metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(4,4′-di­methyl-2,2′-bi­pyridine-κ2N,N′)(di­methyl sulfoxide-κO)cadmium

aDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 19 June 2012; accepted 23 June 2012; online 30 June 2012)

In the title compound, [CdBr2(C12H12N2)(C2H6OS)], the CdII atom is five-coordinated in a distorted trigonal–bipyramidal geometry by two N atoms from one 4,4′-dimethyl-2,2′-bipyridine (DMBP) ligand, one O atom from a dimethyl sulfoxide (DMSO) ligand and two Br atoms. A weak intra­molecular C—H⋯O hydrogen bond occurs between the DMBP and DMSO ligands. ππ stacking between pyridine rings [centroid–centroid distances = 3.682 (3) and 3.598 (3) Å] is observed in the crystal.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306-m1307.]); Alizadeh et al. (2010[Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.]); Amani et al. (2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Bellusci et al. (2008[Bellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114-3122.]); Hojjat Kashani et al. (2008[Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905-m906.]); Kalateh et al. (2008[Kalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397-m1398.], 2010[Kalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.]); Sakamoto et al. (2004[Sakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352-m353.]); Shirvan & Haydari Dezfuli (2011[Shirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866-m1867.]); Sofetis et al. (2006[Sofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389-3395.]); Willett et al. (2001[Willett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342-4352.]); Yoshikawa et al. (2003[Yoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155-m156.]); Yousefi et al. (2008[Yousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.]).

[Scheme 1]

Experimental

Crystal data
  • [CdBr2(C12H12N2)(C2H6OS)]

  • Mr = 534.58

  • Monoclinic, P 21 /c

  • a = 8.3940 (6) Å

  • b = 15.2928 (15) Å

  • c = 14.8606 (9) Å

  • β = 103.377 (5)°

  • V = 1855.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.59 mm−1

  • T = 298 K

  • 0.33 × 0.28 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.183, Tmax = 0.342

  • 16741 measured reflections

  • 4054 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.086

  • S = 1.04

  • 4054 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.301 (4)
Cd1—N1 2.349 (3)
Cd1—N2 2.340 (3)
Cd1—Br1 2.5857 (6)
Cd1—Br2 2.5784 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O1 0.93 2.51 3.087 (5) 120

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010; Shirvan & Haydari Dezfuli, 2011). Here, we report the synthesis and structure of the title compound.

In the title compound, (Fig. 1), the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two Br atoms. The Cd—Br and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) –X,-Y,1-Z and (ii) 1-X,-Y,1-Z, where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.682 (3) and 3.598 (3) Å.

Related literature top

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Shirvan & Haydari Dezfuli (2011); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Experimental top

For the preparation of the title compound, a solution of 4,4'-dimethyl-2,2'-bipyridine (0.25 g, 1.33 mmol) in methanol (10 ml) was added to a solution of CdBr2.4H2O, (0.46 g, 1.33 mmol) in methanol (10 ml) at room temperature. The suitable crystals for X-ray diffraction experiment were obtained by methanol diffusion to a colorless solution in DMSO. Suitable crystals were isolated after one week (yield; 0.52 g, 73.1%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.96 Å and constrained to ride on their parent atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

4,4'-Dimethyl-2,2'-bipyridine (4,4'-dmbipy), is a good bidentate ligand, and numerous complexes with 4,4'-dmbipy have been prepared, such as that of mercury (Kalateh et al., 2008; Yousefi et al., 2008), indium (Ahmadi et al., 2008), iron (Amani et al., 2009), platin (Hojjat Kashani et al., 2008), manganese (Sakamoto et al., 2004), silver (Bellusci et al., 2008), gallium (Sofetis et al., 2006), copper (Willett et al., 2001), iridium (Yoshikawa et al., 2003), cadmium (Kalateh et al., 2010) and zinc (Alizadeh et al., 2010; Shirvan & Haydari Dezfuli, 2011). Here, we report the synthesis and structure of the title compound.

In the title compound, (Fig. 1), the CdII atom is five-coordinated in a distorted trigonal-bipyramidal configuration by two N atoms from one 4,4'-dimethyl-2,2'-bipyridine, one O atom from one dimethyl sulfoxide and two Br atoms. The Cd—Br and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyridine rings, Cg3—Cg2i and Cg3—Cg3ii [symmetry cods: (i) –X,-Y,1-Z and (ii) 1-X,-Y,1-Z, where Cg2 and Cg3 are centroids of the rings (N1/C1—C3/C5—C6) and (N2/C7—C9/C11—C12), respectively] may stabilize the structure, with centroid-centroid distance of 3.682 (3) and 3.598 (3) Å.

For related structures, see: Ahmadi et al. (2008); Alizadeh et al. (2010); Amani et al. (2009); Bellusci et al. (2008); Hojjat Kashani et al. (2008); Kalateh et al. (2008, 2010); Sakamoto et al. (2004); Shirvan & Haydari Dezfuli (2011); Sofetis et al. (2006); Willett et al. (2001); Yoshikawa et al. (2003); Yousefi et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Unit-cell packing diagram for title compound.
Dibromido(4,4'-dimethyl-2,2'-bipyridine-κ2N,N')(dimethyl sulfoxide-κO)cadmium top
Crystal data top
[CdBr2(C12H12N2)(C2H6OS)]F(000) = 1032
Mr = 534.58Dx = 1.913 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10741 reflections
a = 8.3940 (6) Åθ = 1.9–27.0°
b = 15.2928 (15) ŵ = 5.59 mm1
c = 14.8606 (9) ÅT = 298 K
β = 103.377 (5)°Block, colorless
V = 1855.9 (3) Å30.33 × 0.28 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4054 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.183, Tmax = 0.342k = 1919
16741 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0279P)2 + 0.8746P]
where P = (Fo2 + 2Fc2)/3
4054 reflections(Δ/σ)max = 0.010
190 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[CdBr2(C12H12N2)(C2H6OS)]V = 1855.9 (3) Å3
Mr = 534.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3940 (6) ŵ = 5.59 mm1
b = 15.2928 (15) ÅT = 298 K
c = 14.8606 (9) Å0.33 × 0.28 × 0.20 mm
β = 103.377 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3008 reflections with I > 2σ(I)
Tmin = 0.183, Tmax = 0.342Rint = 0.099
16741 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.04Δρmax = 0.53 e Å3
4054 reflectionsΔρmin = 0.42 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0502 (6)0.2148 (3)0.6246 (3)0.0501 (11)
H10.05210.23500.68380.060*
C20.0370 (7)0.2624 (3)0.5505 (3)0.0526 (12)
H20.09330.31270.55990.063*
C30.0391 (7)0.2337 (3)0.4611 (3)0.0528 (12)
C40.1294 (8)0.2827 (4)0.3769 (4)0.0767 (18)
H4A0.08620.34090.37790.092*
H4B0.24370.28540.37690.092*
H4C0.11600.25290.32230.092*
C50.0474 (6)0.1592 (3)0.4529 (3)0.0473 (11)
H50.05020.13870.39440.057*
C60.1305 (5)0.1138 (2)0.5302 (2)0.0373 (9)
C70.2243 (5)0.0322 (2)0.5237 (3)0.0365 (9)
C80.2297 (6)0.0049 (3)0.4393 (3)0.0426 (10)
H80.17320.02140.38480.051*
C90.3177 (6)0.0803 (3)0.4350 (3)0.0476 (11)
C100.3268 (7)0.1202 (3)0.3438 (3)0.0634 (14)
H10A0.28460.17870.34020.076*
H10B0.43870.12130.33870.076*
H10C0.26290.08580.29430.076*
C110.3983 (7)0.1162 (3)0.5174 (3)0.0535 (12)
H110.45930.16700.51780.064*
C120.3894 (7)0.0776 (3)0.5995 (3)0.0539 (12)
H120.44460.10340.65450.065*
C130.5760 (15)0.1667 (4)0.8786 (5)0.144 (4)
H13A0.66720.17290.85020.173*
H13B0.47950.19060.83850.173*
H13C0.59870.19730.93650.173*
C140.7460 (8)0.0254 (5)0.9509 (4)0.094 (2)
H14A0.75450.03720.95320.112*
H14B0.81950.04830.91590.112*
H14C0.77440.04851.01260.112*
N10.1310 (5)0.1425 (2)0.6162 (2)0.0418 (8)
N20.3045 (5)0.0041 (2)0.6035 (2)0.0424 (8)
Br10.35504 (9)0.19185 (4)0.84879 (4)0.0779 (2)
Br20.07055 (8)0.04712 (4)0.79461 (3)0.06865 (18)
O10.5107 (5)0.0161 (3)0.8016 (2)0.0663 (10)
S10.54455 (17)0.05549 (9)0.89770 (7)0.0547 (3)
Cd10.27102 (4)0.05814 (2)0.741841 (19)0.04315 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (3)0.048 (2)0.040 (2)0.002 (2)0.017 (2)0.0086 (18)
C20.060 (3)0.046 (2)0.053 (3)0.011 (2)0.016 (2)0.002 (2)
C30.062 (3)0.051 (3)0.043 (2)0.005 (2)0.007 (2)0.0069 (19)
C40.094 (5)0.076 (4)0.058 (3)0.032 (3)0.014 (3)0.017 (3)
C50.060 (3)0.051 (2)0.030 (2)0.000 (2)0.0084 (19)0.0015 (17)
C60.043 (2)0.040 (2)0.0296 (19)0.0028 (18)0.0094 (17)0.0016 (15)
C70.042 (2)0.0367 (19)0.0315 (18)0.0094 (17)0.0090 (17)0.0005 (14)
C80.049 (3)0.048 (2)0.0295 (19)0.003 (2)0.0061 (18)0.0004 (16)
C90.057 (3)0.047 (2)0.039 (2)0.004 (2)0.012 (2)0.0054 (17)
C100.083 (4)0.067 (3)0.045 (3)0.001 (3)0.024 (3)0.011 (2)
C110.062 (3)0.050 (3)0.051 (3)0.012 (2)0.017 (2)0.003 (2)
C120.069 (3)0.050 (3)0.039 (2)0.009 (2)0.006 (2)0.0047 (18)
C130.262 (13)0.059 (4)0.091 (5)0.014 (6)0.003 (7)0.010 (3)
C140.075 (5)0.144 (6)0.055 (3)0.019 (4)0.001 (3)0.000 (4)
N10.050 (2)0.0409 (18)0.0332 (17)0.0013 (17)0.0076 (16)0.0039 (14)
N20.050 (2)0.0457 (19)0.0309 (16)0.0009 (17)0.0077 (15)0.0003 (14)
Br10.1001 (5)0.0708 (3)0.0542 (3)0.0152 (3)0.0004 (3)0.0206 (2)
Br20.0777 (4)0.0856 (4)0.0417 (3)0.0271 (3)0.0118 (2)0.0113 (2)
O10.066 (2)0.091 (2)0.0404 (17)0.022 (2)0.0083 (16)0.0151 (17)
S10.0557 (7)0.0726 (7)0.0358 (5)0.0043 (7)0.0102 (5)0.0008 (5)
Cd10.0511 (2)0.04968 (17)0.02831 (14)0.00105 (16)0.00838 (12)0.00028 (12)
Geometric parameters (Å, º) top
C1—N11.318 (6)C10—H10B0.9600
C1—C21.380 (7)C10—H10C0.9600
C1—H10.9300C11—C121.372 (6)
C2—C31.394 (6)C11—H110.9300
C2—H20.9300C12—N21.339 (6)
C3—C51.373 (7)C12—H120.9300
C3—C41.504 (7)C13—S11.754 (7)
C4—H4A0.9600C13—H13A0.9600
C4—H4B0.9600C13—H13B0.9600
C4—H4C0.9600C13—H13C0.9600
C5—C61.384 (6)C14—S11.755 (6)
C5—H50.9300C14—H14A0.9600
C6—N11.351 (5)C14—H14B0.9600
C6—C71.489 (6)C14—H14C0.9600
C7—N21.342 (5)Cd1—O12.301 (4)
C7—C81.387 (5)Cd1—N12.349 (3)
C8—C91.378 (6)Cd1—N22.340 (3)
C8—H80.9300Cd1—Br12.5857 (6)
C9—C111.370 (6)Cd1—Br22.5784 (6)
C9—C101.505 (6)O1—S11.515 (3)
C10—H10A0.9600
N1—C1—C2123.8 (4)C9—C11—H11119.8
N1—C1—H1118.1C12—C11—H11119.8
C2—C1—H1118.1N2—C12—C11122.7 (4)
C1—C2—C3118.8 (4)N2—C12—H12118.7
C1—C2—H2120.6C11—C12—H12118.7
C3—C2—H2120.6S1—C13—H13A109.5
C5—C3—C2117.1 (4)S1—C13—H13B109.5
C5—C3—C4121.0 (4)H13A—C13—H13B109.5
C2—C3—C4121.9 (5)S1—C13—H13C109.5
C3—C4—H4A109.5H13A—C13—H13C109.5
C3—C4—H4B109.5H13B—C13—H13C109.5
H4A—C4—H4B109.5S1—C14—H14A109.5
C3—C4—H4C109.5S1—C14—H14B109.5
H4A—C4—H4C109.5H14A—C14—H14B109.5
H4B—C4—H4C109.5S1—C14—H14C109.5
C3—C5—C6121.2 (4)H14A—C14—H14C109.5
C3—C5—H5119.4H14B—C14—H14C109.5
C6—C5—H5119.4C1—N1—C6118.3 (4)
N1—C6—C5120.8 (4)C1—N1—Cd1124.0 (3)
N1—C6—C7116.6 (3)C6—N1—Cd1117.7 (3)
C5—C6—C7122.6 (3)C12—N2—C7118.1 (3)
N2—C7—C8121.0 (4)C12—N2—Cd1123.6 (3)
N2—C7—C6117.0 (3)C7—N2—Cd1118.1 (3)
C8—C7—C6122.0 (4)S1—O1—Cd1121.1 (2)
C9—C8—C7120.9 (4)O1—S1—C13103.6 (3)
C9—C8—H8119.5O1—S1—C14105.7 (3)
C7—C8—H8119.5C13—S1—C1499.3 (5)
C11—C9—C8116.9 (4)O1—Cd1—N282.34 (12)
C11—C9—C10121.7 (4)O1—Cd1—N1144.06 (13)
C8—C9—C10121.3 (4)N2—Cd1—N170.41 (12)
C9—C10—H10A109.5O1—Cd1—Br298.54 (10)
C9—C10—H10B109.5N2—Cd1—Br2103.45 (9)
H10A—C10—H10B109.5N1—Cd1—Br2110.05 (9)
C9—C10—H10C109.5O1—Cd1—Br193.61 (10)
H10A—C10—H10C109.5N2—Cd1—Br1142.22 (9)
H10B—C10—H10C109.5N1—Cd1—Br193.99 (8)
C9—C11—C12120.3 (4)Br2—Cd1—Br1114.28 (2)
N1—C1—C2—C30.9 (8)C8—C7—N2—C120.3 (6)
C1—C2—C3—C50.2 (7)C6—C7—N2—C12179.9 (4)
C1—C2—C3—C4179.2 (5)C8—C7—N2—Cd1175.5 (3)
C2—C3—C5—C61.1 (7)C6—C7—N2—Cd14.6 (5)
C4—C3—C5—C6179.9 (5)Cd1—O1—S1—C13122.3 (5)
C3—C5—C6—N11.0 (7)Cd1—O1—S1—C14133.7 (3)
C3—C5—C6—C7179.4 (4)S1—O1—Cd1—N2145.6 (3)
N1—C6—C7—N21.8 (6)S1—O1—Cd1—N1174.01 (19)
C5—C6—C7—N2177.7 (4)S1—O1—Cd1—Br243.1 (3)
N1—C6—C7—C8178.4 (4)S1—O1—Cd1—Br172.1 (3)
C5—C6—C7—C82.1 (6)C12—N2—Cd1—O124.8 (4)
N2—C7—C8—C90.0 (7)C7—N2—Cd1—O1160.3 (3)
C6—C7—C8—C9179.8 (4)C12—N2—Cd1—N1179.0 (4)
C7—C8—C9—C110.1 (7)C7—N2—Cd1—N14.1 (3)
C7—C8—C9—C10178.9 (5)C12—N2—Cd1—Br272.2 (4)
C8—C9—C11—C120.1 (8)C7—N2—Cd1—Br2102.7 (3)
C10—C9—C11—C12179.1 (5)C12—N2—Cd1—Br1110.8 (4)
C9—C11—C12—N20.4 (8)C7—N2—Cd1—Br174.3 (4)
C2—C1—N1—C61.0 (7)C1—N1—Cd1—O1135.5 (4)
C2—C1—N1—Cd1177.5 (4)C6—N1—Cd1—O146.0 (4)
C5—C6—N1—C10.0 (6)C1—N1—Cd1—N2178.5 (4)
C7—C6—N1—C1179.5 (4)C6—N1—Cd1—N23.1 (3)
C5—C6—N1—Cd1178.5 (3)C1—N1—Cd1—Br283.9 (4)
C7—C6—N1—Cd11.9 (5)C6—N1—Cd1—Br294.6 (3)
C11—C12—N2—C70.5 (7)C1—N1—Cd1—Br133.8 (4)
C11—C12—N2—Cd1175.5 (4)C6—N1—Cd1—Br1147.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.513.087 (5)120

Experimental details

Crystal data
Chemical formula[CdBr2(C12H12N2)(C2H6OS)]
Mr534.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3940 (6), 15.2928 (15), 14.8606 (9)
β (°) 103.377 (5)
V3)1855.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.59
Crystal size (mm)0.33 × 0.28 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.183, 0.342
No. of measured, independent and
observed [I > 2σ(I)] reflections
16741, 4054, 3008
Rint0.099
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.086, 1.04
No. of reflections4054
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.42

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O12.301 (4)Cd1—Br12.5857 (6)
Cd1—N12.349 (3)Cd1—Br22.5784 (6)
Cd1—N22.340 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.513.087 (5)120
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAhmadi, R., Kalateh, K., Abedi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1306–m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBellusci, A., Crispini, A., Pucci, D., Szerb, E. I. & Ghedini, M. (2008). Cryst. Growth Des. 8, 3114–3122.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ahmadi, R. & Amani, V. (2010). Acta Cryst. E66, m512.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalateh, K., Ebadi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1397–m1398.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSakamoto, J., Yoshikawa, N., Takashima, H., Tsukahara, K., Kanehisa, N., Kai, Y. & Matsumura, K. (2004). Acta Cryst. E60, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2011). Acta Cryst. E67, m1866–m1867.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSofetis, A., Raptopoulou, C. P., Terzis, A. & Zafiropoulos, T. F. (2006). Inorg. Chim. Acta, 359, 3389–3395.  Web of Science CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Pon, G. & Nagy, C. (2001). Inorg. Chem. 40, 4342–4352.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshikawa, N., Sakamoto, J., Kanehisa, N., Kai, Y. & Matsumura-Inoue, T. (2003). Acta Cryst. E59, m155–m156.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYousefi, M., Tadayon Pour, N., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1259.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds