organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Phenyl-3,3a,4,5-tetra­hydro-2H-benzo[g]indazol-2-yl)benzene­sulfonamide ethanol monosolvate

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 June 2012; accepted 23 June 2012; online 30 June 2012)

In the title compound ethanol monosolvate, C23H21N3O2S·C2H5OH, the dihydro­pyrazole ring is twisted about the Csp3—Csp3 bond. Nevertheless, the ring approximates a plane (r.m.s. deviation for the fitted atoms = 0.132 Å) and forms dihedral angles of 5.80 (13) and 12.29 (12)°, respectively, with the fused- and sulfonamide-benzene rings. As the dihydro­pyrazole C-bound phenyl group is roughly perpendicular to the dihydro­pyrazole ring [dihedral angle = 74.04 (15)°; the amino group is orientated to the same side of the mol­ecule], to a first approximation, the mol­ecule has a stunted T-shape. The cyclo­hexene ring adopts a half-chair conformation with the methyl­ene C atom connected to the dihydro­pyrazole ring lying 0.665 (4) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.050 Å). The components of the asymmetric unit are connected by an O—H⋯O hydrogen bond. Further links between mol­ecules leading to a three-dimensional architecture are of the type N—H⋯O.

Related literature

For a previous synthesis, see: Faidallah & Makki (1994[Faidallah, H. M. & Makki, M. S. I. (1994). J. Chin. Chem. Soc. 41, 585-589.]). For the biological activity of related compounds, see: Faidallah et al. (2011[Faidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluorine Chem. 132, 131-137.]). For the structure of the methyl analogue, see: Asiri et al. (2011[Asiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Makki, M. S. I. T. & Ng, S. W. (2011). Acta Cryst. E67, o2441.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21N3O2S·C2H6O

  • Mr = 449.56

  • Monoclinic, P 21 /n

  • a = 15.7556 (9) Å

  • b = 9.1789 (4) Å

  • c = 16.7515 (10) Å

  • β = 111.718 (7)°

  • V = 2250.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.761, Tmax = 1.000

  • 15054 measured reflections

  • 5196 independent reflections

  • 3971 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 1.04

  • 5196 reflections

  • 301 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O1 0.84 (1) 2.04 (1) 2.875 (2) 175 (3)
N3—H1n⋯O3i 0.87 (1) 2.02 (1) 2.894 (3) 176 (3)
N3—H2n⋯O2ii 0.88 (1) 2.16 (1) 3.007 (3) 163 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, (I), reported previously in the literature (Faidallah & Makki, 1994), comprises a benzenesulfonamide unit which is grafted to a chemotherapeutic heterocycle pyrazole derivative, and therefore is a compound which is anticipated to exhibit enhanced activities (Faidallah et al., 2011).

In (I), Fig. 1, pyrazole ring is twisted about the C10—C11 bond (r.m.s. deviation for the fitted atoms = 0.132 Å). The cyclohexene ring adopts a half-chair conformation with the C9 atom lying 0.665 (4) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.050 Å). The fused-ring- and sulfonamide-benzene rings form dihedral angles of 5.80 (13) and 12.29 (12)°, respectively, with the least-squares plane through the pyrazole ring. By contrast, the pyrazole-C-bound phenyl group is almost perpendicular to the pyrazole ring, forming a dihedral angle of 74.04 (15)°, so that to a first approximation, the molecule has a stunted T-shape. The sulfonamide-amino group is orientated to the same side of the molecule as the pyrazole-C-bound benzene ring. While the sulfonamide-O1 atom is almost co-planar with the benzene ring, the O1—S1—C21—C20 torsion angle is -168.51 (17)°, the O2 atom is somewhat splayed [O2—S1—C21—C20 = -38.9 (2)°]. In the structure of the compound where the pyrazole-C-bound substituent is methyl rather than phenyl, the molecule has a shallow bowl-shaped conformation (Asiri et al., 2011).

The asymmetric unit comprises the organic molecule and a ethanol molecule of solvation with the primary connection between them being a O—H···O hydrogen bond, Table 1. Each amino-H forms a hydrogen bond to an oxygen atom so that each oxygen atom in the structure functions as an acceptor, Table 1, and that a three-dimensional architecture results, Fig. 2.

Related literature top

For a previous synthesis, see: Faidallah & Makki (1994). For the biological activity of related compounds, see: Faidallah et al. (2011). For the structure of the methyl analogue, see: Asiri et al. (2011).

Experimental top

A solution of 2-benzylidene-3,4-dihydro-2H-naphthalen-1-one (2.3 g, 0.01 M) in ethanol (50 ml) was refluxed with 4-hydrazinobenzenesulfonamide hydrochloride (2.2 g, 0.01 M) for 4 h. The reaction mixture was allowed to cool. The formed precipitate was filtered, washed with water, dried and recrystallized from ethanol. M.pt: 508–510 K cf. Lit. M.pt: 508 K (Faidallah & Makki, 1994). Yield: 70%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95–1.00 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The oxygen- and nitrogen-bound H-atom were located in a difference Fourier map and was refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å; the Uiso values were refined.

Structure description top

The title compound, (I), reported previously in the literature (Faidallah & Makki, 1994), comprises a benzenesulfonamide unit which is grafted to a chemotherapeutic heterocycle pyrazole derivative, and therefore is a compound which is anticipated to exhibit enhanced activities (Faidallah et al., 2011).

In (I), Fig. 1, pyrazole ring is twisted about the C10—C11 bond (r.m.s. deviation for the fitted atoms = 0.132 Å). The cyclohexene ring adopts a half-chair conformation with the C9 atom lying 0.665 (4) Å out of the plane of the five remaining atoms (r.m.s. deviation = 0.050 Å). The fused-ring- and sulfonamide-benzene rings form dihedral angles of 5.80 (13) and 12.29 (12)°, respectively, with the least-squares plane through the pyrazole ring. By contrast, the pyrazole-C-bound phenyl group is almost perpendicular to the pyrazole ring, forming a dihedral angle of 74.04 (15)°, so that to a first approximation, the molecule has a stunted T-shape. The sulfonamide-amino group is orientated to the same side of the molecule as the pyrazole-C-bound benzene ring. While the sulfonamide-O1 atom is almost co-planar with the benzene ring, the O1—S1—C21—C20 torsion angle is -168.51 (17)°, the O2 atom is somewhat splayed [O2—S1—C21—C20 = -38.9 (2)°]. In the structure of the compound where the pyrazole-C-bound substituent is methyl rather than phenyl, the molecule has a shallow bowl-shaped conformation (Asiri et al., 2011).

The asymmetric unit comprises the organic molecule and a ethanol molecule of solvation with the primary connection between them being a O—H···O hydrogen bond, Table 1. Each amino-H forms a hydrogen bond to an oxygen atom so that each oxygen atom in the structure functions as an acceptor, Table 1, and that a three-dimensional architecture results, Fig. 2.

For a previous synthesis, see: Faidallah & Makki (1994). For the biological activity of related compounds, see: Faidallah et al. (2011). For the structure of the methyl analogue, see: Asiri et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I). The O—H···O and N—H···O hydrogen are shown as orange and blue dashed lines, respectively.
4-(3-Phenyl-3,3a,4,5-tetrahydro-2H-benzo[g]indazol- 2-yl)benzenesulfonamide ethanol monosolvate top
Crystal data top
C23H21N3O2S·C2H6OF(000) = 952
Mr = 449.56Dx = 1.327 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4495 reflections
a = 15.7556 (9) Åθ = 2.5–27.5°
b = 9.1789 (4) ŵ = 0.18 mm1
c = 16.7515 (10) ÅT = 100 K
β = 111.718 (7)°Prsim, light-brown
V = 2250.6 (2) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5196 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3971 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.6°
ω scanh = 2016
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1111
Tmin = 0.761, Tmax = 1.000l = 1721
15054 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0701P)2 + 1.7118P]
where P = (Fo2 + 2Fc2)/3
5196 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.81 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
C23H21N3O2S·C2H6OV = 2250.6 (2) Å3
Mr = 449.56Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.7556 (9) ŵ = 0.18 mm1
b = 9.1789 (4) ÅT = 100 K
c = 16.7515 (10) Å0.30 × 0.25 × 0.20 mm
β = 111.718 (7)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
5196 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3971 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.036
15054 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.81 e Å3
5196 reflectionsΔρmin = 0.45 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56232 (4)0.84182 (6)0.60754 (4)0.02401 (16)
O10.62832 (11)0.73972 (19)0.66013 (11)0.0328 (4)
O20.52421 (11)0.82084 (18)0.51577 (10)0.0295 (4)
O30.78024 (13)0.5436 (2)0.69624 (13)0.0455 (5)
N10.17020 (12)0.91470 (19)0.67783 (11)0.0199 (4)
N20.25282 (13)0.8494 (2)0.72722 (12)0.0251 (4)
N30.61120 (13)0.9993 (2)0.62362 (14)0.0275 (4)
C10.11176 (15)0.8807 (3)0.71164 (14)0.0243 (5)
C20.01730 (15)0.9315 (2)0.68075 (14)0.0220 (5)
C30.02015 (15)1.0140 (2)0.60582 (14)0.0235 (5)
H30.01681.04020.57430.028*
C40.10982 (16)1.0577 (3)0.57728 (16)0.0283 (5)
H40.13481.11420.52640.034*
C50.16410 (16)1.0184 (3)0.62350 (17)0.0315 (5)
H50.22641.04720.60370.038*
C60.12745 (17)0.9380 (3)0.69772 (17)0.0310 (5)
H60.16520.91160.72840.037*
C70.03598 (16)0.8944 (3)0.72900 (16)0.0272 (5)
C80.00372 (18)0.8092 (3)0.81182 (17)0.0358 (6)
H8A0.01520.70600.80020.043*
H8B0.02230.84720.85320.043*
C90.10743 (18)0.8158 (3)0.85304 (17)0.0360 (6)
H9A0.12700.91540.87490.043*
H9B0.12950.74730.90210.043*
C100.14749 (17)0.7754 (3)0.78660 (16)0.0302 (5)
H100.12620.67520.76500.036*
C110.25155 (16)0.7839 (3)0.80769 (15)0.0262 (5)
H110.27680.68280.81350.031*
C120.30768 (16)0.8718 (2)0.88630 (15)0.0263 (5)
C130.3217 (2)1.0205 (3)0.88187 (17)0.0360 (6)
H130.29571.06940.82830.043*
C140.3723 (2)1.0976 (3)0.95360 (19)0.0465 (7)
H140.38201.19900.94920.056*
C150.4096 (2)1.0290 (3)1.0325 (2)0.0509 (8)
H150.44471.08281.08220.061*
C160.3952 (2)0.8806 (3)1.03832 (19)0.0480 (7)
H160.41940.83301.09240.058*
C170.34566 (19)0.8023 (3)0.96556 (17)0.0363 (6)
H170.33750.70040.96960.044*
C180.32543 (14)0.8521 (2)0.70087 (14)0.0192 (4)
C190.31803 (14)0.9196 (2)0.62303 (14)0.0208 (4)
H190.26310.96790.58950.025*
C200.39002 (15)0.9158 (2)0.59542 (14)0.0223 (5)
H200.38440.96100.54270.027*
C210.47139 (14)0.8456 (2)0.64448 (14)0.0210 (4)
C220.48012 (15)0.7814 (2)0.72190 (15)0.0236 (5)
H220.53560.73470.75560.028*
C230.40790 (15)0.7853 (2)0.75024 (14)0.0236 (5)
H230.41450.74200.80370.028*
C240.7520 (3)0.4101 (4)0.6419 (2)0.0558 (8)
H24A0.80690.36420.63730.067*
H24B0.72500.33970.67060.067*
C250.6861 (3)0.4394 (4)0.5558 (3)0.0666 (10)
H25A0.67010.34810.52340.100*
H25B0.71280.50710.52640.100*
H25C0.63090.48290.55970.100*
H1n0.6416 (19)1.014 (4)0.6783 (8)0.054 (10)*
H2n0.5739 (14)1.066 (2)0.5919 (14)0.028 (7)*
H3o0.7383 (16)0.605 (3)0.687 (2)0.054 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0220 (3)0.0289 (3)0.0241 (3)0.0055 (2)0.0119 (2)0.0008 (2)
O10.0288 (9)0.0381 (9)0.0339 (10)0.0136 (7)0.0143 (8)0.0045 (8)
O20.0310 (9)0.0369 (9)0.0238 (9)0.0034 (7)0.0139 (7)0.0061 (7)
O30.0360 (10)0.0508 (12)0.0452 (12)0.0167 (9)0.0099 (9)0.0101 (10)
N10.0223 (9)0.0203 (9)0.0189 (9)0.0011 (7)0.0099 (8)0.0027 (7)
N20.0226 (9)0.0339 (10)0.0204 (10)0.0037 (8)0.0099 (8)0.0090 (8)
N30.0221 (10)0.0343 (11)0.0283 (12)0.0009 (9)0.0119 (9)0.0002 (9)
C10.0266 (11)0.0293 (11)0.0203 (11)0.0045 (9)0.0125 (9)0.0027 (9)
C20.0235 (11)0.0227 (10)0.0236 (11)0.0061 (9)0.0131 (9)0.0055 (9)
C30.0234 (10)0.0259 (11)0.0237 (12)0.0062 (9)0.0115 (9)0.0047 (9)
C40.0258 (11)0.0299 (12)0.0283 (13)0.0035 (10)0.0088 (10)0.0022 (10)
C50.0230 (11)0.0333 (12)0.0415 (15)0.0031 (10)0.0155 (11)0.0056 (11)
C60.0302 (12)0.0310 (12)0.0409 (15)0.0044 (10)0.0236 (12)0.0030 (11)
C70.0313 (12)0.0257 (11)0.0318 (13)0.0033 (10)0.0201 (11)0.0033 (10)
C80.0378 (14)0.0435 (14)0.0380 (15)0.0015 (12)0.0276 (13)0.0073 (12)
C90.0399 (14)0.0433 (14)0.0336 (14)0.0112 (12)0.0239 (12)0.0132 (12)
C100.0352 (13)0.0294 (12)0.0313 (13)0.0011 (10)0.0187 (11)0.0038 (10)
C110.0290 (12)0.0305 (11)0.0229 (12)0.0030 (10)0.0141 (10)0.0065 (9)
C120.0333 (12)0.0255 (11)0.0243 (12)0.0089 (10)0.0158 (10)0.0044 (9)
C130.0557 (17)0.0276 (12)0.0300 (14)0.0099 (12)0.0220 (13)0.0045 (10)
C140.071 (2)0.0300 (13)0.0424 (17)0.0030 (14)0.0262 (16)0.0046 (12)
C150.068 (2)0.0465 (17)0.0341 (16)0.0026 (15)0.0144 (15)0.0128 (13)
C160.064 (2)0.0488 (17)0.0250 (14)0.0069 (15)0.0094 (14)0.0021 (12)
C170.0504 (16)0.0290 (12)0.0283 (13)0.0059 (12)0.0132 (12)0.0062 (10)
C180.0219 (10)0.0179 (10)0.0195 (11)0.0021 (8)0.0095 (9)0.0024 (8)
C190.0193 (10)0.0249 (11)0.0171 (11)0.0006 (8)0.0056 (9)0.0003 (8)
C200.0234 (11)0.0264 (11)0.0182 (11)0.0006 (9)0.0088 (9)0.0012 (9)
C210.0207 (10)0.0217 (10)0.0215 (11)0.0011 (8)0.0090 (9)0.0030 (8)
C220.0228 (10)0.0220 (10)0.0256 (12)0.0038 (9)0.0083 (9)0.0023 (9)
C230.0265 (11)0.0246 (11)0.0204 (11)0.0040 (9)0.0095 (9)0.0048 (9)
C240.071 (2)0.0537 (19)0.052 (2)0.0154 (17)0.0332 (18)0.0003 (15)
C250.067 (2)0.071 (2)0.064 (3)0.0048 (19)0.027 (2)0.0164 (19)
Geometric parameters (Å, º) top
S1—O11.4345 (17)C10—C111.546 (3)
S1—O21.4414 (17)C10—H101.0000
S1—N31.613 (2)C11—C121.518 (3)
S1—C211.759 (2)C11—H111.0000
O3—C241.493 (4)C12—C171.393 (3)
O3—H3o0.839 (10)C12—C131.389 (3)
N1—C11.285 (3)C13—C141.368 (4)
N1—N21.393 (3)C13—H130.9500
N2—C181.370 (3)C14—C151.384 (4)
N2—C111.483 (3)C14—H140.9500
N3—H1n0.873 (10)C15—C161.390 (4)
N3—H2n0.877 (10)C15—H150.9500
C1—C21.459 (3)C16—C171.381 (4)
C1—C101.518 (3)C16—H160.9500
C2—C31.396 (3)C17—H170.9500
C2—C71.406 (3)C18—C231.398 (3)
C3—C41.373 (3)C18—C191.409 (3)
C3—H30.9500C19—C201.375 (3)
C4—C51.397 (3)C19—H190.9500
C4—H40.9500C20—C211.398 (3)
C5—C61.375 (4)C20—H200.9500
C5—H50.9500C21—C221.384 (3)
C6—C71.398 (3)C22—C231.386 (3)
C6—H60.9500C22—H220.9500
C7—C81.512 (3)C23—H230.9500
C8—C91.522 (4)C24—C251.457 (5)
C8—H8A0.9900C24—H24A0.9900
C8—H8B0.9900C24—H24B0.9900
C9—C101.515 (3)C25—H25A0.9800
C9—H9A0.9900C25—H25B0.9800
C9—H9B0.9900C25—H25C0.9800
O1—S1—O2119.27 (10)N2—C11—C10100.52 (18)
O1—S1—N3106.86 (11)C12—C11—C10116.95 (19)
O2—S1—N3106.42 (11)N2—C11—H11109.0
O1—S1—C21107.25 (10)C12—C11—H11109.0
O2—S1—C21107.81 (10)C10—C11—H11109.0
N3—S1—C21108.93 (10)C17—C12—C13118.7 (2)
C24—O3—H3o114 (2)C17—C12—C11119.3 (2)
C1—N1—N2107.35 (18)C13—C12—C11121.9 (2)
C18—N2—N1120.57 (17)C14—C13—C12120.9 (2)
C18—N2—C11126.45 (18)C14—C13—H13119.5
N1—N2—C11112.97 (16)C12—C13—H13119.5
S1—N3—H1n111 (2)C13—C14—C15120.5 (3)
S1—N3—H2n110.5 (17)C13—C14—H14119.8
H1n—N3—H2n121 (3)C15—C14—H14119.8
N1—C1—C2124.7 (2)C14—C15—C16119.4 (3)
N1—C1—C10114.3 (2)C14—C15—H15120.3
C2—C1—C10120.91 (19)C16—C15—H15120.3
C3—C2—C7120.3 (2)C17—C16—C15120.1 (3)
C3—C2—C1121.89 (19)C17—C16—H16119.9
C7—C2—C1117.8 (2)C15—C16—H16119.9
C4—C3—C2120.6 (2)C16—C17—C12120.4 (3)
C4—C3—H3119.7C16—C17—H17119.8
C2—C3—H3119.7C12—C17—H17119.8
C3—C4—C5119.6 (2)N2—C18—C23120.35 (19)
C3—C4—H4120.2N2—C18—C19120.88 (19)
C5—C4—H4120.2C23—C18—C19118.76 (19)
C6—C5—C4120.1 (2)C20—C19—C18120.3 (2)
C6—C5—H5120.0C20—C19—H19119.9
C4—C5—H5120.0C18—C19—H19119.9
C5—C6—C7121.5 (2)C19—C20—C21120.4 (2)
C5—C6—H6119.3C19—C20—H20119.8
C7—C6—H6119.3C21—C20—H20119.8
C6—C7—C2117.9 (2)C22—C21—C20119.90 (19)
C6—C7—C8120.8 (2)C22—C21—S1120.66 (17)
C2—C7—C8121.4 (2)C20—C21—S1119.44 (16)
C7—C8—C9113.95 (19)C21—C22—C23120.0 (2)
C7—C8—H8A108.8C21—C22—H22120.0
C9—C8—H8A108.8C23—C22—H22120.0
C7—C8—H8B108.8C22—C23—C18120.6 (2)
C9—C8—H8B108.8C22—C23—H23119.7
H8A—C8—H8B107.7C18—C23—H23119.7
C10—C9—C8109.0 (2)C25—C24—O3113.2 (3)
C10—C9—H9A109.9C25—C24—H24A108.9
C8—C9—H9A109.9O3—C24—H24A108.9
C10—C9—H9B109.9C25—C24—H24B108.9
C8—C9—H9B109.9O3—C24—H24B108.9
H9A—C9—H9B108.3H24A—C24—H24B107.7
C9—C10—C1108.90 (19)C24—C25—H25A109.5
C9—C10—C11121.0 (2)C24—C25—H25B109.5
C1—C10—C11101.19 (17)H25A—C25—H25B109.5
C9—C10—H10108.4C24—C25—H25C109.5
C1—C10—H10108.4H25A—C25—H25C109.5
C11—C10—H10108.4H25B—C25—H25C109.5
N2—C11—C12111.94 (19)
C1—N1—N2—C18172.3 (2)C9—C10—C11—C1216.4 (3)
C1—N1—N2—C118.9 (2)C1—C10—C11—C12103.9 (2)
N2—N1—C1—C2177.9 (2)N2—C11—C12—C17153.5 (2)
N2—N1—C1—C104.5 (3)C10—C11—C12—C1791.3 (3)
N1—C1—C2—C35.3 (3)N2—C11—C12—C1327.2 (3)
C10—C1—C2—C3172.2 (2)C10—C11—C12—C1388.0 (3)
N1—C1—C2—C7174.8 (2)C17—C12—C13—C140.5 (4)
C10—C1—C2—C77.8 (3)C11—C12—C13—C14179.8 (2)
C7—C2—C3—C41.3 (3)C12—C13—C14—C151.0 (4)
C1—C2—C3—C4178.6 (2)C13—C14—C15—C160.1 (5)
C2—C3—C4—C50.3 (3)C14—C15—C16—C171.3 (5)
C3—C4—C5—C60.8 (4)C15—C16—C17—C121.8 (5)
C4—C5—C6—C70.3 (4)C13—C12—C17—C160.9 (4)
C5—C6—C7—C21.9 (4)C11—C12—C17—C16178.5 (2)
C5—C6—C7—C8178.5 (2)N1—N2—C18—C23179.40 (19)
C3—C2—C7—C62.3 (3)C11—N2—C18—C232.0 (3)
C1—C2—C7—C6177.6 (2)N1—N2—C18—C190.6 (3)
C3—C2—C7—C8178.0 (2)C11—N2—C18—C19179.3 (2)
C1—C2—C7—C82.1 (3)N2—C18—C19—C20177.0 (2)
C6—C7—C8—C9159.6 (2)C23—C18—C19—C201.8 (3)
C2—C7—C8—C920.8 (3)C18—C19—C20—C210.3 (3)
C7—C8—C9—C1051.6 (3)C19—C20—C21—C220.9 (3)
C8—C9—C10—C158.8 (3)C19—C20—C21—S1179.81 (17)
C8—C9—C10—C11175.3 (2)O1—S1—C21—C2212.3 (2)
N1—C1—C10—C9143.4 (2)O2—S1—C21—C22141.86 (18)
C2—C1—C10—C938.9 (3)N3—S1—C21—C22103.05 (19)
N1—C1—C10—C1114.9 (3)O1—S1—C21—C20168.51 (17)
C2—C1—C10—C11167.4 (2)O2—S1—C21—C2038.9 (2)
C18—N2—C11—C1271.2 (3)N3—S1—C21—C2076.2 (2)
N1—N2—C11—C12107.5 (2)C20—C21—C22—C230.7 (3)
C18—N2—C11—C10163.9 (2)S1—C21—C22—C23179.98 (17)
N1—N2—C11—C1017.4 (2)C21—C22—C23—C180.7 (3)
C9—C10—C11—N2137.8 (2)N2—C18—C23—C22176.8 (2)
C1—C10—C11—N217.5 (2)C19—C18—C23—C222.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O10.84 (1)2.04 (1)2.875 (2)175 (3)
N3—H1n···O3i0.87 (1)2.02 (1)2.894 (3)176 (3)
N3—H2n···O2ii0.88 (1)2.16 (1)3.007 (3)163 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC23H21N3O2S·C2H6O
Mr449.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)15.7556 (9), 9.1789 (4), 16.7515 (10)
β (°) 111.718 (7)
V3)2250.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.761, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15054, 5196, 3971
Rint0.036
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.04
No. of reflections5196
No. of parameters301
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.45

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O10.839 (10)2.038 (11)2.875 (2)175 (3)
N3—H1n···O3i0.873 (10)2.022 (11)2.894 (3)176 (3)
N3—H2n···O2ii0.877 (10)2.160 (13)3.007 (3)163 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+2, z+1.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to King Abdulaziz University for providing research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAsiri, A. M., Faidallah, H. M., Al-Youbi, A. O., Makki, M. S. I. T. & Ng, S. W. (2011). Acta Cryst. E67, o2441.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFaidallah, H. M., Khan, K. A. & Asiri, A. M. (2011). J. Fluorine Chem. 132, 131–137.  Web of Science CrossRef CAS Google Scholar
First citationFaidallah, H. M. & Makki, M. S. I. (1994). J. Chin. Chem. Soc. 41, 585–589.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds