organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-tert-Butyl-1-(4-nitro­amino-1,2,5-oxa­diazol-3-yl)diazene 1-oxide

aXi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 June 2012; accepted 16 June 2012; online 23 June 2012)

In the title compound, C6H10N6O4, the nitro­amine –NHNO2 substituent and the C–N=N(→ O) unit of the other substituent of the oxadiazole ring are nearly coplanar with the five-membered ring [dihedral angles = 5.7 (1) and 3.0 (1)°]. The amino group of the –NHNO2 substituent is a hydrogen-bond donor to the two-coordinate N atom of the C—N=N(→ O) unit.

Related literature

The synthesis required several steps; see: Churakov et al. (1995[Churakov, A. M., Semenov, S. E., Ioffe, S. L., Strelenko, Y. A. & Tartakovskii, V. A. (1995). Mendeleev Commun. pp. 102-103.]); Li et al. (2008[Li, H.-Z., Zhou, X.-Q., Li, J. S. & Huang, M. (2008). Chin. J. Org. Chem. 28, 1646-1648.]); Mel'nikova et al. (2001[Mel'nikova, T. M., Novikova, T. S., Khmel'nitskii, L. I. & Sheremetev, A. B. (2001). Mendeleev Commun. pp. 30-31.]).

[Scheme 1]

Experimental

Crystal data
  • C6H10N6O4

  • Mr = 230.20

  • Monoclinic, P 21 /n

  • a = 6.2509 (5) Å

  • b = 9.1327 (8) Å

  • c = 18.6566 (16) Å

  • β = 92.134 (2)°

  • V = 1064.32 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 6176 measured reflections

  • 2402 independent reflections

  • 1711 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.166

  • S = 1.05

  • 2402 reflections

  • 149 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1⋯N1 0.87 (1) 2.18 (2) 2.758 (2) 124 (2)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (Scheme I) as well as the precusor compounds (Churakov et al., 1995; Li et al., 2008; Mel'nikova et al., 2001) represent a class of high energy materials that has a low hydrogen content in the molecular formula. The nitroamine –NHNO2 substituent and the C–N N(O) unit of the second substituent of the oxadiazole ring of C6H10N6O4 are nearly coplanar with the five-membered ring [dihedral angles 5.7 (1), 3.0 (1) °] (Fig. 1). The amino group of the –NHNO2 substituent is hydrogen bond donor to the two-coordinate N atom of C–N N(O) (Table 1).

Related literature top

The synthesis required several steps; see: Churakov et al. (1995); Li et al. (2008); Mel'nikova et al. (2001).

Experimental top

The steps given below were adapted from published procedures (Churakov et al., 1995; Li et al., 2008; Mel'nikova et al., 2001)..

Synthesis of 3-amino-4-nitrosofurazan

To a mixture of benzene (200 ml), 30% hydrogen peroxide (145 ml, 1.29 mol) and sodium tungstate dihydrate (16.5 g, 0.05 mol), concentrated sulfuric acid (10 ml, 180 mmol) was added dropwise at 278–283 K followed by diaminofurazan (10.8 g, 0.10 mmol). The mixture was kept stirred at 288 K for 1.5 h. The organic layer was separated, washed with water and dried over magnesium sulfate. The solvent was removed to yield a yellow solid (5.19 g, 90% yield). CH&N elemental analysis. Calc. for C2H2N4O2: C 21.06, H 1.77, N 49.12%. Found: C 20.82, H 1.77, N 48.95%.

Synthesis of 3-amino-4-(tert-butyl-NNO-azoxy)furazan

A suspension solution of N,N-dibromo-tert-butylamine (11.5 g, 50 mmol), cuprous chloride (10 g, 0.1 mol), and the above compound (50 mmol) in dichloromethane (500 ml) was stirred at 288–298 K for 15 h. The reaction mixture was poured into ice-water (500 ml). Sodium thiosulfate was then added. The organic layer was separated, washed with water and dried over magnesium sulfate. The solvent was removed to give a yellow solid (6.8 g, 70%). CH&N elemental analysis. Calc. for C6H11N5O2: C 38.92, H 5.99, N37.82%. Found: C 39.36, H 5.96, N 35.60%.

Synthesis of 3-nitramino-4-(tert-butyl-NNO-azoxy)furazan

To a stirred and cooled (273 K) solution of the above compound (2 g, 10.8 mmol) in carbon tetrachloride, concentrated nitric acid (2.72 g, 21.6 mmol) was added. Thesolution was stirred for 2 h after after which the temperature was raised to room temperature. The solvent was removed. Dichloromethane (100 ml) was added and the organic phase was washed with cold water (20 ml). The aqueous layer was extracted with more dichloromethyane (2×50 ml). The combined organic layer was dried over magnesium sulfate, filtered and the solvent was removed to give the title compound as a yellow solid (2.47 g, 100% yield). CH&N elemental analysis. Calc. for C6H1N6O3: C31.30, H 4.35, N 36.52%. Found: C 31.73, H 4.41, N 36.12%. Crystals were obtained upon recrystallization from dichloromethane.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.84±0.01 Å; its temperature factor was refined.

Structure description top

The title compound (Scheme I) as well as the precusor compounds (Churakov et al., 1995; Li et al., 2008; Mel'nikova et al., 2001) represent a class of high energy materials that has a low hydrogen content in the molecular formula. The nitroamine –NHNO2 substituent and the C–N N(O) unit of the second substituent of the oxadiazole ring of C6H10N6O4 are nearly coplanar with the five-membered ring [dihedral angles 5.7 (1), 3.0 (1) °] (Fig. 1). The amino group of the –NHNO2 substituent is hydrogen bond donor to the two-coordinate N atom of C–N N(O) (Table 1).

The synthesis required several steps; see: Churakov et al. (1995); Li et al. (2008); Mel'nikova et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C6H10N6O4 at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-tert-Butyl-1-(4-nitroamino-1,2,5-oxadiazol-3-yl)diazene 1-oxide top
Crystal data top
C6H10N6O4F(000) = 480
Mr = 230.20Dx = 1.437 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2279 reflections
a = 6.2509 (5) Åθ = 2.2–26.2°
b = 9.1327 (8) ŵ = 0.12 mm1
c = 18.6566 (16) ÅT = 293 K
β = 92.134 (2)°Prism, yellow
V = 1064.32 (16) Å30.32 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1711 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
ω scansh = 87
6176 measured reflectionsk = 1111
2402 independent reflectionsl = 1424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0903P)2 + 0.1496P]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C6H10N6O4V = 1064.32 (16) Å3
Mr = 230.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2509 (5) ŵ = 0.12 mm1
b = 9.1327 (8) ÅT = 293 K
c = 18.6566 (16) Å0.32 × 0.22 × 0.18 mm
β = 92.134 (2)°
Data collection top
Bruker SMART APEX
diffractometer
1711 reflections with I > 2σ(I)
6176 measured reflectionsRint = 0.023
2402 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.21 e Å3
2402 reflectionsΔρmin = 0.21 e Å3
149 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0322 (3)0.3824 (2)0.18681 (9)0.0936 (6)
O20.2815 (3)0.3201 (2)0.38149 (7)0.0895 (5)
O40.8233 (3)0.0997 (2)0.34861 (9)0.0993 (6)
O50.9040 (3)0.04877 (19)0.24053 (10)0.0906 (5)
N10.3219 (2)0.25696 (16)0.15264 (7)0.0506 (4)
N20.2040 (2)0.31596 (16)0.19716 (7)0.0541 (4)
N30.1665 (3)0.3517 (2)0.32062 (9)0.0761 (5)
N40.4710 (3)0.2504 (2)0.36761 (8)0.0782 (5)
N50.6222 (2)0.17780 (19)0.25756 (8)0.0630 (4)
N60.7946 (3)0.10260 (19)0.28501 (10)0.0678 (5)
C10.4246 (5)0.1849 (4)0.03862 (11)0.1183 (12)
H1A0.42770.08520.05490.177*
H1B0.56090.22990.04930.177*
H1C0.39480.18710.01220.177*
C20.0397 (4)0.1911 (4)0.06269 (13)0.1051 (9)
H2A0.06920.24470.08640.158*
H2B0.04710.09320.08130.158*
H2C0.00560.18800.01210.158*
C30.2466 (4)0.4235 (3)0.05127 (11)0.0851 (7)
H3A0.13650.47440.07580.128*
H3B0.21580.42700.00050.128*
H3C0.38220.46940.06190.128*
C40.2546 (3)0.2664 (2)0.07571 (9)0.0600 (5)
C50.2791 (3)0.30095 (19)0.27008 (9)0.0525 (4)
C60.4692 (3)0.23759 (19)0.29834 (9)0.0536 (4)
H10.602 (3)0.170 (2)0.2114 (5)0.056 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0717 (9)0.1239 (14)0.0855 (11)0.0512 (9)0.0053 (8)0.0056 (9)
O20.1138 (13)0.1042 (12)0.0515 (8)0.0024 (10)0.0179 (8)0.0145 (8)
O40.0878 (11)0.1234 (14)0.0836 (11)0.0008 (10)0.0391 (9)0.0258 (10)
O50.0688 (10)0.0861 (11)0.1168 (13)0.0227 (8)0.0031 (10)0.0077 (10)
N10.0488 (7)0.0592 (8)0.0438 (7)0.0092 (6)0.0008 (6)0.0007 (6)
N20.0491 (8)0.0583 (8)0.0549 (8)0.0101 (6)0.0022 (6)0.0009 (6)
N30.0848 (12)0.0828 (12)0.0617 (10)0.0064 (10)0.0172 (9)0.0119 (9)
N40.1005 (14)0.0881 (13)0.0456 (8)0.0036 (11)0.0042 (9)0.0002 (8)
N50.0591 (9)0.0774 (11)0.0520 (8)0.0157 (8)0.0053 (7)0.0085 (8)
N60.0552 (9)0.0646 (10)0.0825 (12)0.0009 (8)0.0130 (8)0.0146 (9)
C10.136 (2)0.167 (3)0.0522 (12)0.068 (2)0.0072 (14)0.0082 (15)
C20.110 (2)0.131 (2)0.0727 (14)0.0425 (18)0.0282 (14)0.0022 (15)
C30.1064 (18)0.0854 (15)0.0623 (12)0.0030 (13)0.0119 (12)0.0188 (11)
C40.0629 (11)0.0721 (12)0.0443 (9)0.0054 (9)0.0068 (7)0.0025 (8)
C50.0587 (10)0.0507 (9)0.0485 (9)0.0033 (7)0.0088 (7)0.0030 (7)
C60.0646 (10)0.0516 (9)0.0442 (8)0.0055 (8)0.0017 (7)0.0036 (7)
Geometric parameters (Å, º) top
O1—N21.2417 (19)C1—C41.489 (3)
O2—N31.352 (2)C1—H1A0.9600
O2—N41.378 (3)C1—H1B0.9600
O4—N61.194 (2)C1—H1C0.9600
O5—N61.200 (2)C2—C41.520 (3)
N1—N21.2527 (18)C2—H2A0.9600
N1—C41.483 (2)C2—H2B0.9600
N2—C51.429 (2)C2—H2C0.9600
N3—C51.284 (2)C3—C41.506 (3)
N4—C61.297 (2)C3—H3A0.9600
N5—C61.358 (2)C3—H3B0.9600
N5—N61.362 (2)C3—H3C0.9600
N5—H10.869 (9)C5—C61.407 (2)
N3—O2—N4112.00 (13)C4—C2—H2C109.5
N2—N1—C4117.65 (13)H2A—C2—H2C109.5
O1—N2—N1129.32 (15)H2B—C2—H2C109.5
O1—N2—C5116.51 (15)C4—C3—H3A109.5
N1—N2—C5114.15 (13)C4—C3—H3B109.5
C5—N3—O2104.54 (17)H3A—C3—H3B109.5
C6—N4—O2104.67 (17)C4—C3—H3C109.5
C6—N5—N6123.77 (16)H3A—C3—H3C109.5
C6—N5—H1120.6 (12)H3B—C3—H3C109.5
N6—N5—H1114.5 (13)C1—C4—N1103.85 (15)
O4—N6—O5127.57 (19)C1—C4—C3110.6 (2)
O4—N6—N5118.2 (2)N1—C4—C3110.69 (16)
O5—N6—N5114.21 (17)C1—C4—C2110.0 (2)
C4—C1—H1A109.5N1—C4—C2110.20 (16)
C4—C1—H1B109.5C3—C4—C2111.28 (19)
H1A—C1—H1B109.5N3—C5—C6110.60 (16)
C4—C1—H1C109.5N3—C5—N2119.65 (17)
H1A—C1—H1C109.5C6—C5—N2129.75 (15)
H1B—C1—H1C109.5N4—C6—N5127.89 (18)
C4—C2—H2A109.5N4—C6—C5108.18 (17)
C4—C2—H2B109.5N5—C6—C5123.90 (15)
H2A—C2—H2B109.5
C4—N1—N2—O10.8 (3)N1—N2—C5—N3177.04 (17)
C4—N1—N2—C5179.52 (14)O1—N2—C5—C6177.20 (18)
N4—O2—N3—C51.0 (2)N1—N2—C5—C63.9 (3)
N3—O2—N4—C61.0 (2)O2—N4—C6—N5179.06 (18)
C6—N5—N6—O46.7 (3)O2—N4—C6—C50.6 (2)
C6—N5—N6—O5174.83 (19)N6—N5—C6—N49.1 (3)
N2—N1—C4—C1179.1 (2)N6—N5—C6—C5172.60 (17)
N2—N1—C4—C362.2 (2)N3—C5—C6—N40.0 (2)
N2—N1—C4—C261.4 (2)N2—C5—C6—N4179.17 (17)
O2—N3—C5—C60.7 (2)N3—C5—C6—N5178.51 (18)
O2—N3—C5—N2179.88 (15)N2—C5—C6—N50.6 (3)
O1—N2—C5—N31.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N10.87 (1)2.18 (2)2.758 (2)124 (2)

Experimental details

Crystal data
Chemical formulaC6H10N6O4
Mr230.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.2509 (5), 9.1327 (8), 18.6566 (16)
β (°) 92.134 (2)
V3)1064.32 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6176, 2402, 1711
Rint0.023
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.166, 1.05
No. of reflections2402
No. of parameters149
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1···N10.87 (1)2.18 (2)2.758 (2)124 (2)
 

Acknowledgements

We thank the Equipment Department Preselected Projects (404060020502) and the Ministry of Higher Education of Malaysia (grant No. UM·C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChurakov, A. M., Semenov, S. E., Ioffe, S. L., Strelenko, Y. A. & Tartakovskii, V. A. (1995). Mendeleev Commun. pp. 102–103.  CrossRef Google Scholar
First citationLi, H.-Z., Zhou, X.-Q., Li, J. S. & Huang, M. (2008). Chin. J. Org. Chem. 28, 1646–1648.  CAS Google Scholar
First citationMel'nikova, T. M., Novikova, T. S., Khmel'nitskii, L. I. & Sheremetev, A. B. (2001). Mendeleev Commun. pp. 30–31.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds