organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­phen­yl)-5-(4,5-di­hydro-1H-imidazol-2-yl)thieno[2,3-b]pyridin-4-amine

aUniversidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, Programa de Pós-Graduação em Química Orgânica, Campus do Valonguinho, CEP 24210-150 Niterói, RJ, Brazil, bFundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Departamento de Síntese Orgânica, Manguinhos, CEP 21041-250, Rio de Janeiro, RJ, Brazil, cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, dCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and eCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 June 2012; accepted 12 June 2012; online 20 June 2012)

In the title compound, C16H13ClN4S, the thienopyridine fused-ring system is nearly planar (r.m.s. deviation = 0.0333 Å) and forms a dihedral angle of 4.4 (3)° with the attached dihydro­imidazole ring (r.m.s. deviation = 0.0429 Å) allowing for the formation of an intra­molecular (exocyclic amine)N—H⋯N(imine) hydrogen bond. The benzene rings of the disordered (50:50) –N(H)—C6H4Cl residue form dihedral angles of 59.1 (3) and 50.59 (15)° with the fused ring system. In the crystal, (imidazole amine)N—H⋯N(pyridine) hydrogen bonds lead to a supra­molecular helical chain along the b axis. The chains assemble into layers (ab plane) with inter-digitation of the chloro­benzene rings which results in weak C—H⋯Cl inter­actions in the c-axis direction.

Related literature

For the synthesis and biological activity of thienopyridine derivatives, see: Kaigorodova et al. (2000[Kaigorodova, Y. A., Vasilin, V. K., Konyushkin, L. D., Usova, Y. B. & Krapivin, G. D. (2000). Molecules, 5, 1085-1093.]); Moloney (2001[Moloney, G. P. (2001). Molecules, 6, M203.]); Bernardino et al. (2004[Bernardino, A. M. R., Pinheiro, L. C. S., Azevedo, A. R., Frugulhetti, I. C. P. P., Carneiro, J. L. M., Souza, T. M. L. & Ferreira, V. F. (2004). Heterocycl. Commun. 10, 407-410.], 2006[Bernardino, A. M. R., Pinheiro, L. C. S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). Bioorg. Med. Chem. 14, 5765-5770.]); Leal et al. (2008[Leal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196-8204.]); Pinheiro et al. (2008a[Pinheiro, L. C. S., Abreu, P. A., Afonso, I. F., Leal, B., Corrêa, L. C. D., Borges, J. C., Marques, I. P., Lourenço, A. L., Sathler, P. C., Medeiros, C. A., Cabral, L. M., Júnior, M. L. O., Romeiro, G. A., Ferreira, V. F., Rodrigues, C. R., Castro, H. C. & Bernardino, A. M. R. (2008). Curr. Microbiol. 57, 463-468.]); El-Kashef et al. (2010[El-Kashef, H., Farghaly, A., Al-Hazmi, A., Terme, T. & Vanelle, P. (2010). Molecules, 15, 2651-2666.]); Testa et al. (2010[Testa, L., Biondi-Zoccai, G. G., Valgimigli, M., Latini, R. A., Pizzocri, S., Lanotte, S., Laudisa, M. L., Brambilla, N., Ward, M. R., Figtree, G. A., Bedogni, F. & Bhindi, R. (2010). Adv. Hematol. Article ID 595934.]); Panchamukhi et al. (2011[Panchamukhi, S. I., Mulla, J. A., Shetty, N. S., Khazi, M. I., Khan, A. Y., Kalashetti, M. B. & Khazi, I. A. (2011). Arch. Pharm. 344, 358-65.]). For the anti-leishmanial activity of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(aryl­amino)­thieno[2,3-b]pyridine, see: Pinheiro et al. (2012[Pinheiro, L. C. S., Borges, J. C., dos Santos, M. S., Ferreira, V. F., Bernardino, A. M. R., Tonioni, R., Sathler, P. C., Helena, C., Castro, H. C., Santos, D. O., Nascimento, S. B., Bourguignon, S. C., Magalhães, U. O., Cabral, L. & Rodrigues, C. R. (2012). J. Microbiol. Antimicrob. 4, 32-39.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13ClN4S

  • Mr = 328.81

  • Monoclinic, P 21 /c

  • a = 17.784 (3) Å

  • b = 6.2264 (4) Å

  • c = 13.6226 (18) Å

  • β = 102.700 (4)°

  • V = 1471.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 120 K

  • 0.25 × 0.15 × 0.03 mm

Data collection
  • Bruker–Nonius Roper CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.639, Tmax = 1.000

  • 9375 measured reflections

  • 2591 independent reflections

  • 1106 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.217

  • S = 0.99

  • 2591 reflections

  • 191 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯N3 0.88 (10) 1.87 (11) 2.578 (18) 136 (10)
N2′—H2n'⋯N3 0.88 (10) 2.04 (11) 2.740 (15) 135 (7)
N4—H4n⋯N1i 0.88 (3) 2.10 (3) 2.956 (8) 167 (5)
C6—H6⋯Cl1′ii 0.95 2.74 3.559 (10) 146
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thienopyridine derivatives have been synthesized by a variety of routes (Kaigorodova et al., 2000; Bernardino et al., 2006; Pinheiro et al., 2008; El-Kashef et al., 2010; Testa et al., 2010). A primary motivation for the preparation of these compounds is their biological activity, viz. anti-viral (Bernardino et al., 2004), anti-inflammatory (Moloney, 2001), anti-bacterial (Leal et al., 2008; Pinheiro et al., 2008; Panchamukhi et al., 2011) and anti-parasitic (Bernardino et al., 2006). Recently, the anti-leishmanial activity of a family of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine derivatives was reported (Pinheiro et al., 2012). We now wish to report the crystal structure determination of a related derivative, namely 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(4'-chlorophenylamino)-thieno[2,3-b]pyridine, (I).

In (I), Fig. 1, the nine non-hydrogen atoms of the thienopyridine ring are planar, having a r.m.s. deviation = 0.0333 Å and maximum deviations of 0.051 (5) Å [for the C7 atom] and -0.038 (5) Å [C6]. The imidazolyl ring is approximately planar [r.m.s. deviation = 0.0429 Å] and is co-planar with the fused ring system forming a dihedral angle of 4.4 (3)°. The imine-N3 atom of the imidazolyl ring is orientated towards the exocyclic amine so that an intramolecular hydrogen bond is formed, Table 1. There are two orientations for the disordered —N(H)—C6H4Cl residue of equal weight. The benzene rings of this residue are approximately co-planar (dihedral angle = 8.7 (5)°) and slightly displaced from each other. The dihedral angles between each orientation and the fused ring system are 59.1 (3) and 50.59 (15)°.

The most prominent feature of the crystal packing is the formation of N—H···N hydrogen bonds between the imidazolyl-amine and the pyridyl-N atom which lead to supramolecular helical chains along the b axis, Fig. 2 and Table 1. These assemble into layers in the ab plane allowing for inter-digitation of the chlorobenzene rings which in turn, allows for the formation of weak C—H···Cl interactions, Table 1. For the illustrated orientation of disordered benzene ring, Fig. 3, the H6···Cl1 separation is 2.95 Å.

Related literature top

For the synthesis and biological activity of thienopyridine derivatives, see: Kaigorodova et al. (2000); Moloney (2001); Bernardino et al. (2004, 2006); Leal et al. (2008); Pinheiro et al. (2008); El-Kashef et al. (2010); Testa et al. (2010); Panchamukhi et al. (2011). For the anti-leishmanial activity of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine, see: Pinheiro et al. (2012).

Experimental top

Following general procedures (Bernardino et al., 2006; Pinheiro et al., 2012), a solution of 4-(4'-chlorophenylamino)thieno[2,3-b]pyridine-5-carbonitrile (1.5 mmol) in ethylenediamine (5 ml) was cooled at 273 K, carbon disulfide (8 drops) was added and the reaction mixture heated at 373 for 24 h. The resulting mixture was cooled, treated with water and filtered to give a brown crystalline solid, which was collected and dried. The sample used in the structure determination was grown from CHCl3 solution. IR (KBr, cm-1): ν NH 3225, ν CN 1591). 1H NMR (300 MHz, CDCl3, TMS, δ in p.p.m.) 7.09 (d, 6.0, 1H, H2); 6.50 (d, 6.0, 1H, H3); 8.51 (s, 1H, H6); 7.29 (d, 8.7, 2H, Ar—H); 7.09 (d, 8.7, 2H, Ar—H); 3.83 (s, 4H, CH2). 13C NMR (75 MHz, DMSO-d6, TMS, δ in p.p.m.) 164.4; 164.1; 146.9; 146.6; 140.0; 129.3; 128.8; 125.4; 123.6; 121.3; 119.4; 105.4. ESI-(+)-MS [M+H]+ - 329.051 (100).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located from a difference map and refined with a distance restraint of N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(carrier atom). The —N(H)—C6H4Cl residue was disordered over two position. From anisotropic refinement (equivalent pairs of atoms were tied, and C6 rings were idealized) the orientations were equal and so in the final refinement the site occupancies factors were fixed at 0.5. Several reflections, i.e. (1 0 0), (2 0 0), (0 0 2) and (-1 0 2), were affected by the beam-stop and were omitted from the final refinement.

Structure description top

Thienopyridine derivatives have been synthesized by a variety of routes (Kaigorodova et al., 2000; Bernardino et al., 2006; Pinheiro et al., 2008; El-Kashef et al., 2010; Testa et al., 2010). A primary motivation for the preparation of these compounds is their biological activity, viz. anti-viral (Bernardino et al., 2004), anti-inflammatory (Moloney, 2001), anti-bacterial (Leal et al., 2008; Pinheiro et al., 2008; Panchamukhi et al., 2011) and anti-parasitic (Bernardino et al., 2006). Recently, the anti-leishmanial activity of a family of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine derivatives was reported (Pinheiro et al., 2012). We now wish to report the crystal structure determination of a related derivative, namely 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(4'-chlorophenylamino)-thieno[2,3-b]pyridine, (I).

In (I), Fig. 1, the nine non-hydrogen atoms of the thienopyridine ring are planar, having a r.m.s. deviation = 0.0333 Å and maximum deviations of 0.051 (5) Å [for the C7 atom] and -0.038 (5) Å [C6]. The imidazolyl ring is approximately planar [r.m.s. deviation = 0.0429 Å] and is co-planar with the fused ring system forming a dihedral angle of 4.4 (3)°. The imine-N3 atom of the imidazolyl ring is orientated towards the exocyclic amine so that an intramolecular hydrogen bond is formed, Table 1. There are two orientations for the disordered —N(H)—C6H4Cl residue of equal weight. The benzene rings of this residue are approximately co-planar (dihedral angle = 8.7 (5)°) and slightly displaced from each other. The dihedral angles between each orientation and the fused ring system are 59.1 (3) and 50.59 (15)°.

The most prominent feature of the crystal packing is the formation of N—H···N hydrogen bonds between the imidazolyl-amine and the pyridyl-N atom which lead to supramolecular helical chains along the b axis, Fig. 2 and Table 1. These assemble into layers in the ab plane allowing for inter-digitation of the chlorobenzene rings which in turn, allows for the formation of weak C—H···Cl interactions, Table 1. For the illustrated orientation of disordered benzene ring, Fig. 3, the H6···Cl1 separation is 2.95 Å.

For the synthesis and biological activity of thienopyridine derivatives, see: Kaigorodova et al. (2000); Moloney (2001); Bernardino et al. (2004, 2006); Leal et al. (2008); Pinheiro et al. (2008); El-Kashef et al. (2010); Testa et al. (2010); Panchamukhi et al. (2011). For the anti-leishmanial activity of 5-(4,5-dihydro-1H-imidazol-2-yl)-4-(arylamino)thieno[2,3-b]pyridine, see: Pinheiro et al. (2012).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows(Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. Only one orientation of the disordered —N(H)—C6H4Cl residue is shown.
[Figure 2] Fig. 2. A view of the supramolecular helical chain propagated along [010] in (I) showing intra- and inter-molecular N—H···N (blue dashed lines) hydrogen bonds.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The N—H···N and C—H···Cl interactions are shown as blue and orange dashed lines, respectively.
N-(4-Chlorophenyl)-5-(4,5-dihydro-1H-imidazol- 2-yl)thieno[2,3-b]pyridin-4-amine top
Crystal data top
C16H13ClN4SF(000) = 680
Mr = 328.81Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5430 reflections
a = 17.784 (3) Åθ = 1.0–26.4°
b = 6.2264 (4) ŵ = 0.40 mm1
c = 13.6226 (18) ÅT = 120 K
β = 102.700 (4)°Plate, colourless
V = 1471.5 (3) Å30.25 × 0.15 × 0.03 mm
Z = 4
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2591 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode1106 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.4°
φ & ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 77
Tmin = 0.639, Tmax = 1.000l = 1616
9375 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.088P)2 + 1.3236P]
where P = (Fo2 + 2Fc2)/3
2591 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.22 e Å3
2 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H13ClN4SV = 1471.5 (3) Å3
Mr = 328.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.784 (3) ŵ = 0.40 mm1
b = 6.2264 (4) ÅT = 120 K
c = 13.6226 (18) Å0.25 × 0.15 × 0.03 mm
β = 102.700 (4)°
Data collection top
Bruker–Nonius Roper CCD camera on κ-goniostat
diffractometer
2591 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1106 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 1.000Rint = 0.138
9375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0792 restraints
wR(F2) = 0.217H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.22 e Å3
2591 reflectionsΔρmin = 0.42 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12641 (12)0.5151 (2)0.60112 (15)0.0763 (7)
N10.0697 (3)0.2115 (6)0.7026 (4)0.0512 (13)
N30.2209 (3)0.3570 (7)0.8955 (4)0.0739 (18)
N40.0959 (3)0.3191 (7)0.8940 (4)0.0549 (14)
H4N0.0473 (11)0.288 (8)0.869 (4)0.066*
C10.0829 (3)0.0361 (8)0.7610 (4)0.0462 (14)
H10.03940.03120.77770.055*
C20.1545 (3)0.0563 (7)0.7995 (4)0.0464 (15)
C30.2210 (3)0.0395 (8)0.7765 (5)0.0601 (18)
C40.2088 (4)0.2238 (8)0.7136 (5)0.0592 (18)
C50.2606 (4)0.3478 (10)0.6675 (6)0.081 (2)
H50.31440.32110.67770.097*
C60.2236 (5)0.5055 (10)0.6084 (6)0.087 (2)
H60.24930.60350.57360.104*
C70.1334 (4)0.2970 (8)0.6822 (5)0.0526 (16)
Cl10.6039 (3)0.3366 (8)0.9082 (4)0.0739 (13)0.50
N20.2952 (7)0.067 (3)0.8204 (17)0.074 (3)0.50
H2N0.292 (7)0.200 (8)0.842 (9)0.089*0.50
C80.3602 (3)0.0556 (17)0.8170 (11)0.066 (3)0.50
C90.3724 (3)0.2610 (16)0.8574 (12)0.083 (3)0.50
H90.32970.34830.86290.099*0.50
C100.4470 (3)0.3387 (12)0.8896 (11)0.093 (3)0.50
H100.45540.47900.91720.111*0.50
C110.5095 (3)0.2109 (10)0.8815 (5)0.100 (3)0.50
C120.4973 (4)0.0056 (14)0.8411 (8)0.095 (4)0.50
H120.54000.08170.83560.113*0.50
C130.4227 (4)0.0721 (16)0.8089 (10)0.071 (4)0.50
H130.41430.21240.78130.085*0.50
Cl1'0.6109 (3)0.2495 (8)0.9508 (4)0.0739 (13)0.50
N2'0.2871 (4)0.045 (2)0.8004 (14)0.074 (3)0.50
H2N'0.28280.10580.85740.089*0.50
C8'0.3706 (3)0.0220 (11)0.8521 (6)0.066 (3)0.50
C9'0.3835 (4)0.2370 (11)0.8780 (8)0.083 (3)0.50
H9'0.34120.32870.88050.099*0.50
C10'0.4582 (4)0.3178 (14)0.9004 (9)0.093 (3)0.50
H10'0.46700.46470.91810.111*0.50
C11'0.5200 (4)0.1836 (17)0.8968 (9)0.100 (3)0.50
C12'0.5071 (3)0.0313 (16)0.8709 (9)0.095 (4)0.50
H12'0.54940.12300.86850.113*0.50
C13'0.4325 (3)0.1121 (14)0.8486 (7)0.071 (4)0.50
H13'0.42370.25900.83090.085*0.50
C140.1587 (2)0.2514 (6)0.8627 (3)0.0494 (15)
C150.2003 (2)0.5287 (6)0.9594 (4)0.079 (2)
H15A0.22720.50671.03040.094*
H15B0.21530.67060.93710.094*
C160.1138 (3)0.5183 (6)0.9492 (3)0.0678 (19)
H16A0.08750.64210.91080.081*
H16B0.10000.51171.01570.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1145 (17)0.0388 (9)0.0898 (14)0.0007 (9)0.0533 (12)0.0066 (8)
N10.051 (3)0.038 (3)0.068 (4)0.004 (2)0.020 (3)0.007 (2)
N30.048 (3)0.035 (3)0.121 (5)0.001 (2)0.019 (3)0.006 (3)
N40.051 (3)0.048 (3)0.060 (4)0.000 (3)0.000 (3)0.011 (2)
C10.037 (4)0.043 (3)0.059 (4)0.007 (3)0.012 (3)0.004 (3)
C20.037 (4)0.032 (3)0.066 (4)0.002 (2)0.003 (3)0.002 (3)
C30.035 (4)0.033 (3)0.113 (6)0.002 (3)0.018 (4)0.016 (3)
C40.055 (4)0.031 (3)0.100 (5)0.007 (3)0.034 (4)0.013 (3)
C50.082 (5)0.050 (4)0.129 (7)0.024 (4)0.061 (5)0.024 (4)
C60.129 (7)0.041 (4)0.113 (6)0.019 (4)0.077 (5)0.011 (4)
C70.060 (4)0.032 (3)0.071 (5)0.002 (3)0.027 (3)0.005 (3)
Cl10.0423 (14)0.087 (4)0.094 (4)0.012 (2)0.019 (2)0.012 (2)
N20.031 (4)0.041 (4)0.144 (8)0.002 (3)0.004 (4)0.005 (4)
C80.022 (4)0.043 (4)0.126 (11)0.008 (3)0.004 (5)0.012 (5)
C90.036 (4)0.048 (4)0.166 (9)0.002 (3)0.028 (5)0.035 (5)
C100.038 (5)0.083 (5)0.162 (8)0.011 (4)0.029 (5)0.061 (5)
C110.034 (5)0.112 (6)0.154 (8)0.021 (5)0.022 (5)0.075 (6)
C120.022 (4)0.102 (7)0.147 (11)0.013 (4)0.009 (5)0.057 (7)
C130.040 (5)0.059 (5)0.097 (12)0.020 (4)0.020 (6)0.024 (7)
Cl1'0.0423 (14)0.087 (4)0.094 (4)0.012 (2)0.019 (2)0.012 (2)
N2'0.031 (4)0.041 (4)0.144 (8)0.002 (3)0.004 (4)0.005 (4)
C8'0.022 (4)0.043 (4)0.126 (11)0.008 (3)0.004 (5)0.012 (5)
C9'0.036 (4)0.048 (4)0.166 (9)0.002 (3)0.028 (5)0.035 (5)
C10'0.038 (5)0.083 (5)0.162 (8)0.011 (4)0.029 (5)0.061 (5)
C11'0.034 (5)0.112 (6)0.154 (8)0.021 (5)0.022 (5)0.075 (6)
C12'0.022 (4)0.102 (7)0.147 (11)0.013 (4)0.009 (5)0.057 (7)
C13'0.040 (5)0.059 (5)0.097 (12)0.020 (4)0.020 (6)0.024 (7)
C140.045 (4)0.035 (3)0.061 (4)0.009 (3)0.003 (3)0.011 (3)
C150.091 (6)0.042 (4)0.082 (5)0.002 (3)0.026 (4)0.001 (3)
C160.077 (5)0.044 (3)0.068 (5)0.007 (3)0.015 (4)0.010 (3)
Geometric parameters (Å, º) top
S1—C61.710 (8)C9—C101.3900
S1—C71.738 (6)C9—H90.9500
N1—C71.336 (7)C10—C111.3900
N1—C11.341 (6)C10—H100.9500
N3—C141.281 (6)C11—C121.3900
N3—C151.474 (6)C12—C131.3900
N4—C141.348 (6)C12—H120.9500
N4—C161.449 (6)C13—H130.9500
N4—H4N0.877 (10)Cl1'—C11'1.674 (10)
C1—C21.390 (7)N2'—C8'1.556 (10)
C1—H10.9500N2'—H2N'0.88 (1)
C2—C31.421 (8)C8'—C9'1.3900
C2—C141.481 (6)C8'—C13'1.3900
C3—N2'1.263 (12)C9'—C10'1.3900
C3—C41.420 (8)C9'—H9'0.9500
C3—N21.479 (16)C10'—C11'1.3900
C4—C71.391 (8)C10'—H10'0.9500
C4—C51.447 (8)C11'—C12'1.3900
C5—C61.347 (10)C12'—C13'1.3900
C5—H50.9500C12'—H12'0.9500
C6—H60.9500C13'—H13'0.9500
Cl1—C111.815 (9)C15—C161.5151
N2—C81.394 (17)C15—H15A0.9900
N2—H2N0.88 (1)C15—H15B0.9900
C8—C91.3900C16—H16A0.9900
C8—C131.3900C16—H16B0.9900
C6—S1—C790.3 (3)C13—C12—C11120.0
C7—N1—C1113.7 (5)C13—C12—H12120.0
C14—N3—C15105.7 (4)C11—C12—H12120.0
C14—N4—C16109.2 (4)C12—C13—C8120.0
C14—N4—H4N128 (4)C12—C13—H13120.0
C16—N4—H4N119 (4)C8—C13—H13120.0
N1—C1—C2126.0 (5)C3—N2'—C8'138.2 (13)
N1—C1—H1117.0C3—N2'—H2N118 (6)
C2—C1—H1117.0C8'—N2'—H2N92 (6)
C1—C2—C3118.8 (5)C3—N2'—H2N'98.6
C1—C2—C14118.9 (5)C8'—N2'—H2N'88.6
C3—C2—C14122.3 (5)C9'—C8'—C13'120.0
N2'—C3—C4120.3 (8)C9'—C8'—N2'117.5 (7)
N2'—C3—C2122.7 (8)C13'—C8'—N2'120.4 (8)
C4—C3—C2116.6 (5)C8'—C9'—C10'120.0
C4—C3—N2127.6 (8)C8'—C9'—H9'120.0
C2—C3—N2115.8 (8)C10'—C9'—H9'120.0
C7—C4—C3117.4 (5)C11'—C10'—C9'120.0
C7—C4—C5110.8 (6)C11'—C10'—H10'120.0
C3—C4—C5131.6 (6)C9'—C10'—H10'120.0
C6—C5—C4111.9 (7)C10'—C11'—C12'120.0
C6—C5—H5124.0C10'—C11'—Cl1'122.2 (6)
C4—C5—H5124.0C12'—C11'—Cl1'115.9 (6)
C5—C6—S1114.6 (5)C13'—C12'—C11'120.0
C5—C6—H6122.7C13'—C12'—H12'120.0
S1—C6—H6122.7C11'—C12'—H12'120.0
N1—C7—C4127.6 (5)C12'—C13'—C8'120.0
N1—C7—S1119.9 (5)C12'—C13'—H13'120.0
C4—C7—S1112.4 (4)C8'—C13'—H13'120.0
C8—N2—C3114.5 (16)N3—C14—N4116.2 (4)
C8—N2—H2N129 (8)N3—C14—C2123.6 (4)
C3—N2—H2N116 (8)N4—C14—C2120.1 (4)
C3—N2—H2N'93.2N3—C15—C16107.1 (2)
C9—C8—C13120.0N3—C15—H15A110.3
C9—C8—N2123.2 (15)C16—C15—H15A110.3
C13—C8—N2111.9 (13)N3—C15—H15B110.3
C10—C9—C8120.0C16—C15—H15B110.3
C10—C9—H9120.0H15A—C15—H15B108.6
C8—C9—H9120.0N4—C16—C15100.8 (2)
C11—C10—C9120.0N4—C16—H16A111.6
C11—C10—H10120.0C15—C16—H16A111.6
C9—C10—H10120.0N4—C16—H16B111.6
C10—C11—C12120.0C15—C16—H16B111.6
C10—C11—Cl1117.2 (4)H16A—C16—H16B109.4
C12—C11—Cl1122.2 (4)
C7—N1—C1—C20.1 (8)C8—C9—C10—C110.0
N1—C1—C2—C30.1 (8)C9—C10—C11—C120.0
N1—C1—C2—C14179.7 (5)C9—C10—C11—Cl1171.4 (3)
C1—C2—C3—N2'173.2 (10)C10—C11—C12—C130.0
C14—C2—C3—N2'6.6 (13)Cl1—C11—C12—C13170.9 (3)
C1—C2—C3—C40.9 (8)C11—C12—C13—C80.0
C14—C2—C3—C4178.9 (5)C9—C8—C13—C120.0
C1—C2—C3—N2179.7 (10)N2—C8—C13—C12156.1 (17)
C14—C2—C3—N20.5 (11)C4—C3—N2'—C8'57 (3)
N2'—C3—C4—C7174.0 (10)C2—C3—N2'—C8'131.2 (19)
C2—C3—C4—C71.5 (8)N2—C3—N2'—C8'87 (7)
N2—C3—C4—C7179.2 (11)C3—N2'—C8'—C9'4 (3)
N2'—C3—C4—C50.7 (13)C3—N2'—C8'—C13'168.0 (18)
C2—C3—C4—C5173.2 (6)C13'—C8'—C9'—C10'0.0
N2—C3—C4—C56.1 (15)N2'—C8'—C9'—C10'163.7 (10)
C7—C4—C5—C61.7 (8)C8'—C9'—C10'—C11'0.0
C3—C4—C5—C6176.6 (6)C9'—C10'—C11'—C12'0.0
C4—C5—C6—S11.2 (8)C9'—C10'—C11'—Cl1'163.6 (6)
C7—S1—C6—C50.4 (5)C10'—C11'—C12'—C13'0.0
C1—N1—C7—C40.6 (8)Cl1'—C11'—C12'—C13'164.6 (6)
C1—N1—C7—S1176.0 (4)C11'—C12'—C13'—C8'0.0
C3—C4—C7—N11.5 (9)C9'—C8'—C13'—C12'0.0
C5—C4—C7—N1174.3 (6)N2'—C8'—C13'—C12'163.2 (9)
C3—C4—C7—S1177.2 (4)C15—N3—C14—N40.7 (6)
C5—C4—C7—S11.4 (6)C15—N3—C14—C2176.6 (5)
C6—S1—C7—N1175.4 (5)C16—N4—C14—N37.2 (7)
C6—S1—C7—C40.6 (5)C16—N4—C14—C2176.7 (4)
N2'—C3—N2—C855 (5)C1—C2—C14—N3174.8 (5)
C4—C3—N2—C815 (3)C3—C2—C14—N35.0 (8)
C2—C3—N2—C8165.7 (17)C1—C2—C14—N49.4 (8)
C3—N2—C8—C955 (2)C3—C2—C14—N4170.8 (5)
C3—N2—C8—C13149.3 (11)C14—N3—C15—C165.8 (4)
C13—C8—C9—C100.0C14—N4—C16—C159.7 (5)
N2—C8—C9—C10153.3 (17)N3—C15—C16—N49.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N30.88 (10)1.87 (11)2.578 (18)136 (10)
N2—H2n'···N30.88 (10)2.04 (11)2.740 (15)135 (7)
N4—H4n···N1i0.88 (3)2.10 (3)2.956 (8)167 (5)
C6—H6···Cl1ii0.952.743.559 (10)146
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC16H13ClN4S
Mr328.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)17.784 (3), 6.2264 (4), 13.6226 (18)
β (°) 102.700 (4)
V3)1471.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.25 × 0.15 × 0.03
Data collection
DiffractometerBruker–Nonius Roper CCD camera on κ-goniostat
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.639, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9375, 2591, 1106
Rint0.138
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.217, 0.99
No. of reflections2591
No. of parameters191
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.42

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows(Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2n···N30.88 (10)1.87 (11)2.578 (18)136 (10)
N2'—H2n'···N30.88 (10)2.04 (11)2.740 (15)135 (7)
N4—H4n···N1i0.88 (3)2.10 (3)2.956 (8)167 (5)
C6—H6···Cl1'ii0.952.743.559 (10)146
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBernardino, A. M. R., Pinheiro, L. C. S., Azevedo, A. R., Frugulhetti, I. C. P. P., Carneiro, J. L. M., Souza, T. M. L. & Ferreira, V. F. (2004). Heterocycl. Commun. 10, 407–410.  CrossRef CAS Google Scholar
First citationBernardino, A. M. R., Pinheiro, L. C. S., Rodrigues, C. R., Loureiro, N. I., Castro, H. C., Lanfredi-Rangel, A., Sabatini-Lopes, J., Borges, J. C., Carvalho, J. M., Romeiro, G. A., Ferreira, V. F., Frugulhetti, I. C. P. P. & Vannier-Santos, M. A. (2006). Bioorg. Med. Chem. 14, 5765–5770.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEl-Kashef, H., Farghaly, A., Al-Hazmi, A., Terme, T. & Vanelle, P. (2010). Molecules, 15, 2651–2666.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKaigorodova, Y. A., Vasilin, V. K., Konyushkin, L. D., Usova, Y. B. & Krapivin, G. D. (2000). Molecules, 5, 1085–1093.  Web of Science CrossRef CAS Google Scholar
First citationLeal, B., Afonso, I. F., Rodrigues, C. R., Abreu, P. A., Garrett, R., Pinheiro, L. C. S., Azevedo, A. R., Borges, J. C., Vegi, P. F., Santos, C. C. C., da Silveira, F. C. A., Cabral, L. M., Frugulhetti, I. C. P. P., Bernardino, A. M. R., Santos, D. O. & Castro, H. C. (2008). Bioorg. Med. Chem. 16, 8196–8204.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoloney, G. P. (2001). Molecules, 6, M203.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPanchamukhi, S. I., Mulla, J. A., Shetty, N. S., Khazi, M. I., Khan, A. Y., Kalashetti, M. B. & Khazi, I. A. (2011). Arch. Pharm. 344, 358–65.  Web of Science CrossRef CAS Google Scholar
First citationPinheiro, L. C. S., Abreu, P. A., Afonso, I. F., Leal, B., Corrêa, L. C. D., Borges, J. C., Marques, I. P., Lourenço, A. L., Sathler, P. C., Medeiros, C. A., Cabral, L. M., Júnior, M. L. O., Romeiro, G. A., Ferreira, V. F., Rodrigues, C. R., Castro, H. C. & Bernardino, A. M. R. (2008). Curr. Microbiol. 57, 463–468.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPinheiro, L. C. S., Borges, J. C., dos Santos, M. S., Ferreira, V. F., Bernardino, A. M. R., Tonioni, R., Sathler, P. C., Helena, C., Castro, H. C., Santos, D. O., Nascimento, S. B., Bourguignon, S. C., Magalhães, U. O., Cabral, L. & Rodrigues, C. R. (2012). J. Microbiol. Antimicrob. 4, 32–39.  CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTesta, L., Biondi-Zoccai, G. G., Valgimigli, M., Latini, R. A., Pizzocri, S., Lanotte, S., Laudisa, M. L., Brambilla, N., Ward, M. R., Figtree, G. A., Bedogni, F. & Bhindi, R. (2010). Adv. Hematol. Article ID 595934.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds