organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Eth­­oxy­methyl-1,4-di­hydro­quinolin-4-one

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 June 2012; accepted 22 June 2012; online 27 June 2012)

In the title mol­ecule, C12H13NO2, the dihydro­quinolinone fused-ring system is nearly planar [maximum deviation = 0.012 (3) Å], and the mean plane passing through the extended eth­oxy­methyl substituent is aligned at 86.9 (2)° with respect to the fused-ring system. In the crystal, adjacent mol­ecules are linked by an N—H⋯Ocarbon­yl hydrogen bond to generate a chain running along the b-axis direction.

Related literature

For the crystal structure of 1,4-dihydro­quinolin-4-one, see: Nasiri et al. (2006[Nasiri, H. R., Bolte, M. & Schwalbe, H. (2006). Heterocycl. Commun. 12, 319-322.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO2

  • Mr = 203.23

  • Orthorhombic, P n a 21

  • a = 18.179 (3) Å

  • b = 12.4052 (16) Å

  • c = 4.4529 (5) Å

  • V = 1004.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.05 × 0.03 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.969, Tmax = 0.997

  • 3157 measured reflections

  • 1306 independent reflections

  • 913 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.116

  • S = 1.01

  • 1306 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.98 (4) 1.78 (4) 2.707 (3) 157 (4)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound was the unexpected product of the Mannich reaction involving 4-hydroxyquinoline, morpholine and paraformaldehyde in ethanol medium in an attempt to place the O(CH2CH2)N–CH2– unit at the 3-position of 4-hydroxyquinoline. The compound was to have been radiolabeled with 99mTc for an imaging study. The ethyl group in the unexpected product (Scheme I) probably come from the ethanol solvent. The mean plane passing through the extended ethoxymethyl substituent is aligned at 86.9 (2) ° with respect to the mean plane passing through the dihydroquinoline fused-ring (Fig. 1). Adjacent molecules are linked by an N—H···Ocarbonyl hydrogen bond to generate a chain running along the b-axis of the orthorhombic unit cell (Table 1).

Related literature top

For the crystal structure of 1,4-dihydroquinolin-4-one, see: Nasiri et al. (2006).

Experimental top

A mixture of paraformaldehyde (0.18 g, 0.002 mole) and morpholine (0.174 g, 0.002 mole) in alcohol (15 ml) was heated for 30 min. A solution of 4-quinolinol (0.29 g, 0.002 mole) in ethanol (5 ml) was added and the mixture was heated for 24 h. The solid that formed collected and purified by coloumn chromatography. Colorless crystals were obtained upon recrystallization from toluene/ethanol (9:1).

Refinement top

Carbon-bound H atoms were placed in calculated positions [C—H 0.95 to 0.98 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

The amino H atom was located in a difference Fourier map, and was refined.

In the absence of heavy scatterers, 487 Friedel pairs were merged.

Structure description top

The title compound was the unexpected product of the Mannich reaction involving 4-hydroxyquinoline, morpholine and paraformaldehyde in ethanol medium in an attempt to place the O(CH2CH2)N–CH2– unit at the 3-position of 4-hydroxyquinoline. The compound was to have been radiolabeled with 99mTc for an imaging study. The ethyl group in the unexpected product (Scheme I) probably come from the ethanol solvent. The mean plane passing through the extended ethoxymethyl substituent is aligned at 86.9 (2) ° with respect to the mean plane passing through the dihydroquinoline fused-ring (Fig. 1). Adjacent molecules are linked by an N—H···Ocarbonyl hydrogen bond to generate a chain running along the b-axis of the orthorhombic unit cell (Table 1).

For the crystal structure of 1,4-dihydroquinolin-4-one, see: Nasiri et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C12H13NO2 at the 70% probability level; H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
3-Ethoxymethyl-1,4-dihydroquinolin-4-one top
Crystal data top
C12H13NO2F(000) = 432
Mr = 203.23Dx = 1.344 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 568 reflections
a = 18.179 (3) Åθ = 2.8–27.5°
b = 12.4052 (16) ŵ = 0.09 mm1
c = 4.4529 (5) ÅT = 100 K
V = 1004.2 (2) Å3Prism, colourless
Z = 40.35 × 0.05 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1306 independent reflections
Radiation source: SuperNova (Mo) X-ray Source913 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 2319
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 916
Tmin = 0.969, Tmax = 0.997l = 54
3157 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
1306 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C12H13NO2V = 1004.2 (2) Å3
Mr = 203.23Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.179 (3) ŵ = 0.09 mm1
b = 12.4052 (16) ÅT = 100 K
c = 4.4529 (5) Å0.35 × 0.05 × 0.03 mm
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
1306 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
913 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.997Rint = 0.068
3157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.24 e Å3
1306 reflectionsΔρmin = 0.24 e Å3
140 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27733 (13)0.81501 (17)0.7508 (6)0.0265 (6)
O20.09593 (14)0.90044 (19)0.8715 (5)0.0280 (6)
N10.25633 (17)1.1355 (2)0.5678 (7)0.0225 (7)
C10.3120 (2)1.0792 (3)0.4303 (7)0.0197 (8)
C20.3589 (2)1.1317 (3)0.2279 (8)0.0225 (8)
H20.35301.20640.18770.027*
C30.4137 (2)1.0741 (3)0.0880 (8)0.0247 (9)
H30.44581.10960.04810.030*
C40.4227 (2)0.9630 (3)0.1440 (7)0.0242 (9)
H40.46020.92350.04410.029*
C50.3768 (2)0.9127 (3)0.3447 (8)0.0237 (8)
H50.38360.83820.38520.028*
C60.3200 (2)0.9685 (3)0.4915 (7)0.0197 (8)
C70.2704 (2)0.9143 (2)0.6992 (8)0.0206 (8)
C80.2146 (2)0.9797 (3)0.8361 (7)0.0216 (8)
C90.2103 (2)1.0867 (3)0.7638 (8)0.0224 (8)
H90.17311.12900.85620.027*
C100.1592 (2)0.9320 (3)1.0447 (8)0.0241 (8)
H10A0.18030.86851.14810.029*
H10B0.14480.98561.19860.029*
C110.0402 (2)0.8545 (3)1.0569 (10)0.0352 (10)
H11A0.02470.90721.21130.042*
H11B0.05960.78981.16010.042*
C120.0242 (2)0.8243 (3)0.8626 (10)0.0373 (11)
H12A0.06300.79290.98770.056*
H12B0.00850.77150.71200.056*
H12C0.04310.88880.76160.056*
H10.245 (2)1.209 (3)0.503 (10)0.055 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0336 (16)0.0153 (11)0.0306 (13)0.0011 (11)0.0012 (14)0.0050 (12)
O20.0230 (15)0.0297 (13)0.0313 (14)0.0058 (11)0.0033 (13)0.0058 (12)
N10.0239 (18)0.0165 (13)0.0271 (16)0.0001 (13)0.0047 (15)0.0019 (14)
C10.021 (2)0.0180 (16)0.0205 (17)0.0020 (16)0.0043 (15)0.0005 (15)
C20.025 (2)0.0178 (15)0.0246 (17)0.0028 (15)0.0051 (19)0.0070 (17)
C30.024 (2)0.0262 (18)0.0240 (17)0.0048 (17)0.0032 (18)0.0027 (17)
C40.021 (2)0.0256 (19)0.026 (2)0.0002 (16)0.0016 (17)0.0012 (16)
C50.030 (2)0.0197 (16)0.0212 (17)0.0015 (16)0.0048 (18)0.0027 (17)
C60.024 (2)0.0180 (16)0.0174 (17)0.0051 (15)0.0062 (15)0.0007 (15)
C70.020 (2)0.0183 (15)0.0230 (18)0.0038 (15)0.0057 (16)0.0024 (17)
C80.025 (2)0.0195 (16)0.0206 (17)0.0024 (15)0.0062 (17)0.0022 (16)
C90.024 (2)0.0202 (16)0.0225 (17)0.0029 (15)0.0022 (18)0.0017 (17)
C100.027 (2)0.0228 (17)0.0222 (17)0.0001 (16)0.0001 (18)0.0001 (17)
C110.039 (3)0.028 (2)0.038 (2)0.0043 (19)0.016 (2)0.002 (2)
C120.025 (2)0.033 (2)0.054 (3)0.0017 (17)0.013 (2)0.006 (2)
Geometric parameters (Å, º) top
O1—C71.260 (4)C5—H50.9500
O2—C111.425 (4)C6—C71.456 (5)
O2—C101.439 (4)C7—C81.434 (5)
N1—C91.352 (4)C8—C91.369 (4)
N1—C11.373 (5)C8—C101.494 (5)
N1—H10.98 (4)C9—H90.9500
C1—C21.402 (5)C10—H10A0.9900
C1—C61.408 (4)C10—H10B0.9900
C2—C31.374 (5)C11—C121.504 (6)
C2—H20.9500C11—H11A0.9900
C3—C41.410 (5)C11—H11B0.9900
C3—H30.9500C12—H12A0.9800
C4—C51.373 (5)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
C5—C61.404 (5)
C11—O2—C10111.4 (3)C9—C8—C7119.3 (3)
C9—N1—C1121.1 (3)C9—C8—C10119.5 (3)
C9—N1—H1119 (3)C7—C8—C10121.2 (3)
C1—N1—H1120 (3)N1—C9—C8123.4 (3)
N1—C1—C2119.9 (3)N1—C9—H9118.3
N1—C1—C6119.1 (3)C8—C9—H9118.3
C2—C1—C6120.9 (3)O2—C10—C8108.3 (3)
C3—C2—C1119.4 (3)O2—C10—H10A110.0
C3—C2—H2120.3C8—C10—H10A110.0
C1—C2—H2120.3O2—C10—H10B110.0
C2—C3—C4120.8 (3)C8—C10—H10B110.0
C2—C3—H3119.6H10A—C10—H10B108.4
C4—C3—H3119.6O2—C11—C12108.6 (3)
C5—C4—C3119.2 (3)O2—C11—H11A110.0
C5—C4—H4120.4C12—C11—H11A110.0
C3—C4—H4120.4O2—C11—H11B110.0
C4—C5—C6121.7 (3)C12—C11—H11B110.0
C4—C5—H5119.1H11A—C11—H11B108.3
C6—C5—H5119.1C11—C12—H12A109.5
C5—C6—C1117.9 (3)C11—C12—H12B109.5
C5—C6—C7121.6 (3)H12A—C12—H12B109.5
C1—C6—C7120.6 (3)C11—C12—H12C109.5
O1—C7—C8123.1 (3)H12A—C12—H12C109.5
O1—C7—C6120.4 (3)H12B—C12—H12C109.5
C8—C7—C6116.5 (3)
C9—N1—C1—C2180.0 (3)C1—C6—C7—O1179.2 (3)
C9—N1—C1—C61.2 (5)C5—C6—C7—C8179.9 (3)
N1—C1—C2—C3178.9 (3)C1—C6—C7—C80.6 (5)
C6—C1—C2—C30.2 (5)O1—C7—C8—C9179.0 (3)
C1—C2—C3—C40.5 (5)C6—C7—C8—C90.8 (5)
C2—C3—C4—C51.0 (5)O1—C7—C8—C101.9 (5)
C3—C4—C5—C61.3 (5)C6—C7—C8—C10177.9 (3)
C4—C5—C6—C10.9 (5)C1—N1—C9—C81.0 (5)
C4—C5—C6—C7178.6 (3)C7—C8—C9—N10.1 (5)
N1—C1—C6—C5179.2 (3)C10—C8—C9—N1177.2 (3)
C2—C1—C6—C50.4 (5)C11—O2—C10—C8179.7 (3)
N1—C1—C6—C70.4 (5)C9—C8—C10—O285.7 (4)
C2—C1—C6—C7179.2 (3)C7—C8—C10—O291.5 (4)
C5—C6—C7—O10.3 (5)C10—O2—C11—C12179.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.98 (4)1.78 (4)2.707 (3)157 (4)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13NO2
Mr203.23
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)18.179 (3), 12.4052 (16), 4.4529 (5)
V3)1004.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.05 × 0.03
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.969, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
3157, 1306, 913
Rint0.068
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.116, 1.01
No. of reflections1306
No. of parameters140
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.98 (4)1.78 (4)2.707 (3)157 (4)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Research Center for Female Scientific and Medical Colleges, the Deanship of Scientific Research of King Saud University, and the Ministry of Higher Education of Malaysia (grant No. UM.C/HIR/MOHE/SC/12) for supporting this study.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNasiri, H. R., Bolte, M. & Schwalbe, H. (2006). Heterocycl. Commun. 12, 319–322.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds