organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2,7,7-tri­methyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 June 2012; accepted 22 June 2012; online 27 June 2012)

In the title compound, C21H25NO3, the hydro­pyridine ring that constitutes a part of the hexa­hydro­quinoline fused-ring system adopts a sofa conformation; the methine C atom deviates from the least-squares plane defined by the remaining five non-H atoms (r.m.s. deviation = 0.088 Å) by 0.454 (3) Å. The phenyl ring is aligned at 85.5 (1)° with respect to this mean plane. In the crystal, adjacent molecules are linked via an N—H⋯O hydrogen bond, involving the amino group and the carbonyl O atom of the fused-ring system, forming chains running along [100]. The ethyl group is disordered over two positions in a 0.609 (6):0.391 (6) ratio.

Related literature

For the synthesis, see: Safari et al. (2011[Safari, J., Banitaba, S. H. & Dehghan Khalili, S. (2011). Cuihua Xuebao, 32, 1850-1855.]). For the crystal structure of methyl 2,7,7-trimethyl-4-phenyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, see: Duque et al. (2000[Duque, J., Pomes, R., Suarez, M., Ochoa, E., Punte, G. & Echevarria, G. E. (2000). Bol. Soc. Chil. Quim. 45, 175-180.]).

[Scheme 1]

Experimental

Crystal data
  • C21H25NO3

  • Mr = 339.42

  • Triclinic, [P \overline 1]

  • a = 7.3523 (4) Å

  • b = 9.6349 (5) Å

  • c = 13.9495 (7) Å

  • α = 98.370 (1)°

  • β = 91.778 (1)°

  • γ = 106.291 (1)°

  • V = 935.70 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 10191 measured reflections

  • 4302 independent reflections

  • 3439 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.03

  • 4302 reflections

  • 254 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (1) 2.04 (1) 2.890 (1) 168 (2)
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

C5-Unsubstituted 1,4-dihydropyridines are readily synthesized by the reaction of dimedone, acetophenone, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of a cobalt salt under solvent-free conditions (Safari et al. 2011). The title compound (Scheme I), was synthesized by a slightly different procedure from benzaldehyde, ethyl acetoacetate and ammonium acetate and with L-glutamine as catalyst, and in ethanol medium.

The hydropyridine ring that constitutes a part of the hexahydroquinoline fused-ring system of C21H25NO3 adopts a sofa conformation; the methine C atom bearing the phenyl substituent deviates from the least-squares plane defined by the N and four double-bond C atoms by 0.454 (3) Å. The phenyl ring is nearly orthogornal to this plane (Fig. 1). The amino group is hydrogen-bond donor to the carbonyl O atom of the fused-ring of another molecule; adjacent molecules are linked by an N—H···O hydrogen bond to form a chain running along the a-axis of the triclinic cell (Table 1, Fig. 2).

Related literature top

For the synthesis, see: Safari et al. (2011). For the crystal structure of methyl 2,7,7-trimethyl-4-phenyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, see: Duque et al. (2000).

Experimental top

Dimedone (0.56 g, 2 mmol) was stirred with benzaldehyde (0.40 ml, 2 mmol), ethyl acetoacetate (0.5 ml, 2 mmol) and ammonium acetate (0.308 g, 2 mmol) in ethanol (50 ml) for 12 h at the room temperature. A small quantity of L-glutamine (0.05 g) was added as catalyst. Recrystallization was effected by using ethanol as solvent.

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H 0.93 to 0.98 Å; U(H) 1.2 to 1.5U(C)] and were included in the refinement in the riding model approximation.

The amino H atom was located in a difference Fourier map and was refined with a distance restraint of N—H 0.88±0.01 Å; its temperature factor was refined.

The ethyl group is disordered over two sites in a 0.609 (6):0.391 ratio. The C—C distances were restrained to 1.54±0.01 Å.

The (0 0 1) reflection was omitted owing to bad disagreement.

Structure description top

C5-Unsubstituted 1,4-dihydropyridines are readily synthesized by the reaction of dimedone, acetophenone, aromatic aldehydes, and ammonium acetate in the presence of a catalytic amount of a cobalt salt under solvent-free conditions (Safari et al. 2011). The title compound (Scheme I), was synthesized by a slightly different procedure from benzaldehyde, ethyl acetoacetate and ammonium acetate and with L-glutamine as catalyst, and in ethanol medium.

The hydropyridine ring that constitutes a part of the hexahydroquinoline fused-ring system of C21H25NO3 adopts a sofa conformation; the methine C atom bearing the phenyl substituent deviates from the least-squares plane defined by the N and four double-bond C atoms by 0.454 (3) Å. The phenyl ring is nearly orthogornal to this plane (Fig. 1). The amino group is hydrogen-bond donor to the carbonyl O atom of the fused-ring of another molecule; adjacent molecules are linked by an N—H···O hydrogen bond to form a chain running along the a-axis of the triclinic cell (Table 1, Fig. 2).

For the synthesis, see: Safari et al. (2011). For the crystal structure of methyl 2,7,7-trimethyl-4-phenyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate, see: Duque et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C23H26O4 at the 50% probability level; H atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
[Figure 2] Fig. 2. Hydrogen-bonded chain motif.
Ethyl 2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate top
Crystal data top
C21H25NO3Z = 2
Mr = 339.42F(000) = 364
Triclinic, P1Dx = 1.205 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3523 (4) ÅCell parameters from 4443 reflections
b = 9.6349 (5) Åθ = 2.2–29.2°
c = 13.9495 (7) ŵ = 0.08 mm1
α = 98.370 (1)°T = 296 K
β = 91.778 (1)°Prism, yellow
γ = 106.291 (1)°0.20 × 0.20 × 0.20 mm
V = 935.70 (8) Å3
Data collection top
Bruker SMART APEX
diffractometer
3439 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 27.5°, θmin = 2.2°
φ and ω scansh = 99
10191 measured reflectionsk = 1212
4302 independent reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1935P]
where P = (Fo2 + 2Fc2)/3
4302 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.27 e Å3
4 restraintsΔρmin = 0.20 e Å3
Crystal data top
C21H25NO3γ = 106.291 (1)°
Mr = 339.42V = 935.70 (8) Å3
Triclinic, P1Z = 2
a = 7.3523 (4) ÅMo Kα radiation
b = 9.6349 (5) ŵ = 0.08 mm1
c = 13.9495 (7) ÅT = 296 K
α = 98.370 (1)°0.20 × 0.20 × 0.20 mm
β = 91.778 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3439 reflections with I > 2σ(I)
10191 measured reflectionsRint = 0.016
4302 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
4302 reflectionsΔρmin = 0.20 e Å3
254 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.25249 (12)0.66980 (12)0.42973 (8)0.0499 (3)
O20.6353 (2)0.34700 (15)0.10252 (9)0.0749 (4)
O30.37322 (15)0.41542 (13)0.12222 (8)0.0563 (3)
N10.85485 (15)0.61848 (13)0.37295 (8)0.0404 (3)
H10.9683 (15)0.6251 (18)0.3964 (11)0.053 (4)*
C10.73337 (16)0.66880 (13)0.43108 (9)0.0327 (3)
C20.80247 (17)0.72215 (15)0.53537 (9)0.0376 (3)
H2A0.93550.77770.53910.045*
H2B0.79320.63830.56790.045*
C30.69190 (18)0.81798 (14)0.58871 (9)0.0390 (3)
C40.48007 (18)0.74010 (16)0.56507 (10)0.0407 (3)
H4A0.44630.65540.59800.049*
H4B0.40880.80580.59130.049*
C50.41906 (16)0.69006 (13)0.45882 (9)0.0338 (3)
C60.55737 (16)0.66029 (13)0.39380 (9)0.0317 (3)
C70.7417 (2)0.96857 (16)0.55736 (13)0.0584 (4)
H7A0.70960.95770.48890.088*
H7B0.87541.01570.57110.088*
H7C0.67151.02710.59240.088*
C80.7403 (3)0.8357 (2)0.69817 (11)0.0626 (5)
H8A0.87330.88470.71290.094*
H8B0.71060.74090.71780.094*
H8C0.66730.89260.73240.094*
C100.50411 (16)0.61688 (14)0.28579 (9)0.0341 (3)
H100.37040.55850.27680.041*
C110.62229 (17)0.52035 (13)0.24136 (9)0.0359 (3)
C120.79381 (18)0.52991 (15)0.28380 (10)0.0387 (3)
C130.9302 (2)0.4477 (2)0.24766 (13)0.0604 (4)
H13A0.96130.46640.18350.091*
H13B0.87270.34460.24580.091*
H13C1.04380.47940.29050.091*
C140.5505 (2)0.41942 (15)0.14984 (10)0.0436 (3)
C150.3012 (10)0.3078 (6)0.0336 (4)0.0601 (14)0.609 (6)
H15A0.28450.20900.04670.072*0.609 (6)
H15B0.38840.32570.01700.072*0.609 (6)
C160.1147 (5)0.3283 (6)0.0039 (3)0.101 (2)0.609 (6)
H16A0.07070.27390.05980.151*0.609 (6)
H16B0.12990.43040.00310.151*0.609 (6)
H16C0.02370.29380.04930.151*0.609 (6)
C15'0.2769 (16)0.3466 (8)0.0264 (6)0.060 (2)0.391 (6)
H15C0.36740.32760.01920.072*0.391 (6)
H15D0.21020.40880.00100.072*0.391 (6)
C16'0.1393 (9)0.2054 (7)0.0435 (4)0.087 (2)0.391 (6)
H16D0.07070.15360.01690.131*0.391 (6)
H16E0.05150.22650.08890.131*0.391 (6)
H16F0.20790.14600.06920.131*0.391 (6)
C170.52448 (18)0.74910 (14)0.23461 (9)0.0382 (3)
C180.3791 (2)0.75906 (18)0.17376 (12)0.0542 (4)
H180.26410.68540.16570.065*
C190.4008 (3)0.8766 (2)0.12439 (13)0.0653 (5)
H190.30110.88010.08300.078*
C200.5650 (3)0.98628 (19)0.13566 (12)0.0629 (5)
H200.57861.06590.10310.075*
C210.7100 (3)0.9784 (2)0.19528 (16)0.0760 (6)
H210.82391.05310.20320.091*
C220.6909 (2)0.86116 (19)0.24438 (14)0.0644 (5)
H220.79230.85800.28470.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (4)0.0631 (7)0.0601 (6)0.0167 (4)0.0015 (4)0.0010 (5)
O20.0783 (9)0.0794 (9)0.0642 (8)0.0368 (7)0.0039 (6)0.0231 (6)
O30.0480 (6)0.0667 (7)0.0437 (6)0.0101 (5)0.0078 (5)0.0091 (5)
N10.0226 (5)0.0514 (7)0.0460 (6)0.0130 (4)0.0010 (4)0.0002 (5)
C10.0254 (5)0.0343 (6)0.0382 (6)0.0086 (4)0.0010 (5)0.0057 (5)
C20.0292 (6)0.0431 (7)0.0403 (7)0.0108 (5)0.0047 (5)0.0064 (5)
C30.0364 (6)0.0404 (7)0.0377 (7)0.0093 (5)0.0008 (5)0.0026 (5)
C40.0344 (6)0.0476 (7)0.0406 (7)0.0126 (5)0.0070 (5)0.0061 (6)
C50.0269 (6)0.0313 (6)0.0438 (7)0.0090 (4)0.0020 (5)0.0070 (5)
C60.0262 (5)0.0333 (6)0.0358 (6)0.0090 (4)0.0006 (4)0.0056 (5)
C70.0579 (9)0.0381 (8)0.0743 (11)0.0086 (7)0.0004 (8)0.0051 (7)
C80.0567 (10)0.0840 (12)0.0411 (8)0.0180 (9)0.0032 (7)0.0033 (8)
C100.0247 (5)0.0388 (6)0.0367 (6)0.0077 (5)0.0022 (4)0.0032 (5)
C110.0331 (6)0.0356 (6)0.0377 (6)0.0078 (5)0.0038 (5)0.0049 (5)
C120.0313 (6)0.0409 (7)0.0435 (7)0.0101 (5)0.0071 (5)0.0046 (5)
C130.0422 (8)0.0713 (11)0.0683 (10)0.0269 (7)0.0059 (7)0.0086 (8)
C140.0467 (8)0.0410 (7)0.0402 (7)0.0090 (6)0.0030 (6)0.0043 (6)
C150.058 (2)0.068 (3)0.045 (2)0.017 (2)0.0148 (15)0.013 (2)
C160.058 (2)0.160 (5)0.068 (2)0.033 (2)0.0198 (17)0.035 (3)
C15'0.073 (5)0.061 (4)0.042 (3)0.018 (3)0.011 (3)0.002 (3)
C16'0.083 (4)0.086 (4)0.066 (3)0.006 (3)0.001 (3)0.011 (3)
C170.0397 (7)0.0417 (7)0.0341 (6)0.0151 (5)0.0006 (5)0.0035 (5)
C180.0492 (8)0.0576 (9)0.0572 (9)0.0180 (7)0.0099 (7)0.0118 (7)
C190.0742 (11)0.0711 (11)0.0596 (10)0.0339 (10)0.0114 (9)0.0177 (8)
C200.0906 (13)0.0535 (9)0.0528 (9)0.0300 (9)0.0043 (9)0.0174 (7)
C210.0701 (12)0.0607 (11)0.0899 (14)0.0019 (9)0.0095 (10)0.0331 (10)
C220.0498 (9)0.0603 (10)0.0781 (12)0.0010 (7)0.0178 (8)0.0298 (9)
Geometric parameters (Å, º) top
O1—C51.2307 (14)C11—C121.3498 (18)
O2—C141.2023 (18)C11—C141.4706 (18)
O3—C141.3364 (18)C12—C131.4992 (19)
O3—C15'1.466 (6)C13—H13A0.9600
O3—C151.470 (4)C13—H13B0.9600
N1—C11.3652 (16)C13—H13C0.9600
N1—C121.3848 (17)C15—C161.493 (6)
N1—H10.868 (9)C15—H15A0.9700
C1—C61.3557 (16)C15—H15B0.9700
C1—C21.4930 (17)C16—H16A0.9600
C2—C31.5249 (18)C16—H16B0.9600
C2—H2A0.9700C16—H16C0.9600
C2—H2B0.9700C15'—C16'1.506 (9)
C3—C71.526 (2)C15'—H15C0.9700
C3—C41.5290 (18)C15'—H15D0.9700
C3—C81.531 (2)C16'—H16D0.9600
C4—C51.5032 (18)C16'—H16E0.9600
C4—H4A0.9700C16'—H16F0.9600
C4—H4B0.9700C17—C221.374 (2)
C5—C61.4437 (17)C17—C181.3775 (19)
C6—C101.5121 (17)C18—C191.384 (2)
C7—H7A0.9600C18—H180.9300
C7—H7B0.9600C19—C201.350 (3)
C7—H7C0.9600C19—H190.9300
C8—H8A0.9600C20—C211.357 (3)
C8—H8B0.9600C20—H200.9300
C8—H8C0.9600C21—C221.381 (2)
C10—C171.5230 (18)C21—H210.9300
C10—C111.5242 (17)C22—H220.9300
C10—H100.9800
C14—O3—C15'124.4 (5)C12—C11—C10120.57 (11)
C14—O3—C15110.9 (3)C14—C11—C10119.40 (11)
C1—N1—C12122.25 (10)C11—C12—N1119.49 (11)
C1—N1—H1119.8 (11)C11—C12—C13127.20 (13)
C12—N1—H1116.6 (11)N1—C12—C13113.23 (12)
C6—C1—N1119.61 (11)C12—C13—H13A109.5
C6—C1—C2124.11 (11)C12—C13—H13B109.5
N1—C1—C2116.17 (10)H13A—C13—H13B109.5
C1—C2—C3113.38 (10)C12—C13—H13C109.5
C1—C2—H2A108.9H13A—C13—H13C109.5
C3—C2—H2A108.9H13B—C13—H13C109.5
C1—C2—H2B108.9O2—C14—O3121.58 (13)
C3—C2—H2B108.9O2—C14—C11126.43 (14)
H2A—C2—H2B107.7O3—C14—C11112.00 (12)
C2—C3—C7111.03 (12)O3—C15—C16105.3 (4)
C2—C3—C4107.82 (10)O3—C15—H15A110.7
C7—C3—C4110.04 (12)C16—C15—H15A110.7
C2—C3—C8108.95 (12)O3—C15—H15B110.7
C7—C3—C8109.41 (13)C16—C15—H15B110.7
C4—C3—C8109.56 (12)H15A—C15—H15B108.8
C5—C4—C3115.31 (11)O3—C15'—C16'104.8 (6)
C5—C4—H4A108.4O3—C15'—H15C110.8
C3—C4—H4A108.4C16'—C15'—H15C110.8
C5—C4—H4B108.4O3—C15'—H15D110.8
C3—C4—H4B108.4C16'—C15'—H15D110.8
H4A—C4—H4B107.5H15C—C15'—H15D108.9
O1—C5—C6121.51 (12)C15'—C16'—H16D109.5
O1—C5—C4119.89 (11)C15'—C16'—H16E109.5
C6—C5—C4118.53 (10)H16D—C16'—H16E109.5
C1—C6—C5119.17 (11)C15'—C16'—H16F109.5
C1—C6—C10120.72 (10)H16D—C16'—H16F109.5
C5—C6—C10120.10 (10)H16E—C16'—H16F109.5
C3—C7—H7A109.5C22—C17—C18117.07 (14)
C3—C7—H7B109.5C22—C17—C10121.47 (12)
H7A—C7—H7B109.5C18—C17—C10121.42 (12)
C3—C7—H7C109.5C17—C18—C19121.25 (16)
H7A—C7—H7C109.5C17—C18—H18119.4
H7B—C7—H7C109.5C19—C18—H18119.4
C3—C8—H8A109.5C20—C19—C18120.74 (16)
C3—C8—H8B109.5C20—C19—H19119.6
H8A—C8—H8B109.5C18—C19—H19119.6
C3—C8—H8C109.5C19—C20—C21118.86 (16)
H8A—C8—H8C109.5C19—C20—H20120.6
H8B—C8—H8C109.5C21—C20—H20120.6
C6—C10—C17112.36 (10)C20—C21—C22121.03 (17)
C6—C10—C11109.62 (10)C20—C21—H21119.5
C17—C10—C11111.30 (10)C22—C21—H21119.5
C6—C10—H10107.8C17—C22—C21121.04 (15)
C17—C10—H10107.8C17—C22—H22119.5
C11—C10—H10107.8C21—C22—H22119.5
C12—C11—C14120.00 (12)
C12—N1—C1—C614.66 (19)C10—C11—C12—N15.87 (19)
C12—N1—C1—C2161.64 (12)C14—C11—C12—C130.7 (2)
C6—C1—C2—C321.55 (17)C10—C11—C12—C13177.44 (14)
N1—C1—C2—C3162.33 (11)C1—N1—C12—C1116.3 (2)
C1—C2—C3—C772.94 (14)C1—N1—C12—C13160.84 (13)
C1—C2—C3—C447.67 (14)C15'—O3—C14—O211.4 (5)
C1—C2—C3—C8166.50 (12)C15—O3—C14—O23.4 (4)
C2—C3—C4—C550.59 (15)C15'—O3—C14—C11168.4 (4)
C7—C3—C4—C570.64 (15)C15—O3—C14—C11176.8 (3)
C8—C3—C4—C5169.02 (12)C12—C11—C14—O25.1 (2)
C3—C4—C5—O1157.03 (12)C10—C11—C14—O2172.99 (15)
C3—C4—C5—C625.84 (17)C12—C11—C14—O3175.07 (12)
N1—C1—C6—C5169.51 (11)C10—C11—C14—O36.81 (17)
C2—C1—C6—C56.49 (18)C14—O3—C15—C16172.8 (4)
N1—C1—C6—C109.10 (18)C15'—O3—C15—C1634 (2)
C2—C1—C6—C10174.90 (11)C14—O3—C15'—C16'104.6 (8)
O1—C5—C6—C1172.73 (12)C15—O3—C15'—C16'56.8 (19)
C4—C5—C6—C14.35 (17)C6—C10—C17—C2253.16 (18)
O1—C5—C6—C105.89 (18)C11—C10—C17—C2270.21 (17)
C4—C5—C6—C10177.03 (11)C6—C10—C17—C18129.18 (14)
C1—C6—C10—C1796.98 (13)C11—C10—C17—C18107.45 (15)
C5—C6—C10—C1784.42 (13)C22—C17—C18—C190.3 (2)
C1—C6—C10—C1127.33 (15)C10—C17—C18—C19177.41 (14)
C5—C6—C10—C11151.27 (11)C17—C18—C19—C200.9 (3)
C6—C10—C11—C1225.63 (16)C18—C19—C20—C210.9 (3)
C17—C10—C11—C1299.29 (14)C19—C20—C21—C220.4 (3)
C6—C10—C11—C14156.26 (11)C18—C17—C22—C210.2 (3)
C17—C10—C11—C1478.82 (14)C10—C17—C22—C21177.95 (17)
C14—C11—C12—N1176.02 (12)C20—C21—C22—C170.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.04 (1)2.890 (1)168 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H25NO3
Mr339.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3523 (4), 9.6349 (5), 13.9495 (7)
α, β, γ (°)98.370 (1), 91.778 (1), 106.291 (1)
V3)935.70 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10191, 4302, 3439
Rint0.016
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.03
No. of reflections4302
No. of parameters254
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (1)2.04 (1)2.890 (1)168 (2)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank Baku State University and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuque, J., Pomes, R., Suarez, M., Ochoa, E., Punte, G. & Echevarria, G. E. (2000). Bol. Soc. Chil. Quim. 45, 175–180.  CAS Google Scholar
First citationSafari, J., Banitaba, S. H. & Dehghan Khalili, S. (2011). Cuihua Xuebao, 32, 1850–1855.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds