14)C12—C13—C14120.74 (12)
C2'—C1'—C6'121.9 (7)C12—C13—H13119.6
C2'—C1'—N2129.4 (6)C14—C13—H13119.6
C6'—C1'—N2108.6 (5)C15—C14—C13120.24 (12)
C1'—C2'—C3'122.0 (8)C15—C14—H14119.9
C1'—C2'—H2'119.0C13—C14—H14119.9
C3'—C2'—H2'119.0O2—C15—C14125.40 (11)
C4'—C3'—C2'116.9 (8)O2—C15—C16114.38 (11)
C4'—C3'—H3'121.6C14—C15—C16120.21 (12)
C2'—C3'—H3'121.6N1—C16—C11123.03 (12)
C5'—C4'—C3'121.7 (8)N1—C16—C15118.60 (11)
C5'—C4'—H4'119.2C11—C16—C15118.36 (12)
C3'—C4'—H4'119.2O2—C17—C18110.21 (10)
C4'—C5'—C6'121.6 (8)O2—C17—H17A109.6
C4'—C5'—H5'119.2C18—C17—H17A109.6
C6'—C5'—H5'119.2O2—C17—H17B109.6
C1'—C6'—C5'115.9 (7)C18—C17—H17B109.6
C1'—C6'—C7'121.3 (7)H17A—C17—H17B108.1
C5'—C6'—C7'122.8 (8)N3—C18—C17176.83 (16)
C9—N2—C1—C280.62 (18)C10—N2—C9—N12.5 (2)
C10—N2—C1—C295.27 (17)C1—N2—C9—N1173.15 (13)
C1'—N2—C1—C2176.6 (7)C1'—N2—C9—N1152.1 (3)
C9—N2—C1—C699.54 (17)C10—N2—C9—C8176.97 (12)
C10—N2—C1—C684.56 (17)C1—N2—C9—C87.33 (19)
C1'—N2—C1—C63.2 (7)C1'—N2—C9—C827.4 (4)
C6—C1—C2—C30.6 (3)C9—N2—C10—O1176.60 (13)
N2—C1—C2—C3179.53 (14)C1—N2—C10—O17.61 (19)
C1—C2—C3—C41.1 (3)C1'—N2—C10—O123.8 (3)
C2—C3—C4—C51.0 (3)C9—N2—C10—C113.95 (18)
C3—C4—C5—C60.3 (3)C1—N2—C10—C11171.84 (11)
C2—C1—C6—C50.0 (2)C1'—N2—C10—C11156.7 (3)
N2—C1—C6—C5179.79 (13)O1—C10—C11—C16178.61 (13)
C2—C1—C6—C7179.81 (16)N2—C10—C11—C161.97 (17)
N2—C1—C6—C70.0 (2)O1—C10—C11—C122.4 (2)
C4—C5—C6—C10.2 (2)N2—C10—C11—C12177.05 (12)
C4—C5—C6—C7179.99 (16)C16—C11—C12—C130.2 (2)
C9—N2—C1'—C2'77.1 (11)C10—C11—C12—C13178.82 (12)
C10—N2—C1'—C2'75.8 (11)C11—C12—C13—C140.2 (2)
C1—N2—C1'—C2'172.7 (16)C12—C13—C14—C150.1 (2)
C9—N2—C1'—C6'101.8 (6)C17—O2—C15—C145.87 (18)
C10—N2—C1'—C6'105.3 (6)C17—O2—C15—C16175.36 (10)
C1—N2—C1'—C6'6.3 (4)C13—C14—C15—O2178.74 (12)
C6'—C1'—C2'—C3'1.2 (18)C13—C14—C15—C160.0 (2)
N2—C1'—C2'—C3'177.6 (9)C9—N1—C16—C113.16 (18)
C1'—C2'—C3'—C4'1.2 (17)C9—N1—C16—C15177.30 (11)
C2'—C3'—C4'—C5'2.1 (16)C12—C11—C16—N1179.49 (12)
C3'—C4'—C5'—C6'2.9 (16)C10—C11—C16—N11.50 (18)
C2'—C1'—C6'—C5'1.8 (14)C12—C11—C16—C150.06 (19)
N2—C1'—C6'—C5'177.2 (7)C10—C11—C16—C15178.95 (11)
C2'—C1'—C6'—C7'177.2 (11)O2—C15—C16—N11.55 (17)
N2—C1'—C6'—C7'3.8 (12)C14—C15—C16—N1179.61 (12)
C4'—C5'—C6'—C1'2.7 (14)O2—C15—C16—C11178.89 (11)
C4'—C5'—C6'—C7'176.3 (10)C14—C15—C16—C110.05 (18)
C16—N1—C9—N21.16 (19)C15—O2—C17—C1879.24 (14)
C16—N1—C9—C8179.33 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.493.275 (2)140
C8—H8C···O1ii0.982.473.2048 (18)132
C17—H17B···O2iii0.992.523.1768 (16)124
C17—H17B···N1iii0.992.343.2976 (18)163
C3—H3···Cg1iv0.952.953.6775 (18)134
C17—H17A···Cg2v0.992.833.4979 (15)125
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y1/2, z1/2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC18H15N3O2
Mr305.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)15.4721 (3), 6.7775 (1), 15.0124 (4)
β (°) 109.143 (3)
V3)1487.18 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.808, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
10100, 3088, 2908
Rint0.018
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.123, 1.09
No. of reflections3088
No. of parameters233
No. of restraints58
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1,N2,C9–C11,C16 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.952.493.275 (2)140
C8—H8C···O1ii0.982.473.2048 (18)132
C17—H17B···O2iii0.992.523.1768 (16)124
C17—H17B···N1iii0.992.343.2976 (18)163
C3—H3···Cg1iv0.952.953.6775 (18)134
C17—H17A···Cg2v0.992.833.4979 (15)125
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x, y1/2, z1/2; (v) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: adelazaba@yahoo.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., El-Sherbeny, M. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2032.  CSD CrossRef IUCr Journals Google Scholar
First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Azab, A. S., Al-Omar, M. A., Abdel-Aziz, A. A.-M., Abdel-Aziz, N. I., El-Sayed, M. A.-A., Aleisa, A. M., Sayed-Ahmed, M. M. & Abdel-Hamide, S. G. (2010). Eur. J. Med. Chem. 45, 4188–4198.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S. & ElTahir, K. H. (2012). Bioorg. Med. Chem. Lett. 22, 327–333.  Web of Science CAS PubMed Google Scholar
First citationEl-Azab, A. S., ElTahir, K. H. & Attia, S. M. (2011). Monatsh. Chem. 142, 837–848.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds