metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1-phenyl-3-{(Z)-[phen­yl(pyridin-2-yl)methyl­­idene]amino-κ2N,N′}urea-κO)nickel(II) dinitrate

aDepartment of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 9 June 2012; accepted 9 June 2012; online 16 June 2012)

The NiII atom in the title salt, [Ni(C19H16N4O)2](NO3)2, is N,N′,O-chelated by two neutral Schiff base ligands in a distorted octa­hedral geometry. One nitrate ion inter­acts with the metal atom indirectly, in an outer-sphere type of coordination, through N—H⋯O hydrogen bonds; the other nitrate ion does not engage in any inter­actions and is equally disordered over two positions in the crystal.

Related literature

For related copper(II) adducts, see: Patel (2010[Patel, R. M. (2010). J. Coord. Chem. 63, 1207-1219.]); Patel et al. (2009[Patel, R. N., Shukla, K. K., Singh, A., Choudhary, M., Chauhan, U. K. & Dwivedi, S. (2009). Inorg. Chim. Acta, 362, 4891-4898.], 2010[Patel, R. M., Shukla, K. K., Singh, A., Choudhary, M. & Patel, D. K. (2010). J. Coord. Chem. 63, 586-599.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C19H16N4O)2](NO3)2

  • Mr = 815.45

  • Monoclinic, P 21 /n

  • a = 14.0112 (3) Å

  • b = 16.0445 (3) Å

  • c = 16.4939 (3) Å

  • β = 95.959 (1)°

  • V = 3687.84 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.819, Tmax = 0.890

  • 51193 measured reflections

  • 6527 independent reflections

  • 4632 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.169

  • S = 1.09

  • 6527 reflections

  • 544 parameters

  • 62 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3 0.88 2.14 2.983 (4) 162
N4—H4⋯O4 0.88 2.11 2.869 (5) 145
N7—H7⋯O3i 0.88 2.11 2.955 (4) 162
N8—H8⋯O5i 0.88 2.01 2.819 (4) 152
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Of the plethora of transition metal derivatives of Schiff bases whose crystal structures have been reported, the adducts of 2-benzoylpyridine semicarbazone are limited to those of copper(II) only. In these (Patel, 2010; Patel et al., 2009; Patel et al., 2010), the neutral ligand N,N',O-chelates to the metal atom. In the nickel(II) nitrate derivative (Scheme I), the Ni atom is N,N',O-chelated by two neutal Schiff base ligands in an octahedral geometry. One nitrate interacts with the metal atom indirectly, in an outer-sphere type of coordination, through N–H···O hydrogen bonds. The other nitrate ion does not engage in any interaction and is disordered over two positions.

The N–H···O hydrogen bonds (Table 1) generate a layer structure; the layers are parallel to [1 0 - 1].

Related literature top

For related copper(II) adducts, see: Patel (2010); Patel et al. (2009, 2010).

Experimental top

A methanol solution of 2-benzoylpyridine semicarbazone (0.316 g, 1 mmol) and Ni(NO3)2.6H2O (0.290 g, 1 mmol) was heated for 5 h. The brown solid was collected, dried and recrystallized from methanol.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The amino H-atoms were similarly treated (N–H 0.88 Å) and their temperature factors tied by a factor of 1.2 times.

Omitted owing to bad disagreement were (1 0 1), (-1 0 1), (2 0 0), (0 2 0) and (1 1 1).

Of the two nitrate ions, the one that is engaged in hydrogen bonding is ordered; the other is disordered over two positions in an assumed 1:1 ratio. The N–O bond lengths were restrained to 1.25±0.01 Å and the O···O distances to 2.17±0.01 Å. The temperature factors of the two N atoms were made equal; the anisotropic temperature factors of the disordered atoms were restrained to be nearly isotropic.

The final difference Fourier map had a peak at 1.95 Å from O8.

Structure description top

Of the plethora of transition metal derivatives of Schiff bases whose crystal structures have been reported, the adducts of 2-benzoylpyridine semicarbazone are limited to those of copper(II) only. In these (Patel, 2010; Patel et al., 2009; Patel et al., 2010), the neutral ligand N,N',O-chelates to the metal atom. In the nickel(II) nitrate derivative (Scheme I), the Ni atom is N,N',O-chelated by two neutal Schiff base ligands in an octahedral geometry. One nitrate interacts with the metal atom indirectly, in an outer-sphere type of coordination, through N–H···O hydrogen bonds. The other nitrate ion does not engage in any interaction and is disordered over two positions.

The N–H···O hydrogen bonds (Table 1) generate a layer structure; the layers are parallel to [1 0 - 1].

For related copper(II) adducts, see: Patel (2010); Patel et al. (2009, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [Ni(C19H16N4O)2] 2NO3 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder in one of the nitrate ions is not shown.
Bis(1-phenyl-3-{(Z)-[phenyl(pyridin-2-yl)methylidene]amino- κ2N,N'}urea-κO)nickel(II) dinitrate top
Crystal data top
[Ni(C19H16N4O)2](NO3)2F(000) = 1688
Mr = 815.45Dx = 1.469 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9932 reflections
a = 14.0112 (3) Åθ = 2.2–23.3°
b = 16.0445 (3) ŵ = 0.60 mm1
c = 16.4939 (3) ÅT = 293 K
β = 95.959 (1)°Prism, brown
V = 3687.84 (12) Å30.35 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
6527 independent reflections
Radiation source: fine-focus sealed tube4632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω scansθmax = 25.1°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.819, Tmax = 0.890k = 1919
51193 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0797P)2 + 3.6302P]
where P = (Fo2 + 2Fc2)/3
6527 reflections(Δ/σ)max = 0.001
544 parametersΔρmax = 1.11 e Å3
62 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Ni(C19H16N4O)2](NO3)2V = 3687.84 (12) Å3
Mr = 815.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.0112 (3) ŵ = 0.60 mm1
b = 16.0445 (3) ÅT = 293 K
c = 16.4939 (3) Å0.35 × 0.30 × 0.20 mm
β = 95.959 (1)°
Data collection top
Bruker APEXII
diffractometer
6527 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4632 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.890Rint = 0.070
51193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05362 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.09Δρmax = 1.11 e Å3
6527 reflectionsΔρmin = 0.52 e Å3
544 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.40791 (3)0.14864 (3)0.71829 (3)0.04455 (19)
O10.34631 (18)0.17104 (18)0.83225 (16)0.0502 (7)
O20.42378 (18)0.28044 (17)0.70569 (17)0.0520 (7)
O30.6200 (2)0.14646 (19)1.0402 (2)0.0650 (8)
O40.5145 (2)0.0619 (2)1.0767 (3)0.0911 (12)
O50.6630 (2)0.0337 (2)1.1056 (2)0.0727 (9)
O60.4526 (17)0.1368 (17)0.3950 (8)0.42 (2)0.50
O70.3370 (10)0.1133 (11)0.3027 (12)0.197 (9)0.50
O80.4540 (7)0.1895 (7)0.2742 (7)0.148 (4)0.50
O6'0.4334 (8)0.1360 (6)0.3839 (5)0.120 (4)0.50
O7'0.2987 (6)0.1301 (8)0.3118 (8)0.133 (5)0.50
O8'0.4224 (7)0.1088 (8)0.2541 (5)0.144 (4)0.50
N10.5226 (2)0.1185 (2)0.6468 (2)0.0490 (8)
N20.5168 (2)0.12888 (18)0.80258 (18)0.0422 (7)
N30.4988 (2)0.13963 (19)0.88060 (19)0.0452 (8)
H30.54390.13510.92170.054*
N40.3881 (2)0.1629 (2)0.96957 (18)0.0462 (8)
H40.43750.15381.00590.055*
N50.3430 (2)0.0325 (2)0.69143 (18)0.0456 (7)
N60.2954 (2)0.18011 (19)0.64135 (19)0.0434 (7)
N70.2858 (2)0.26271 (19)0.62321 (19)0.0493 (8)
H70.23900.28260.58900.059*
N80.3438 (2)0.39382 (19)0.65125 (19)0.0476 (8)
H80.29170.40960.62080.057*
N90.5986 (2)0.0797 (2)1.0743 (2)0.0549 (9)
N100.4174 (6)0.1480 (4)0.3243 (5)0.0299 (15)0.50
N10'0.3918 (5)0.1254 (4)0.3193 (5)0.0299 (15)0.50
C10.5217 (3)0.1076 (3)0.5665 (3)0.0613 (12)
H10.46480.11740.53360.074*
C20.6004 (4)0.0827 (3)0.5304 (3)0.0708 (13)
H20.59680.07490.47430.085*
C30.6841 (4)0.0697 (4)0.5781 (3)0.0792 (15)
H3A0.73930.05450.55480.095*
C40.6863 (3)0.0793 (3)0.6617 (3)0.0631 (12)
H4A0.74250.06910.69540.076*
C50.6054 (3)0.1039 (2)0.6940 (2)0.0427 (8)
C60.6015 (3)0.1138 (2)0.7824 (2)0.0418 (8)
C70.6886 (3)0.1059 (2)0.8411 (2)0.0427 (9)
C80.7058 (3)0.0339 (3)0.8855 (3)0.0623 (12)
H8A0.66220.00990.87950.075*
C90.7884 (3)0.0271 (3)0.9391 (3)0.0701 (13)
H90.80070.02200.96830.084*
C100.8513 (3)0.0912 (3)0.9494 (3)0.0645 (12)
H100.90650.08620.98560.077*
C110.8335 (3)0.1632 (3)0.9066 (3)0.0689 (13)
H110.87600.20780.91430.083*
C120.7525 (3)0.1700 (3)0.8520 (3)0.0605 (11)
H120.74130.21890.82230.073*
C130.4053 (3)0.1582 (2)0.8915 (2)0.0408 (8)
C140.3005 (3)0.1806 (2)1.0008 (2)0.0454 (9)
C150.3018 (4)0.1819 (3)1.0851 (3)0.0622 (11)
H150.35930.17451.11790.075*
C160.2180 (5)0.1941 (3)1.1200 (3)0.0821 (16)
H160.21910.19441.17640.099*
C170.1329 (4)0.2059 (3)1.0728 (4)0.0843 (17)
H170.07640.21341.09690.101*
C180.1316 (3)0.2065 (3)0.9904 (4)0.0747 (14)
H180.07390.21550.95840.090*
C190.2149 (3)0.1940 (3)0.9531 (3)0.0549 (10)
H190.21300.19470.89650.066*
C200.3720 (3)0.0421 (3)0.7173 (3)0.0581 (11)
H200.42790.04630.75260.070*
C210.3229 (4)0.1138 (3)0.6941 (3)0.0682 (13)
H210.34570.16550.71270.082*
C220.2398 (3)0.1075 (3)0.6430 (3)0.0655 (12)
H220.20420.15490.62780.079*
C230.2094 (3)0.0307 (2)0.6144 (3)0.0527 (10)
H230.15360.02550.57900.063*
C240.2629 (3)0.0384 (2)0.6391 (2)0.0420 (8)
C250.2392 (3)0.1235 (2)0.6092 (2)0.0430 (9)
C260.1605 (3)0.1381 (2)0.5427 (2)0.0478 (9)
C270.1836 (4)0.1433 (3)0.4643 (3)0.0699 (13)
H270.24760.14200.45410.084*
C280.1123 (4)0.1506 (3)0.4003 (3)0.0824 (16)
H280.12810.15380.34700.099*
C290.0180 (4)0.1531 (3)0.4157 (4)0.0772 (15)
H290.03010.15790.37270.093*
C300.0050 (4)0.1486 (3)0.4926 (4)0.0742 (14)
H300.06910.15080.50260.089*
C310.0658 (3)0.1408 (3)0.5571 (3)0.0662 (12)
H310.04930.13730.61020.079*
C320.3561 (3)0.3123 (2)0.6632 (2)0.0414 (8)
C330.4070 (3)0.4574 (2)0.6830 (2)0.0445 (9)
C340.3701 (3)0.5357 (3)0.6889 (3)0.0646 (12)
H340.30530.54530.67350.077*
C350.4286 (4)0.6003 (3)0.7177 (3)0.0777 (15)
H350.40280.65340.72190.093*
C360.5243 (4)0.5875 (3)0.7402 (3)0.0738 (14)
H360.56380.63130.75960.089*
C370.5600 (4)0.5102 (4)0.7338 (4)0.0853 (17)
H370.62500.50110.74870.102*
C380.5027 (3)0.4439 (3)0.7055 (3)0.0690 (13)
H380.52880.39090.70190.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0350 (3)0.0502 (3)0.0475 (3)0.0057 (2)0.0003 (2)0.0044 (2)
O10.0369 (14)0.0726 (18)0.0388 (14)0.0002 (13)0.0078 (12)0.0050 (13)
O20.0394 (15)0.0557 (16)0.0565 (17)0.0020 (12)0.0154 (13)0.0087 (13)
O30.066 (2)0.0626 (19)0.0613 (19)0.0080 (15)0.0183 (16)0.0078 (15)
O40.0392 (18)0.108 (3)0.121 (3)0.0079 (18)0.0162 (18)0.035 (2)
O50.0519 (18)0.081 (2)0.079 (2)0.0086 (16)0.0194 (16)0.0208 (17)
O60.42 (3)0.41 (3)0.42 (3)0.016 (10)0.043 (11)0.002 (10)
O70.207 (12)0.188 (12)0.195 (12)0.014 (9)0.019 (9)0.015 (8)
O80.137 (7)0.125 (7)0.179 (8)0.041 (6)0.002 (7)0.009 (7)
O6'0.144 (7)0.123 (6)0.079 (6)0.042 (5)0.044 (5)0.001 (5)
O7'0.127 (7)0.136 (8)0.139 (8)0.053 (6)0.029 (6)0.005 (6)
O8'0.111 (6)0.193 (8)0.126 (7)0.048 (6)0.008 (6)0.000 (7)
N10.0423 (18)0.0555 (19)0.0468 (19)0.0035 (15)0.0072 (15)0.0027 (15)
N20.0396 (17)0.0479 (18)0.0388 (17)0.0008 (13)0.0024 (14)0.0015 (13)
N30.0348 (16)0.061 (2)0.0382 (17)0.0020 (14)0.0044 (13)0.0008 (14)
N40.0385 (17)0.067 (2)0.0322 (17)0.0053 (15)0.0033 (13)0.0017 (14)
N50.0388 (17)0.056 (2)0.0399 (17)0.0005 (14)0.0056 (14)0.0038 (14)
N60.0395 (17)0.0434 (17)0.0456 (18)0.0035 (14)0.0035 (14)0.0018 (14)
N70.0455 (18)0.0473 (19)0.0502 (19)0.0050 (14)0.0178 (15)0.0026 (15)
N80.0437 (18)0.0456 (19)0.0494 (19)0.0048 (14)0.0144 (14)0.0063 (15)
N90.047 (2)0.066 (2)0.048 (2)0.0011 (18)0.0136 (16)0.0029 (17)
N100.026 (4)0.025 (3)0.038 (2)0.006 (3)0.004 (3)0.007 (2)
N10'0.026 (4)0.025 (3)0.038 (2)0.006 (3)0.004 (3)0.007 (2)
C10.064 (3)0.067 (3)0.049 (3)0.011 (2)0.014 (2)0.004 (2)
C20.080 (3)0.091 (4)0.041 (2)0.003 (3)0.006 (2)0.005 (2)
C30.071 (3)0.111 (4)0.058 (3)0.019 (3)0.017 (3)0.007 (3)
C40.053 (2)0.089 (3)0.047 (2)0.022 (2)0.002 (2)0.001 (2)
C50.043 (2)0.046 (2)0.039 (2)0.0036 (16)0.0006 (16)0.0024 (16)
C60.037 (2)0.042 (2)0.045 (2)0.0013 (16)0.0004 (16)0.0036 (16)
C70.0356 (19)0.054 (2)0.037 (2)0.0054 (17)0.0003 (16)0.0010 (17)
C80.051 (2)0.061 (3)0.072 (3)0.000 (2)0.008 (2)0.012 (2)
C90.063 (3)0.077 (3)0.066 (3)0.015 (3)0.014 (2)0.019 (2)
C100.046 (2)0.097 (4)0.048 (2)0.009 (2)0.0087 (19)0.001 (2)
C110.053 (3)0.081 (3)0.069 (3)0.015 (2)0.010 (2)0.007 (3)
C120.057 (3)0.062 (3)0.060 (3)0.006 (2)0.007 (2)0.009 (2)
C130.0366 (19)0.043 (2)0.042 (2)0.0008 (15)0.0016 (16)0.0001 (16)
C140.049 (2)0.043 (2)0.045 (2)0.0019 (17)0.0072 (18)0.0003 (17)
C150.074 (3)0.066 (3)0.048 (3)0.009 (2)0.010 (2)0.003 (2)
C160.110 (5)0.082 (4)0.061 (3)0.023 (3)0.038 (3)0.006 (3)
C170.083 (4)0.077 (3)0.102 (5)0.023 (3)0.050 (4)0.014 (3)
C180.053 (3)0.078 (3)0.096 (4)0.015 (2)0.022 (3)0.008 (3)
C190.047 (2)0.056 (2)0.063 (3)0.0066 (19)0.007 (2)0.007 (2)
C200.051 (2)0.071 (3)0.051 (2)0.009 (2)0.0049 (19)0.009 (2)
C210.077 (3)0.053 (3)0.073 (3)0.010 (2)0.001 (3)0.010 (2)
C220.059 (3)0.052 (3)0.084 (3)0.005 (2)0.001 (2)0.004 (2)
C230.043 (2)0.052 (2)0.061 (3)0.0043 (18)0.0059 (19)0.0068 (19)
C240.0369 (19)0.049 (2)0.039 (2)0.0028 (16)0.0016 (16)0.0018 (16)
C250.038 (2)0.051 (2)0.039 (2)0.0029 (17)0.0029 (16)0.0014 (16)
C260.046 (2)0.046 (2)0.048 (2)0.0049 (17)0.0147 (18)0.0005 (17)
C270.059 (3)0.095 (4)0.052 (3)0.013 (2)0.011 (2)0.006 (2)
C280.083 (4)0.108 (4)0.051 (3)0.018 (3)0.018 (3)0.013 (3)
C290.069 (3)0.077 (3)0.077 (4)0.005 (3)0.034 (3)0.011 (3)
C300.047 (3)0.086 (4)0.084 (4)0.000 (2)0.020 (2)0.000 (3)
C310.049 (3)0.084 (3)0.062 (3)0.001 (2)0.008 (2)0.002 (2)
C320.037 (2)0.051 (2)0.0357 (19)0.0021 (17)0.0013 (16)0.0027 (16)
C330.043 (2)0.054 (2)0.0346 (19)0.0107 (17)0.0021 (16)0.0016 (16)
C340.062 (3)0.056 (3)0.072 (3)0.000 (2)0.016 (2)0.000 (2)
C350.089 (4)0.061 (3)0.078 (3)0.008 (3)0.015 (3)0.011 (2)
C360.074 (3)0.075 (3)0.070 (3)0.033 (3)0.003 (3)0.011 (3)
C370.046 (3)0.086 (4)0.121 (5)0.025 (3)0.002 (3)0.019 (3)
C380.041 (2)0.070 (3)0.096 (4)0.009 (2)0.002 (2)0.015 (3)
Geometric parameters (Å, º) top
Ni1—N21.980 (3)C9—H90.9300
Ni1—N61.984 (3)C10—C111.363 (7)
Ni1—N52.101 (3)C10—H100.9300
Ni1—O22.139 (3)C11—C121.377 (6)
Ni1—N12.146 (3)C11—H110.9300
Ni1—O12.178 (3)C12—H120.9300
O1—C131.229 (4)C14—C191.381 (6)
O2—C321.231 (4)C14—C151.389 (6)
O3—N91.261 (4)C15—C161.374 (7)
O4—N91.217 (4)C15—H150.9300
O5—N91.237 (4)C16—C171.367 (8)
O6—N101.231 (8)C16—H160.9300
O7—N101.274 (8)C17—C181.356 (8)
O8—N101.216 (8)C17—H170.9300
O6'—N10'1.172 (7)C18—C191.390 (6)
O7'—N10'1.300 (8)C18—H180.9300
O8'—N10'1.227 (8)C19—H190.9300
N1—C11.334 (5)C20—C211.373 (6)
N1—C51.348 (5)C20—H200.9300
N2—C61.288 (5)C21—C221.369 (7)
N2—N31.348 (4)C21—H210.9300
N3—C131.374 (5)C22—C231.370 (6)
N3—H30.8800C22—H220.9300
N4—C131.337 (5)C23—C241.378 (5)
N4—C141.408 (5)C23—H230.9300
N4—H40.8800C24—C251.478 (5)
N5—C201.320 (5)C25—C261.491 (5)
N5—C241.346 (5)C26—C271.367 (6)
N6—C251.280 (5)C26—C311.373 (6)
N6—N71.362 (4)C27—C281.381 (7)
N7—C321.379 (5)C27—H270.9300
N7—H70.8800C28—C291.371 (8)
N8—C321.331 (5)C28—H280.9300
N8—C331.415 (5)C29—C301.343 (8)
N8—H80.8800C29—H290.9300
C1—C21.367 (7)C30—C311.382 (7)
C1—H10.9300C30—H300.9300
C2—C31.358 (7)C31—H310.9300
C2—H20.9300C33—C341.366 (6)
C3—C41.385 (6)C33—C381.371 (6)
C3—H3A0.9300C34—C351.375 (6)
C4—C51.360 (5)C34—H340.9300
C4—H4A0.9300C35—C361.369 (7)
C5—C61.474 (5)C35—H350.9300
C6—C71.483 (5)C36—C371.345 (7)
C7—C121.363 (6)C36—H360.9300
C7—C81.375 (6)C37—C381.384 (6)
C8—C91.387 (6)C37—H370.9300
C8—H8A0.9300C38—H380.9300
C9—C101.354 (7)
N2—Ni1—N6173.28 (12)C12—C11—H11120.0
N2—Ni1—N5106.93 (12)C7—C12—C11120.9 (4)
N6—Ni1—N578.05 (12)C7—C12—H12119.6
N2—Ni1—O298.41 (11)C11—C12—H12119.6
N6—Ni1—O276.70 (11)O1—C13—N4125.6 (3)
N5—Ni1—O2154.66 (11)O1—C13—N3120.3 (3)
N2—Ni1—N177.50 (12)N4—C13—N3114.1 (3)
N6—Ni1—N1107.25 (12)C19—C14—C15119.3 (4)
N5—Ni1—N190.96 (12)C19—C14—N4124.1 (4)
O2—Ni1—N194.48 (12)C15—C14—N4116.6 (4)
N2—Ni1—O176.45 (11)C16—C15—C14119.8 (5)
N6—Ni1—O198.65 (11)C16—C15—H15120.1
N5—Ni1—O197.27 (11)C14—C15—H15120.1
O2—Ni1—O188.58 (11)C17—C16—C15120.9 (5)
N1—Ni1—O1153.94 (11)C17—C16—H16119.5
C13—O1—Ni1111.4 (2)C15—C16—H16119.5
C32—O2—Ni1112.6 (2)C18—C17—C16119.4 (5)
C1—N1—C5118.0 (4)C18—C17—H17120.3
C1—N1—Ni1130.1 (3)C16—C17—H17120.3
C5—N1—Ni1111.7 (2)C17—C18—C19121.2 (5)
C6—N2—N3122.6 (3)C17—C18—H18119.4
C6—N2—Ni1120.8 (3)C19—C18—H18119.4
N3—N2—Ni1116.3 (2)C14—C19—C18119.3 (4)
N2—N3—C13115.3 (3)C14—C19—H19120.4
N2—N3—H3122.4C18—C19—H19120.4
C13—N3—H3122.4N5—C20—C21122.8 (4)
C13—N4—C14127.9 (3)N5—C20—H20118.6
C13—N4—H4116.0C21—C20—H20118.6
C14—N4—H4116.0C22—C21—C20118.6 (4)
C20—N5—C24118.7 (3)C22—C21—H21120.7
C20—N5—Ni1128.6 (3)C20—C21—H21120.7
C24—N5—Ni1112.7 (2)C21—C22—C23119.5 (4)
C25—N6—N7123.8 (3)C21—C22—H22120.2
C25—N6—Ni1119.9 (3)C23—C22—H22120.2
N7—N6—Ni1116.2 (2)C22—C23—C24118.8 (4)
N6—N7—C32114.0 (3)C22—C23—H23120.6
N6—N7—H7123.0C24—C23—H23120.6
C32—N7—H7123.0N5—C24—C23121.6 (4)
C32—N8—C33126.0 (3)N5—C24—C25115.1 (3)
C32—N8—H8117.0C23—C24—C25123.3 (3)
C33—N8—H8117.0N6—C25—C24114.2 (3)
O4—N9—O5120.9 (4)N6—C25—C26124.8 (3)
O4—N9—O3119.4 (4)C24—C25—C26120.9 (3)
O5—N9—O3119.7 (4)C27—C26—C31119.4 (4)
O8—N10—O6124.6 (10)C27—C26—C25118.4 (4)
O8—N10—O7118.2 (8)C31—C26—C25122.1 (4)
O6—N10—O7117.2 (9)C26—C27—C28120.3 (5)
O6'—N10'—O8'130.0 (8)C26—C27—H27119.9
O6'—N10'—O7'118.5 (8)C28—C27—H27119.9
O8'—N10'—O7'111.6 (7)C29—C28—C27119.7 (5)
N1—C1—C2123.1 (4)C29—C28—H28120.2
N1—C1—H1118.5C27—C28—H28120.2
C2—C1—H1118.5C30—C29—C28120.2 (5)
C3—C2—C1118.7 (4)C30—C29—H29119.9
C3—C2—H2120.7C28—C29—H29119.9
C1—C2—H2120.7C29—C30—C31120.5 (5)
C2—C3—C4119.2 (4)C29—C30—H30119.7
C2—C3—H3A120.4C31—C30—H30119.7
C4—C3—H3A120.4C26—C31—C30119.9 (5)
C5—C4—C3119.3 (4)C26—C31—H31120.1
C5—C4—H4A120.4C30—C31—H31120.1
C3—C4—H4A120.4O2—C32—N8124.9 (3)
N1—C5—C4121.7 (4)O2—C32—N7120.1 (3)
N1—C5—C6115.8 (3)N8—C32—N7115.0 (3)
C4—C5—C6122.5 (3)C34—C33—C38119.5 (4)
N2—C6—C5114.0 (3)C34—C33—N8117.6 (4)
N2—C6—C7124.4 (3)C38—C33—N8122.9 (4)
C5—C6—C7121.6 (3)C33—C34—C35120.1 (4)
C12—C7—C8119.1 (4)C33—C34—H34120.0
C12—C7—C6120.5 (4)C35—C34—H34120.0
C8—C7—C6120.4 (4)C36—C35—C34120.8 (5)
C7—C8—C9119.6 (4)C36—C35—H35119.6
C7—C8—H8A120.2C34—C35—H35119.6
C9—C8—H8A120.2C37—C36—C35118.6 (4)
C10—C9—C8120.6 (4)C37—C36—H36120.7
C10—C9—H9119.7C35—C36—H36120.7
C8—C9—H9119.7C36—C37—C38121.8 (5)
C9—C10—C11119.8 (4)C36—C37—H37119.1
C9—C10—H10120.1C38—C37—H37119.1
C11—C10—H10120.1C33—C38—C37119.1 (5)
C10—C11—C12119.9 (4)C33—C38—H38120.4
C10—C11—H11120.0C37—C38—H38120.4
N2—Ni1—O1—C132.4 (2)C5—C6—C7—C8101.7 (5)
N6—Ni1—O1—C13177.7 (3)C12—C7—C8—C91.3 (7)
N5—Ni1—O1—C13103.3 (3)C6—C7—C8—C9179.0 (4)
O2—Ni1—O1—C13101.4 (3)C7—C8—C9—C101.3 (7)
N1—Ni1—O1—C134.1 (4)C8—C9—C10—C110.1 (8)
N2—Ni1—O2—C32171.1 (3)C9—C10—C11—C121.2 (8)
N6—Ni1—O2—C324.2 (3)C8—C7—C12—C110.1 (7)
N5—Ni1—O2—C329.0 (4)C6—C7—C12—C11179.8 (4)
N1—Ni1—O2—C32110.9 (3)C10—C11—C12—C71.1 (7)
O1—Ni1—O2—C3295.1 (3)Ni1—O1—C13—N4176.8 (3)
N2—Ni1—N1—C1174.4 (4)Ni1—O1—C13—N35.3 (4)
N6—Ni1—N1—C110.5 (4)C14—N4—C13—O12.0 (6)
N5—Ni1—N1—C167.3 (4)C14—N4—C13—N3180.0 (3)
O2—Ni1—N1—C188.0 (4)N2—N3—C13—O16.3 (5)
O1—Ni1—N1—C1176.1 (3)N2—N3—C13—N4175.6 (3)
N2—Ni1—N1—C51.0 (2)C13—N4—C14—C192.0 (6)
N6—Ni1—N1—C5174.1 (2)C13—N4—C14—C15179.9 (4)
N5—Ni1—N1—C5108.1 (3)C19—C14—C15—C161.8 (7)
O2—Ni1—N1—C596.6 (3)N4—C14—C15—C16176.4 (4)
O1—Ni1—N1—C50.7 (4)C14—C15—C16—C170.6 (8)
N5—Ni1—N2—C691.4 (3)C15—C16—C17—C180.9 (8)
O2—Ni1—N2—C688.5 (3)C16—C17—C18—C191.1 (8)
N1—Ni1—N2—C64.3 (3)C15—C14—C19—C181.5 (6)
O1—Ni1—N2—C6175.0 (3)N4—C14—C19—C18176.5 (4)
N5—Ni1—N2—N394.4 (3)C17—C18—C19—C140.1 (7)
O2—Ni1—N2—N385.7 (2)C24—N5—C20—C211.2 (6)
N1—Ni1—N2—N3178.4 (3)Ni1—N5—C20—C21179.2 (3)
O1—Ni1—N2—N30.8 (2)N5—C20—C21—C221.0 (7)
C6—N2—N3—C13177.8 (3)C20—C21—C22—C232.0 (7)
Ni1—N2—N3—C133.7 (4)C21—C22—C23—C241.0 (7)
N2—Ni1—N5—C206.7 (4)C20—N5—C24—C232.3 (6)
N6—Ni1—N5—C20178.0 (4)Ni1—N5—C24—C23179.4 (3)
O2—Ni1—N5—C20173.1 (3)C20—N5—C24—C25176.2 (3)
N1—Ni1—N5—C2070.5 (4)Ni1—N5—C24—C252.1 (4)
O1—Ni1—N5—C2084.7 (3)C22—C23—C24—N51.2 (6)
N2—Ni1—N5—C24175.2 (2)C22—C23—C24—C25177.2 (4)
N6—Ni1—N5—C240.1 (2)N7—N6—C25—C24179.3 (3)
O2—Ni1—N5—C245.0 (4)Ni1—N6—C25—C243.9 (4)
N1—Ni1—N5—C24107.6 (3)N7—N6—C25—C265.4 (6)
O1—Ni1—N5—C2497.2 (3)Ni1—N6—C25—C26171.4 (3)
N5—Ni1—N6—C252.2 (3)N5—C24—C25—N63.9 (5)
O2—Ni1—N6—C25175.7 (3)C23—C24—C25—N6177.6 (4)
N1—Ni1—N6—C2585.1 (3)N5—C24—C25—C26171.7 (3)
O1—Ni1—N6—C2597.9 (3)C23—C24—C25—C266.8 (6)
N5—Ni1—N6—N7179.3 (3)N6—C25—C26—C2780.5 (5)
O2—Ni1—N6—N71.4 (2)C24—C25—C26—C2794.6 (5)
N1—Ni1—N6—N792.0 (3)N6—C25—C26—C31103.9 (5)
O1—Ni1—N6—N785.1 (3)C24—C25—C26—C3181.0 (5)
C25—N6—N7—C32178.2 (3)C31—C26—C27—C280.5 (7)
Ni1—N6—N7—C321.3 (4)C25—C26—C27—C28175.2 (4)
C5—N1—C1—C20.2 (6)C26—C27—C28—C290.4 (8)
Ni1—N1—C1—C2175.3 (4)C27—C28—C29—C300.1 (8)
N1—C1—C2—C31.1 (8)C28—C29—C30—C310.5 (8)
C1—C2—C3—C42.1 (8)C27—C26—C31—C300.1 (7)
C2—C3—C4—C51.9 (8)C25—C26—C31—C30175.5 (4)
C1—N1—C5—C40.4 (6)C29—C30—C31—C260.4 (7)
Ni1—N1—C5—C4176.4 (3)Ni1—O2—C32—N8174.0 (3)
C1—N1—C5—C6177.8 (3)Ni1—O2—C32—N76.4 (4)
Ni1—N1—C5—C61.8 (4)C33—N8—C32—O21.9 (6)
C3—C4—C5—N10.6 (7)C33—N8—C32—N7177.8 (3)
C3—C4—C5—C6178.7 (4)N6—N7—C32—O25.4 (5)
N3—N2—C6—C5179.8 (3)N6—N7—C32—N8175.0 (3)
Ni1—N2—C6—C56.4 (4)C32—N8—C33—C34158.0 (4)
N3—N2—C6—C70.4 (6)C32—N8—C33—C3823.7 (6)
Ni1—N2—C6—C7174.2 (3)C38—C33—C34—C350.3 (7)
N1—C5—C6—N25.2 (5)N8—C33—C34—C35178.6 (4)
C4—C5—C6—N2173.0 (4)C33—C34—C35—C360.4 (8)
N1—C5—C6—C7175.4 (3)C34—C35—C36—C370.1 (8)
C4—C5—C6—C76.4 (6)C35—C36—C37—C380.3 (9)
N2—C6—C7—C12102.0 (5)C34—C33—C38—C370.2 (7)
C5—C6—C7—C1278.6 (5)N8—C33—C38—C37178.1 (4)
N2—C6—C7—C877.7 (5)C36—C37—C38—C330.5 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.882.142.983 (4)162
N4—H4···O40.882.112.869 (5)145
N7—H7···O3i0.882.112.955 (4)162
N8—H8···O5i0.882.012.819 (4)152
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C19H16N4O)2](NO3)2
Mr815.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.0112 (3), 16.0445 (3), 16.4939 (3)
β (°) 95.959 (1)
V3)3687.84 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.35 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.819, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
51193, 6527, 4632
Rint0.070
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.169, 1.09
No. of reflections6527
No. of parameters544
No. of restraints62
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.52

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O30.882.142.983 (4)162
N4—H4···O40.882.112.869 (5)145
N7—H7···O3i0.882.112.955 (4)162
N8—H8···O5i0.882.012.819 (4)152
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

NA thanks the University Grants Commission (India) for a Junior Research Fellowship and JMJ thanks the Council of Scientific and Industrial Research (India) for a Senior Research Fellowship. We thank the Sophisticated Analytical Instruments Facility, Cochin University of S&T, for the diffraction measurements. We also thank the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPatel, R. M. (2010). J. Coord. Chem. 63, 1207–1219.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatel, R. N., Shukla, K. K., Singh, A., Choudhary, M., Chauhan, U. K. & Dwivedi, S. (2009). Inorg. Chim. Acta, 362, 4891–4898.  Web of Science CSD CrossRef CAS Google Scholar
First citationPatel, R. M., Shukla, K. K., Singh, A., Choudhary, M. & Patel, D. K. (2010). J. Coord. Chem. 63, 586–599.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds