metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­nickel(II)]-μ-(9,10-dioxo-9,10-di­hydro­anthracene-1,4,5,8-tetra­carboxyl­ato)-κ2O1:O8-[tetra­aqua­nickel(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aNational Food Packaging Products Quality Supervision and Inspection Center, Jiangsu Provincial Supervising and Testing Research Institute for Products Quality, Nanjing 210007, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hare1014@163.com

(Received 8 June 2012; accepted 18 June 2012; online 23 June 2012)

In the crystal of the title polymeric complex, [Ni2(C18H4O10)(C10H8N2)(H2O)8]n, each NiII cation is coord­in­ated by four water mol­ecules in the equatorial plane, and is further bridged by an 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carb­oxy­l­ate anion and a 4,4′-bipyridine ligand in the axial directions, forming a distorted octa­hedral geometry. The 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carboxyl­ate anion is centrosymmetric with the centroid of the quinone ring located about an inversion center; the 4,4′-bipyridine ligand is also centrosymmetric with the mid-point of the C—C bond linking two pyridine rings located about another invertion center. The 9,10-dioxo-9,10-dihydro­anthracene-1,4,5,8-tetra­carboxyl­ate anion and bypiridine ligand bridge the NiII cations, forming a polymeric chain along the b axis. ππ stacking is observed between pyridine and benzene rings [centroid–centroid distance = 3.705 (2) Å]. All of the coordinating water mol­ecules are involved in O—H⋯O hydrogen bonding.

Related literature

For the synthesis, see: Liu et al. (2010[Liu, Y.-M., He, R., Wang, F.-M., Lu, C.-S. & Meng, Q.-J. (2010). Inorg. Chem. Commun. 13, 1375-1379.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C18H4O10)(C10H8N2)(H2O)8]

  • Mr = 797.94

  • Monoclinic, P 21 /n

  • a = 8.6359 (16) Å

  • b = 21.2426 (12) Å

  • c = 8.6416 (13) Å

  • β = 92.789 (3)°

  • V = 1583.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.767

  • 8595 measured reflections

  • 3111 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.102

  • S = 1.00

  • 3111 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6X⋯O4 0.85 2.14 2.642 (4) 118
O6—H6Y⋯O1i 0.85 2.16 2.630 (3) 115
O7—H7Y⋯O2i 0.85 1.82 2.618 (3) 155
O7—H7X⋯O4ii 0.85 1.88 2.717 (4) 168
O8—H8X⋯O6ii 0.85 2.42 3.243 (4) 164
O8—H8Y⋯O7iii 0.85 2.50 3.330 (4) 167
O9—H9X⋯O7iii 0.85 2.17 2.973 (3) 158
O9—H9Y⋯O3 0.85 2.26 3.099 (3) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecular structure of the title complex (I) is showing in Fig. 1. The asymmetric unit of I contains one independent nickel(II) ion, a half 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid ligand, a half 4,4-bipyridine ligand, four coordinating water molecules.

The nickel atom is in a normal octahedral geometry with O atoms which from the coordinating water molecules on the equatorial plane and O atom from the carboxylate group, N atom from the 4,4-bipyridine in the axial position. Every nickel atom is coordinated with one 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylate ligand and one 4,4-bipyridine ligand. And every 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid ligand coordinates with two nickel atoms and they form a one-dimensional nickel chain along b axis. There are two nickel chains which cross each other in the crystal structure.

Related literature top

For the synthesis, see: Liu et al. (2010).

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of a polymeric network Ni complex with 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid and 4,4-bipyridine (Liu et al., 2010), the pH value of the mixture was adjusted to 8.0 with NaOH solution, and then solution was heated at 393 K for 3 d. After the mixture was slowly cooled to room temperature, green crystals of the title compound were obtained.

Refinement top

Water H atoms were located in a difference map and refined with distance restraints of O—H = 0.85 Å, other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode. Uiso(H) = 1.2Ueq(C,O).

Structure description top

The molecular structure of the title complex (I) is showing in Fig. 1. The asymmetric unit of I contains one independent nickel(II) ion, a half 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid ligand, a half 4,4-bipyridine ligand, four coordinating water molecules.

The nickel atom is in a normal octahedral geometry with O atoms which from the coordinating water molecules on the equatorial plane and O atom from the carboxylate group, N atom from the 4,4-bipyridine in the axial position. Every nickel atom is coordinated with one 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylate ligand and one 4,4-bipyridine ligand. And every 9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylic acid ligand coordinates with two nickel atoms and they form a one-dimensional nickel chain along b axis. There are two nickel chains which cross each other in the crystal structure.

For the synthesis, see: Liu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis.
catena-Poly[[tetraaquanickel(II)]- µ-(9,10-dioxo-9,10-dihydroanthracene-1,4,5,8-tetracarboxylato)- κ2O1:O8-[tetraaquanickel(II)]- µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Ni2(C18H4O10)(C10H8N2)(H2O)8]F(000) = 820
Mr = 797.94Dx = 1.674 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1207 reflections
a = 8.6359 (16) Åθ = 2.5–21.8°
b = 21.2426 (12) ŵ = 1.28 mm1
c = 8.6416 (13) ÅT = 291 K
β = 92.789 (3)°Block, green
V = 1583.4 (4) Å30.28 × 0.24 × 0.22 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
3111 independent reflections
Radiation source: sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.716, Tmax = 0.767k = 2625
8595 measured reflectionsl = 710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.04P)2 + 1.66P]
where P = (Fo2 + 2Fc2)/3
3111 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ni2(C18H4O10)(C10H8N2)(H2O)8]V = 1583.4 (4) Å3
Mr = 797.94Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.6359 (16) ŵ = 1.28 mm1
b = 21.2426 (12) ÅT = 291 K
c = 8.6416 (13) Å0.28 × 0.24 × 0.22 mm
β = 92.789 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2297 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.767Rint = 0.056
8595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.86 e Å3
3111 reflectionsΔρmin = 0.49 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1039 (5)0.38729 (17)0.6495 (5)0.0279 (9)
C20.2016 (4)0.39108 (17)0.7843 (4)0.0231 (8)
H20.23510.35430.83340.028*
C30.2482 (4)0.44891 (17)0.8487 (4)0.0219 (8)
H30.31280.44990.93800.026*
C40.1983 (5)0.50468 (18)0.7798 (4)0.0253 (8)
C50.1014 (4)0.50163 (17)0.6407 (4)0.0197 (7)
C60.0513 (4)0.44257 (18)0.5757 (4)0.0243 (8)
C70.0636 (4)0.43979 (16)0.4486 (4)0.0177 (7)
C80.2460 (5)0.56481 (18)0.8562 (4)0.0254 (8)
C90.0736 (4)0.32135 (17)0.5866 (4)0.0225 (8)
C100.0110 (4)0.14286 (18)0.0564 (4)0.0228 (8)
H100.02050.18050.01000.027*
C110.0207 (4)0.08759 (16)0.0196 (4)0.0222 (8)
H110.07310.08950.11610.027*
C120.0200 (4)0.02965 (17)0.0378 (4)0.0223 (8)
C130.1022 (4)0.03075 (17)0.1803 (4)0.0226 (8)
H130.13270.00670.22850.027*
C140.1388 (5)0.08895 (17)0.2511 (4)0.0265 (8)
H140.20240.08940.34110.032*
N10.0841 (3)0.14441 (14)0.1922 (4)0.0229 (7)
Ni10.10940 (5)0.22477 (2)0.33004 (5)0.02030 (14)
O10.3792 (3)0.57569 (12)0.8713 (3)0.0307 (7)
O20.1359 (3)0.59770 (12)0.9128 (3)0.0290 (6)
O30.1319 (3)0.39084 (11)0.4195 (3)0.0222 (6)
O40.0032 (3)0.28515 (12)0.6693 (3)0.0293 (6)
O50.1290 (3)0.30879 (11)0.4574 (3)0.0242 (6)
O60.0040 (3)0.17982 (11)0.5068 (3)0.0214 (5)
H6X0.05120.19230.58980.026*
H6Y0.00520.14150.47950.026*
O70.3310 (3)0.20054 (11)0.4219 (3)0.0204 (5)
H7X0.39650.20550.35250.024*
H7Y0.33140.16230.45100.024*
O80.1681 (3)0.27455 (12)0.1160 (3)0.0289 (6)
H8X0.24660.28730.06920.035*
H8Y0.09070.27970.05260.035*
O90.1130 (3)0.26235 (12)0.2516 (3)0.0269 (6)
H9X0.12000.26300.15310.032*
H9Y0.12230.29960.28610.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.0167 (19)0.029 (2)0.0067 (17)0.0048 (17)0.0011 (16)
C20.030 (2)0.0183 (18)0.0221 (19)0.0004 (15)0.0091 (15)0.0003 (14)
C30.0259 (19)0.0222 (19)0.0173 (18)0.0010 (15)0.0017 (14)0.0068 (14)
C40.032 (2)0.0183 (18)0.026 (2)0.0035 (16)0.0039 (16)0.0004 (15)
C50.0205 (18)0.0158 (17)0.0234 (19)0.0034 (14)0.0068 (14)0.0014 (14)
C60.0250 (19)0.028 (2)0.0190 (19)0.0009 (16)0.0060 (15)0.0030 (15)
C70.0182 (16)0.0215 (19)0.0129 (17)0.0045 (14)0.0039 (13)0.0033 (13)
C80.032 (2)0.027 (2)0.0173 (18)0.0026 (17)0.0018 (15)0.0035 (15)
C90.0210 (18)0.0227 (19)0.025 (2)0.0110 (15)0.0092 (15)0.0008 (15)
C100.034 (2)0.0190 (18)0.0156 (18)0.0016 (16)0.0027 (15)0.0020 (14)
C110.034 (2)0.0181 (18)0.0145 (18)0.0110 (16)0.0041 (14)0.0021 (14)
C120.0266 (19)0.0186 (19)0.0213 (19)0.0064 (15)0.0029 (14)0.0054 (15)
C130.0229 (19)0.0194 (18)0.026 (2)0.0073 (15)0.0082 (15)0.0004 (15)
C140.034 (2)0.0195 (19)0.025 (2)0.0061 (16)0.0079 (16)0.0010 (15)
N10.0224 (15)0.0182 (15)0.0271 (17)0.0018 (13)0.0096 (13)0.0073 (13)
Ni10.0171 (2)0.0217 (2)0.0218 (2)0.0006 (2)0.00221 (16)0.0025 (2)
O10.0302 (16)0.0160 (13)0.0459 (18)0.0110 (12)0.0011 (13)0.0077 (12)
O20.0299 (15)0.0217 (14)0.0342 (16)0.0048 (11)0.0101 (12)0.0123 (11)
O30.0311 (14)0.0136 (13)0.0200 (13)0.0032 (10)0.0177 (11)0.0030 (10)
O40.0465 (17)0.0224 (14)0.0193 (13)0.0118 (12)0.0035 (12)0.0132 (11)
O50.0356 (15)0.0155 (13)0.0219 (13)0.0004 (11)0.0049 (11)0.0015 (10)
O60.0235 (13)0.0210 (13)0.0193 (13)0.0063 (11)0.0032 (10)0.0017 (10)
O70.0194 (12)0.0205 (13)0.0206 (13)0.0057 (10)0.0064 (10)0.0019 (10)
O80.0405 (16)0.0186 (13)0.0279 (15)0.0069 (12)0.0047 (12)0.0000 (11)
O90.0299 (14)0.0215 (14)0.0286 (14)0.0075 (11)0.0054 (11)0.0006 (11)
Geometric parameters (Å, º) top
C1—C61.401 (5)C11—H110.9300
C1—C21.407 (6)C12—C131.391 (5)
C1—C91.521 (5)C12—C12ii1.453 (7)
C2—C31.400 (5)C13—C141.409 (5)
C2—H20.9298C13—H130.9300
C3—C41.385 (5)C14—N11.359 (5)
C3—H30.9300C14—H140.9300
C4—C51.432 (5)N1—Ni12.087 (3)
C4—C81.487 (5)Ni1—O62.051 (2)
C5—C61.433 (5)Ni1—O52.099 (3)
C5—C7i1.492 (5)Ni1—O72.100 (2)
C6—C71.445 (5)Ni1—O92.159 (3)
C7—O31.215 (4)Ni1—O82.211 (3)
C7—C5i1.492 (5)O6—H6X0.8500
C8—O11.174 (5)O6—H6Y0.8500
C8—O21.295 (5)O7—H7X0.8500
C9—O41.230 (4)O7—H7Y0.8500
C9—O51.265 (4)O8—H8X0.8505
C10—N11.305 (5)O8—H8Y0.8498
C10—C111.366 (5)O9—H9X0.8500
C10—H100.9300O9—H9Y0.8499
C11—C121.367 (5)
C6—C1—C2119.8 (3)C12—C13—H13120.2
C6—C1—C9124.3 (4)C14—C13—H13120.2
C2—C1—C9115.7 (3)N1—C14—C13122.1 (3)
C3—C2—C1121.9 (3)N1—C14—H14119.0
C3—C2—H2118.6C13—C14—H14119.0
C1—C2—H2119.4C10—N1—C14117.3 (3)
C4—C3—C2120.1 (3)C10—N1—Ni1124.5 (3)
C4—C3—H3119.9C14—N1—Ni1118.0 (2)
C2—C3—H3119.9O6—Ni1—N190.37 (12)
C3—C4—C5118.6 (3)O6—Ni1—O591.88 (10)
C3—C4—C8118.0 (3)N1—Ni1—O5176.51 (11)
C5—C4—C8123.3 (3)O6—Ni1—O791.93 (10)
C4—C5—C6121.4 (3)N1—Ni1—O794.80 (10)
C4—C5—C7i120.0 (3)O5—Ni1—O787.80 (10)
C6—C5—C7i118.3 (3)O6—Ni1—O989.18 (10)
C1—C6—C5118.1 (3)N1—Ni1—O993.22 (11)
C1—C6—C7120.5 (3)O5—Ni1—O984.14 (10)
C5—C6—C7121.1 (3)O7—Ni1—O9171.90 (10)
O3—C7—C6120.0 (3)O6—Ni1—O8166.82 (10)
O3—C7—C5i121.0 (3)N1—Ni1—O886.30 (11)
C6—C7—C5i118.9 (3)O5—Ni1—O890.92 (9)
O1—C8—O2125.8 (4)O7—Ni1—O8101.05 (10)
O1—C8—C4117.9 (4)O9—Ni1—O878.29 (11)
O2—C8—C4116.0 (3)C9—O5—Ni1128.2 (2)
O4—C9—O5126.9 (4)Ni1—O6—H6X105.7
O4—C9—C1116.7 (3)Ni1—O6—H6Y106.1
O5—C9—C1116.3 (3)H6X—O6—H6Y124.6
N1—C10—C11122.0 (4)Ni1—O7—H7X109.2
N1—C10—H10119.0Ni1—O7—H7Y109.6
C11—C10—H10119.0H7X—O7—H7Y109.5
C10—C11—C12123.9 (3)Ni1—O8—H8X140.4
C10—C11—H11118.1Ni1—O8—H8Y113.3
C12—C11—H11118.1H8X—O8—H8Y105.8
C11—C12—C13114.7 (3)Ni1—O9—H9X109.8
C11—C12—C12ii124.5 (4)Ni1—O9—H9Y109.3
C13—C12—C12ii120.8 (4)H9X—O9—H9Y109.5
C12—C13—C14119.6 (3)
C6—C1—C2—C30.3 (6)C2—C1—C9—O464.4 (5)
C9—C1—C2—C3175.5 (3)C6—C1—C9—O562.1 (5)
C1—C2—C3—C40.0 (6)C2—C1—C9—O5112.8 (4)
C2—C3—C4—C51.2 (6)N1—C10—C11—C120.1 (6)
C2—C3—C4—C8177.6 (4)C10—C11—C12—C131.9 (6)
C3—C4—C5—C62.3 (5)C10—C11—C12—C12ii176.5 (5)
C8—C4—C5—C6176.5 (4)C11—C12—C13—C141.2 (5)
C3—C4—C5—C7i171.5 (3)C12ii—C12—C13—C14179.7 (4)
C8—C4—C5—C7i9.7 (6)C12—C13—C14—N16.3 (6)
C2—C1—C6—C50.7 (6)C11—C10—N1—C144.9 (6)
C9—C1—C6—C5174.0 (3)C11—C10—N1—Ni1170.8 (3)
C2—C1—C6—C7172.5 (3)C13—C14—N1—C108.1 (6)
C9—C1—C6—C712.8 (6)C13—C14—N1—Ni1167.9 (3)
C4—C5—C6—C12.0 (6)C10—N1—Ni1—O6122.4 (3)
C7i—C5—C6—C1171.9 (3)C14—N1—Ni1—O653.4 (3)
C4—C5—C6—C7171.1 (3)C10—N1—Ni1—O7145.7 (3)
C7i—C5—C6—C715.0 (6)C14—N1—Ni1—O738.6 (3)
C1—C6—C7—O310.8 (6)C10—N1—Ni1—O933.2 (3)
C5—C6—C7—O3162.2 (3)C14—N1—Ni1—O9142.6 (3)
C1—C6—C7—C5i171.9 (3)C10—N1—Ni1—O844.9 (3)
C5—C6—C7—C5i15.1 (6)C14—N1—Ni1—O8139.4 (3)
C3—C4—C8—O160.7 (5)O4—C9—O5—Ni14.4 (6)
C5—C4—C8—O1120.5 (4)C1—C9—O5—Ni1178.6 (2)
C3—C4—C8—O2113.1 (4)O6—Ni1—O5—C96.8 (3)
C5—C4—C8—O265.7 (5)O9—Ni1—O5—C982.2 (3)
C6—C1—C9—O4120.6 (4)O8—Ni1—O5—C9160.3 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6X···O40.852.142.642 (4)118
O6—H6Y···O1iii0.852.162.630 (3)115
O7—H7Y···O2iii0.851.822.618 (3)155
O7—H7X···O4iv0.851.882.717 (4)168
O8—H8X···O6iv0.852.423.243 (4)164
O8—H8Y···O7v0.852.503.330 (4)167
O9—H9X···O7v0.852.172.973 (3)158
O9—H9Y···O30.852.263.099 (3)170
Symmetry codes: (iii) x+1/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z1/2; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni2(C18H4O10)(C10H8N2)(H2O)8]
Mr797.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.6359 (16), 21.2426 (12), 8.6416 (13)
β (°) 92.789 (3)
V3)1583.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.716, 0.767
No. of measured, independent and
observed [I > 2σ(I)] reflections
8595, 3111, 2297
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.102, 1.00
No. of reflections3111
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6X···O40.852.142.642 (4)118
O6—H6Y···O1i0.852.162.630 (3)115
O7—H7Y···O2i0.851.822.618 (3)155
O7—H7X···O4ii0.851.882.717 (4)168
O8—H8X···O6ii0.852.423.243 (4)164
O8—H8Y···O7iii0.852.503.330 (4)167
O9—H9X···O7iii0.852.172.973 (3)158
O9—H9Y···O30.852.263.099 (3)170
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z1/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported financially by the Science and Technology Project of the State General Administration of Quality Supervision, Inspection and Quarantine, China (2011QK121, 2011QK122).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, Y.-M., He, R., Wang, F.-M., Lu, C.-S. & Meng, Q.-J. (2010). Inorg. Chem. Commun. 13, 1375–1379.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds