organic compounds
1-Dichloroacetyl-8a-methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-a]pyrimidin-6-one
aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: fuying@neau.edu.cn
In the title compound, C10H14Cl2N2O2, the five-membered ring adopts an (with the methylene C atom closest to the C—N bridge as the flap), while the conformation of the six-membered ring is close to a twist-boat. In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming chains along the c-axis direction.
Related literature
For general background to 1,5-diazabicyclo compounds, see: Fuerst & Lamoureux (1992); Hutton & Bartlett (2007); Koptelov et al. (2011); Loriga et al. (2007); Moreland et al. (1993); Taylor et al. (2010). For details of the synthesis, see: Sun & Ye (2010); Rohr et al. (1984,1986). For applications of N-dichloroacetyl-1,5-diazabicyclo compounds, see: Lamoureux & Rusness (1992); Hatzios & Burgos (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 1999); cell RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812024063/yk2055sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812024063/yk2055Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812024063/yk2055Isup3.cml
The title compound was prepared according to the literature procedure (Sun & Ye, 2010). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution in the mixture of petroleum ether and ethyl acetate at room temperature.
All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.96/0.98 Å, and with Uiso(H) = 1.2/1.5 Ueq(C).
Diazabicyclo derivatives are extremely important synthetic intermediates in the syntheses of compounds with potential high biological activity (Fuerst & Lamoureux, 1992; Loriga et al., 2007; Hutton & Bartlett, 2007; Taylor et al., 2010). N-dichloroacetyl-1,5-diazabicyclo compounds have been investigated for usage as herbicide safeners which protect crops from the injury by herbicides (Lamoureux & Rusness, 1992; Hatzios & Burgos, 2004). As a part of our ongoing investigation on the diazabicyclo derivatives we have determined the
of the title compound.The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds, forming chains along the c direction (Fig. 2).
For general background to 1,5-diazabicyclo compounds, see: Fuerst & Lamoureux (1992); Hutton & Bartlett (2007); Koptelov et al. (2011); Loriga et al. (2007); Moreland et al. (1993); Taylor et al. (2010). For details of the synthesis, see: Sun & Ye (2010); Rohr et al. (1984,1986). For applications of N-dichloroacetyl-1,5-diazabicyclo compounds, see: Lamoureux & Rusness (1992); Hatzios & Burgos (2004).
Data collection: RAPID-AUTO (Rigaku, 1999); cell
RAPID-AUTO (Rigaku, 1999); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C10H14Cl2N2O2 | F(000) = 1104 |
Mr = 265.13 | Dx = 1.454 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 9134 reflections |
a = 10.312 (2) Å | θ = 3.2–27.6° |
b = 14.997 (3) Å | µ = 0.52 mm−1 |
c = 15.666 (3) Å | T = 293 K |
V = 2422.7 (8) Å3 | Block, colourless |
Z = 8 | 0.23 × 0.19 × 0.16 mm |
Rigaku R-AXIS RAPID diffractometer | 2770 independent reflections |
Radiation source: fine-focus sealed tube | 2376 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
Detector resolution: 10 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scan | h = −13→11 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −19→19 |
Tmin = 0.889, Tmax = 0.922 | l = −20→20 |
22128 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.097P)2 + 0.5072P] where P = (Fo2 + 2Fc2)/3 |
2770 reflections | (Δ/σ)max = 0.001 |
146 parameters | Δρmax = 0.74 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
C10H14Cl2N2O2 | V = 2422.7 (8) Å3 |
Mr = 265.13 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.312 (2) Å | µ = 0.52 mm−1 |
b = 14.997 (3) Å | T = 293 K |
c = 15.666 (3) Å | 0.23 × 0.19 × 0.16 mm |
Rigaku R-AXIS RAPID diffractometer | 2770 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2376 reflections with I > 2σ(I) |
Tmin = 0.889, Tmax = 0.922 | Rint = 0.038 |
22128 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.156 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.74 e Å−3 |
2770 reflections | Δρmin = −0.36 e Å−3 |
146 parameters |
Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.44507 (19) | 0.93130 (12) | 0.76600 (12) | 0.0425 (4) | |
H1 | 0.4067 | 0.8855 | 0.7293 | 0.051* | |
C2 | 0.36708 (16) | 0.93818 (10) | 0.84965 (10) | 0.0356 (3) | |
C3 | 0.3554 (3) | 0.77230 (13) | 0.84857 (16) | 0.0717 (8) | |
H3A | 0.4348 | 0.7471 | 0.8712 | 0.086* | |
H3B | 0.3654 | 0.7784 | 0.7873 | 0.086* | |
C4 | 0.2472 (4) | 0.71165 (18) | 0.86658 (17) | 0.0951 (11) | |
H4A | 0.2620 | 0.6552 | 0.8380 | 0.114* | |
H4B | 0.1675 | 0.7370 | 0.8444 | 0.114* | |
C5 | 0.2331 (3) | 0.69585 (16) | 0.96139 (15) | 0.0778 (8) | |
H5A | 0.1427 | 0.6854 | 0.9753 | 0.093* | |
H5B | 0.2824 | 0.6435 | 0.9779 | 0.093* | |
C6 | 0.27314 (17) | 0.86362 (11) | 0.97259 (10) | 0.0388 (4) | |
C7 | 0.1334 (2) | 0.89612 (19) | 0.96606 (15) | 0.0643 (6) | |
H7A | 0.0849 | 0.8564 | 0.9301 | 0.096* | |
H7B | 0.1321 | 0.9550 | 0.9420 | 0.096* | |
H7C | 0.0951 | 0.8974 | 1.0219 | 0.096* | |
C8 | 0.3550 (2) | 0.91831 (13) | 1.03659 (11) | 0.0490 (5) | |
H8A | 0.4403 | 0.9306 | 1.0133 | 0.059* | |
H8B | 0.3128 | 0.9745 | 1.0497 | 0.059* | |
C9 | 0.3655 (2) | 0.86100 (14) | 1.11572 (12) | 0.0512 (5) | |
H9A | 0.4529 | 0.8626 | 1.1385 | 0.061* | |
H9B | 0.3057 | 0.8813 | 1.1594 | 0.061* | |
C10 | 0.33128 (18) | 0.76904 (13) | 1.08684 (12) | 0.0460 (4) | |
Cl1 | 0.60562 (5) | 0.89949 (5) | 0.79454 (4) | 0.0661 (2) | |
Cl2 | 0.44643 (7) | 1.03447 (4) | 0.71183 (3) | 0.0634 (2) | |
N1 | 0.33425 (15) | 0.86043 (9) | 0.88631 (9) | 0.0376 (3) | |
N2 | 0.28063 (18) | 0.77378 (10) | 1.00813 (10) | 0.0495 (4) | |
O1 | 0.34367 (15) | 1.01088 (8) | 0.88014 (9) | 0.0493 (4) | |
O2 | 0.34379 (18) | 0.69963 (12) | 1.12676 (10) | 0.0677 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0509 (10) | 0.0420 (9) | 0.0347 (8) | −0.0063 (7) | −0.0010 (7) | −0.0023 (7) |
C2 | 0.0419 (8) | 0.0325 (8) | 0.0325 (8) | −0.0003 (6) | −0.0051 (6) | −0.0013 (6) |
C3 | 0.133 (2) | 0.0307 (9) | 0.0519 (12) | −0.0056 (11) | 0.0152 (13) | −0.0057 (8) |
C4 | 0.177 (3) | 0.0556 (14) | 0.0523 (14) | −0.0532 (18) | −0.0047 (16) | −0.0051 (10) |
C5 | 0.132 (2) | 0.0500 (12) | 0.0517 (13) | −0.0423 (14) | −0.0074 (13) | 0.0063 (10) |
C6 | 0.0463 (9) | 0.0384 (8) | 0.0318 (8) | −0.0040 (7) | −0.0051 (6) | 0.0021 (6) |
C7 | 0.0486 (11) | 0.0909 (17) | 0.0534 (12) | 0.0083 (11) | 0.0025 (9) | 0.0066 (11) |
C8 | 0.0672 (12) | 0.0430 (9) | 0.0367 (9) | −0.0096 (8) | −0.0075 (8) | −0.0038 (7) |
C9 | 0.0591 (11) | 0.0615 (12) | 0.0330 (9) | −0.0038 (9) | −0.0070 (8) | −0.0004 (8) |
C10 | 0.0472 (9) | 0.0549 (11) | 0.0359 (9) | 0.0012 (8) | 0.0030 (7) | 0.0098 (8) |
Cl1 | 0.0494 (3) | 0.0859 (5) | 0.0629 (4) | 0.0085 (3) | 0.0054 (2) | −0.0065 (3) |
Cl2 | 0.0924 (5) | 0.0559 (4) | 0.0419 (3) | −0.0146 (3) | 0.0005 (2) | 0.0120 (2) |
N1 | 0.0490 (8) | 0.0311 (7) | 0.0328 (7) | −0.0019 (5) | −0.0022 (6) | −0.0014 (5) |
N2 | 0.0691 (10) | 0.0393 (8) | 0.0400 (8) | −0.0153 (7) | −0.0084 (7) | 0.0076 (6) |
O1 | 0.0724 (9) | 0.0308 (6) | 0.0448 (7) | 0.0038 (6) | 0.0064 (6) | −0.0010 (5) |
O2 | 0.0858 (11) | 0.0644 (10) | 0.0528 (9) | 0.0071 (8) | 0.0007 (8) | 0.0255 (7) |
C1—C2 | 1.541 (2) | C6—N2 | 1.460 (2) |
C1—Cl2 | 1.7647 (19) | C6—N1 | 1.492 (2) |
C1—Cl1 | 1.780 (2) | C6—C7 | 1.525 (3) |
C1—H1 | 0.9800 | C6—C8 | 1.546 (2) |
C2—O1 | 1.214 (2) | C7—H7A | 0.9600 |
C2—N1 | 1.343 (2) | C7—H7B | 0.9600 |
C3—N1 | 1.464 (2) | C7—H7C | 0.9600 |
C3—C4 | 1.467 (4) | C8—C9 | 1.512 (3) |
C3—H3A | 0.9700 | C8—H8A | 0.9700 |
C3—H3B | 0.9700 | C8—H8B | 0.9700 |
C4—C5 | 1.511 (4) | C9—C10 | 1.494 (3) |
C4—H4A | 0.9700 | C9—H9A | 0.9700 |
C4—H4B | 0.9700 | C9—H9B | 0.9700 |
C5—N2 | 1.464 (3) | C10—O2 | 1.221 (2) |
C5—H5A | 0.9700 | C10—N2 | 1.341 (2) |
C5—H5B | 0.9700 | ||
C2—C1—Cl2 | 110.76 (12) | N2—C6—C8 | 102.31 (13) |
C2—C1—Cl1 | 106.84 (12) | N1—C6—C8 | 111.95 (15) |
Cl2—C1—Cl1 | 110.39 (10) | C7—C6—C8 | 112.96 (17) |
C2—C1—H1 | 109.6 | C6—C7—H7A | 109.5 |
Cl2—C1—H1 | 109.6 | C6—C7—H7B | 109.5 |
Cl1—C1—H1 | 109.6 | H7A—C7—H7B | 109.5 |
O1—C2—N1 | 124.12 (16) | C6—C7—H7C | 109.5 |
O1—C2—C1 | 119.90 (15) | H7A—C7—H7C | 109.5 |
N1—C2—C1 | 115.91 (14) | H7B—C7—H7C | 109.5 |
N1—C3—C4 | 111.7 (2) | C9—C8—C6 | 105.61 (15) |
N1—C3—H3A | 109.3 | C9—C8—H8A | 110.6 |
C4—C3—H3A | 109.3 | C6—C8—H8A | 110.6 |
N1—C3—H3B | 109.3 | C9—C8—H8B | 110.6 |
C4—C3—H3B | 109.3 | C6—C8—H8B | 110.6 |
H3A—C3—H3B | 107.9 | H8A—C8—H8B | 108.7 |
C3—C4—C5 | 111.1 (2) | C10—C9—C8 | 105.05 (15) |
C3—C4—H4A | 109.4 | C10—C9—H9A | 110.7 |
C5—C4—H4A | 109.4 | C8—C9—H9A | 110.7 |
C3—C4—H4B | 109.4 | C10—C9—H9B | 110.7 |
C5—C4—H4B | 109.4 | C8—C9—H9B | 110.7 |
H4A—C4—H4B | 108.0 | H9A—C9—H9B | 108.8 |
N2—C5—C4 | 109.54 (17) | O2—C10—N2 | 123.87 (19) |
N2—C5—H5A | 109.8 | O2—C10—C9 | 127.37 (19) |
C4—C5—H5A | 109.8 | N2—C10—C9 | 108.75 (15) |
N2—C5—H5B | 109.8 | C2—N1—C3 | 125.00 (15) |
C4—C5—H5B | 109.8 | C2—N1—C6 | 117.77 (13) |
H5A—C5—H5B | 108.2 | C3—N1—C6 | 117.23 (14) |
N2—C6—N1 | 107.07 (14) | C10—N2—C6 | 114.85 (15) |
N2—C6—C7 | 111.75 (17) | C10—N2—C5 | 123.23 (16) |
N1—C6—C7 | 110.41 (14) | C6—N2—C5 | 121.90 (16) |
Cl2—C1—C2—O1 | −17.6 (2) | N2—C6—N1—C2 | −164.27 (15) |
Cl1—C1—C2—O1 | 102.68 (17) | C7—C6—N1—C2 | 73.9 (2) |
Cl2—C1—C2—N1 | 165.39 (13) | C8—C6—N1—C2 | −52.9 (2) |
Cl1—C1—C2—N1 | −74.34 (16) | N2—C6—N1—C3 | 15.0 (2) |
N1—C3—C4—C5 | −62.4 (4) | C7—C6—N1—C3 | −106.9 (2) |
C3—C4—C5—N2 | 28.4 (4) | C8—C6—N1—C3 | 126.3 (2) |
N2—C6—C8—C9 | −17.3 (2) | O2—C10—N2—C6 | 179.24 (19) |
N1—C6—C8—C9 | −131.65 (17) | C9—C10—N2—C6 | 0.3 (2) |
C7—C6—C8—C9 | 103.0 (2) | O2—C10—N2—C5 | 0.7 (3) |
C6—C8—C9—C10 | 17.9 (2) | C9—C10—N2—C5 | −178.2 (2) |
C8—C9—C10—O2 | 169.3 (2) | N1—C6—N2—C10 | 128.79 (17) |
C8—C9—C10—N2 | −11.8 (2) | C7—C6—N2—C10 | −110.2 (2) |
O1—C2—N1—C3 | 176.6 (2) | C8—C6—N2—C10 | 10.9 (2) |
C1—C2—N1—C3 | −6.5 (3) | N1—C6—N2—C5 | −52.6 (3) |
O1—C2—N1—C6 | −4.3 (3) | C7—C6—N2—C5 | 68.4 (3) |
C1—C2—N1—C6 | 172.63 (14) | C8—C6—N2—C5 | −170.5 (2) |
C4—C3—N1—C2 | −142.1 (2) | C4—C5—N2—C10 | −151.3 (3) |
C4—C3—N1—C6 | 38.8 (3) | C4—C5—N2—C6 | 30.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2i | 0.98 | 2.15 | 3.115 (2) | 168 |
C3—H3B···O2i | 0.97 | 2.55 | 3.502 (3) | 169 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H14Cl2N2O2 |
Mr | 265.13 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 10.312 (2), 14.997 (3), 15.666 (3) |
V (Å3) | 2422.7 (8) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.52 |
Crystal size (mm) | 0.23 × 0.19 × 0.16 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.889, 0.922 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22128, 2770, 2376 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.156, 1.11 |
No. of reflections | 2770 |
No. of parameters | 146 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −0.36 |
Computer programs: RAPID-AUTO (Rigaku, 1999), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2i | 0.98 | 2.15 | 3.115 (2) | 167.5 |
C3—H3B···O2i | 0.97 | 2.55 | 3.502 (3) | 168.7 |
Symmetry code: (i) x, −y+3/2, z−1/2. |
Acknowledgements
We thank the National Natural Science Foundation of China (No. 31101473), the China Postdoctoral Science Foundation funded project (2011M500634), the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Research Science Foundation in Technology Innovation of Harbin (2010RFQYN108) and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.
References
Fuerst, E. P. & Lamoureux, G. L. (1992). Pestic. Biochem. Physiol. 42, 78–87. CrossRef CAS Web of Science Google Scholar
Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–467. Web of Science CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865–6872. Web of Science CrossRef PubMed CAS Google Scholar
Koptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421–432. Web of Science CrossRef CAS Google Scholar
Lamoureux, G. L. & Rusness, D. G. (1992). Pestic. Biochem. Physiol. 42, 128–139. CrossRef CAS Web of Science Google Scholar
Loriga, G., Ruiu, S., Manca, I., Murineddu, G., Dessi, C., Pani, L. & Pinna, G. A. (2007). Bioorg. Med. Chem. 15, 3748–3755. Web of Science CrossRef PubMed CAS Google Scholar
Moreland, D. E., Corbin, F. T. & McFarland, J. E. (1993). Pestic. Biochem. Physiol. 45, 43–53. CrossRef CAS Web of Science Google Scholar
Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Rohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1984). US Patent No. 4448960. Google Scholar
Rohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1986). US Patent No. 4565565. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, T. F. & Ye, F. (2010). Chem. Online, 73, 669–672. CAS Google Scholar
Taylor, R. R. R., Twin, H. C., Wen, W. W., Mallot, R. J., Lough, A. J., Gray-Owen, S. D. & Batey, R. A. (2010). Tetrahedron, 66, 3370–3377. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Diazabicyclo derivatives are extremely important synthetic intermediates in the syntheses of compounds with potential high biological activity (Fuerst & Lamoureux, 1992; Loriga et al., 2007; Hutton & Bartlett, 2007; Taylor et al., 2010). N-dichloroacetyl-1,5-diazabicyclo compounds have been investigated for usage as herbicide safeners which protect crops from the injury by herbicides (Lamoureux & Rusness, 1992; Hatzios & Burgos, 2004). As a part of our ongoing investigation on the diazabicyclo derivatives we have determined the crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds, forming chains along the c direction (Fig. 2).