organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Cyclo­pentyl-2-(3-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 10 May 2012; accepted 5 June 2012; online 13 June 2012)

In the title compound, C20H19FO2S, the benzofuran fragment is essentially planar, with a largest deviation from the mean plane of 0.026 (2) Å. The benzene ring makes a dihedral angle of 30.72 (12)° with this plane. The cyclo­pentyl group adopts an envelope conformation, with the α-C atom as the flap. This atom is disordered over two sites with occupancy factors of 0.803 (16) and 0.197 (16). In the crystal, mol­ecules are linked by weak C—H⋯O, C—H⋯π and C—F⋯π [3.257 (3) Å] inter­actions.

Related literature

For the crystal structures of related compounds, see: Choi et al. (2011[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1000.]); Seo et al. (2011[Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2591.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19FO2S

  • Mr = 342.41

  • Monoclinic, P 21 /c

  • a = 6.1024 (3) Å

  • b = 25.3030 (11) Å

  • c = 10.6840 (5) Å

  • β = 90.231 (1)°

  • V = 1649.69 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.954

  • 13224 measured reflections

  • 2905 independent reflections

  • 2568 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.165

  • S = 1.02

  • 2905 reflections

  • 228 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C3/C8/O1 furan ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O2i 0.95 2.52 3.326 (4) 143
C20—H20B⋯O2i 0.98 2.47 3.279 (4) 140
C9—H9ACg1ii 1.00 2.76 3.626 (4) 145
C15—H15⋯Cg2iii 0.95 2.94 3.461 (4) 116
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing study of 5-cyclopentyl-3-methylsulfinyl-1-benzofuran derivatives containing 2-phenyl (Choi et al., 2011) and 2-(4-fluorophenyl) (Seo et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring has an envelope conformation with the C10 atom as a flop. This atom is disordered over two sites, C10A and C10B, with occupancy factors of 0.803 (16) and 0.197 (16), respectively. The dihedral angle between the 3-fluorophenyl group and the mean plane of the benzofuran fragment is 30.7 (1)°. In the crystal structure, molecules are connected by weak C—H···O and C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1–C3/C8/O1 furan ring and the C2–C7 benzene ring, respectively). The crystal packing (Fig. 2) also exhibits C—F···π interactions between the fluorine atom and the furan ring of an adjacent molecule, with a C16—F1···Cg1iii distance of 3.257 (3) Å.

Related literature top

For the crystal structures of related compounds, see: Choi et al. (2011); Seo et al. (2011).

Experimental top

3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-cyclopentyl-2-(3-fluorophenyl)-3-methylsulfanyl-1-benzofuran (293 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 5h, the mixture was washed with saturated sodium hydrocarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 81%, m.p. 430-431 K; R f = 0.56 (hexane-ethyl acetate, 1:2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for the aryl, 1.00 Å for the methine, 0.99 Å for the methylene, and 0.98 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine, and methylene H atoms, and 1.5Ueq(C) for the methyl H atoms. The methyl group was allowed to rotate during the refinement.

The C10 atom of the cyclopentyl ring is disordered over two positions. The site occupancy factors were refined to 0.807 (16) (part A) and 0.193 (16) (part B). The distances of equivalent C-C pairs were restrained to 1.525 (4) Å and 0.001 Å using command DFIX and SADI, respectively, and displacement ellipsoids of C10A and C10B were restrained using command ISOR and DELU.

Structure description top

As a part of our ongoing study of 5-cyclopentyl-3-methylsulfinyl-1-benzofuran derivatives containing 2-phenyl (Choi et al., 2011) and 2-(4-fluorophenyl) (Seo et al., 2011) substituents, we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.017 (2) Å from the least-squares plane defined by the nine constituent atoms. The cyclopentyl ring has an envelope conformation with the C10 atom as a flop. This atom is disordered over two sites, C10A and C10B, with occupancy factors of 0.803 (16) and 0.197 (16), respectively. The dihedral angle between the 3-fluorophenyl group and the mean plane of the benzofuran fragment is 30.7 (1)°. In the crystal structure, molecules are connected by weak C—H···O and C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1–C3/C8/O1 furan ring and the C2–C7 benzene ring, respectively). The crystal packing (Fig. 2) also exhibits C—F···π interactions between the fluorine atom and the furan ring of an adjacent molecule, with a C16—F1···Cg1iii distance of 3.257 (3) Å.

For the crystal structures of related compounds, see: Choi et al. (2011); Seo et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The occupancy factors of C10A and C10B atoms are 0.803 (16) and 0.197 (16), respectively.
[Figure 2] Fig. 2. A view of the C—H···O, C—H···π and C—F···π interactions (dotted lines) in the crystal structure of the title compound. H atoms nonparticipating in hydrogen bonding are omitted for clarity. [Symmetry codes: (i) x, - y + 3/2, z + 1/2; (ii) x - 1, y, z; (iii) x + 1, y, z; (iv) x, - y + 3/2, z - 1/2.]
5-Cyclopentyl-2-(3-fluorophenyl)-3-methylsulfinyl-1-benzofuran top
Crystal data top
C20H19FO2SF(000) = 720
Mr = 342.41Dx = 1.379 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5280 reflections
a = 6.1024 (3) Åθ = 2.5–28.2°
b = 25.3030 (11) ŵ = 0.22 mm1
c = 10.6840 (5) ÅT = 173 K
β = 90.231 (1)°Block, colourless
V = 1649.69 (13) Å30.40 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2905 independent reflections
Radiation source: rotating anode2568 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.027
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.1°
φ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 3030
Tmin = 0.919, Tmax = 0.954l = 1212
13224 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: difference Fourier map
wR(F2) = 0.165H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.087P)2 + 2.8614P]
where P = (Fo2 + 2Fc2)/3
2905 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 1.35 e Å3
30 restraintsΔρmin = 0.55 e Å3
Crystal data top
C20H19FO2SV = 1649.69 (13) Å3
Mr = 342.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1024 (3) ŵ = 0.22 mm1
b = 25.3030 (11) ÅT = 173 K
c = 10.6840 (5) Å0.40 × 0.25 × 0.22 mm
β = 90.231 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2568 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.954Rint = 0.027
13224 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06030 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.02Δρmax = 1.35 e Å3
2905 reflectionsΔρmin = 0.55 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.49517 (11)0.72428 (3)0.41704 (6)0.0274 (2)
O10.5749 (3)0.56958 (7)0.45210 (17)0.0261 (4)
O20.4494 (4)0.74049 (8)0.28532 (19)0.0403 (6)
F11.2882 (3)0.56555 (10)0.6805 (2)0.0617 (6)
C10.3984 (4)0.57030 (11)0.3714 (2)0.0245 (6)
C20.6189 (4)0.62149 (11)0.4815 (2)0.0242 (6)
C30.4786 (4)0.65466 (11)0.4202 (2)0.0234 (6)
C40.1509 (5)0.63050 (11)0.2681 (3)0.0289 (6)
H40.10490.66540.24880.035*
C50.0407 (5)0.58719 (12)0.2184 (3)0.0344 (7)
C60.1179 (5)0.53590 (12)0.2453 (3)0.0356 (7)
H60.04290.50660.20960.043*
C70.2976 (5)0.52630 (11)0.3211 (3)0.0306 (6)
H70.34860.49150.33760.037*
C80.3310 (4)0.62182 (10)0.3474 (2)0.0233 (6)
C90.1701 (6)0.59386 (12)0.1427 (3)0.0448 (8)
H9A0.29440.58370.19840.054*0.803 (16)
H9B0.27530.59440.21420.054*0.197 (16)
C10A0.1826 (10)0.5586 (2)0.0271 (5)0.0527 (19)0.803 (16)
H10A0.20530.52120.05050.063*0.803 (16)
H10B0.04760.56150.02360.063*0.803 (16)
C10B0.283 (3)0.5505 (2)0.0671 (11)0.035 (3)0.197 (16)
H10C0.39890.53300.11670.043*0.197 (16)
H10D0.17630.52360.03900.043*0.197 (16)
C110.3803 (8)0.58042 (15)0.0439 (5)0.0776 (16)
H11A0.35410.57940.13520.093*0.803 (16)
H11B0.51270.55930.02520.093*0.803 (16)
H11C0.28660.57880.11920.093*0.197 (16)
H11D0.52340.56370.06280.093*0.197 (16)
C120.4100 (5)0.63712 (13)0.0002 (3)0.0377 (7)
H12A0.55260.64150.04280.045*
H12B0.40340.66190.07130.045*
C130.2206 (5)0.64710 (12)0.0912 (3)0.0377 (7)
H13A0.09230.66200.04720.045*
H13B0.26490.67170.15860.045*
C140.7931 (4)0.62945 (11)0.5734 (2)0.0258 (6)
C150.9653 (4)0.59298 (12)0.5813 (3)0.0297 (6)
H150.97180.56350.52630.036*
C161.1247 (5)0.60094 (13)0.6706 (3)0.0341 (7)
C171.1235 (5)0.64302 (14)0.7524 (3)0.0390 (8)
H171.23690.64740.81260.047*
C180.9526 (5)0.67855 (13)0.7442 (3)0.0380 (7)
H180.94850.70790.79950.046*
C190.7870 (5)0.67197 (12)0.6566 (3)0.0304 (6)
H190.66900.69640.65300.036*
C200.2521 (5)0.73842 (12)0.5038 (3)0.0339 (7)
H20A0.22130.77640.49980.051*
H20B0.27330.72790.59130.051*
H20C0.12860.71880.46790.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (4)0.0216 (4)0.0281 (4)0.0040 (3)0.0031 (3)0.0021 (2)
O10.0283 (10)0.0232 (9)0.0266 (10)0.0024 (7)0.0057 (8)0.0012 (7)
O20.0606 (15)0.0312 (11)0.0290 (11)0.0028 (10)0.0000 (10)0.0099 (9)
F10.0414 (12)0.0772 (16)0.0665 (15)0.0171 (11)0.0087 (10)0.0048 (12)
C10.0263 (13)0.0261 (14)0.0210 (13)0.0024 (11)0.0039 (10)0.0022 (10)
C20.0254 (13)0.0252 (13)0.0219 (13)0.0018 (10)0.0016 (10)0.0007 (10)
C30.0270 (13)0.0226 (13)0.0205 (13)0.0010 (10)0.0019 (10)0.0010 (10)
C40.0356 (15)0.0229 (14)0.0280 (14)0.0018 (11)0.0092 (12)0.0030 (11)
C50.0420 (17)0.0282 (15)0.0330 (16)0.0005 (13)0.0125 (13)0.0015 (12)
C60.0451 (18)0.0238 (14)0.0379 (17)0.0038 (12)0.0144 (14)0.0035 (12)
C70.0387 (16)0.0218 (14)0.0313 (15)0.0026 (12)0.0070 (12)0.0010 (11)
C80.0263 (13)0.0225 (13)0.0210 (13)0.0002 (10)0.0008 (10)0.0008 (10)
C90.0461 (19)0.0373 (18)0.0509 (18)0.0018 (15)0.0180 (15)0.0010 (14)
C10A0.050 (3)0.033 (2)0.075 (3)0.006 (2)0.039 (3)0.014 (2)
C10B0.022 (7)0.034 (6)0.050 (6)0.006 (5)0.009 (5)0.004 (4)
C110.084 (3)0.041 (2)0.107 (3)0.016 (2)0.072 (3)0.018 (2)
C120.0324 (16)0.0392 (17)0.0416 (17)0.0035 (13)0.0108 (13)0.0001 (14)
C130.0411 (17)0.0322 (16)0.0398 (17)0.0042 (13)0.0130 (14)0.0041 (13)
C140.0231 (13)0.0308 (14)0.0236 (13)0.0023 (11)0.0011 (10)0.0047 (11)
C150.0269 (14)0.0348 (16)0.0276 (14)0.0008 (12)0.0003 (11)0.0019 (12)
C160.0223 (14)0.0446 (18)0.0354 (16)0.0027 (12)0.0020 (12)0.0099 (13)
C170.0310 (16)0.055 (2)0.0313 (16)0.0076 (14)0.0098 (12)0.0031 (14)
C180.0391 (17)0.0437 (18)0.0311 (16)0.0048 (14)0.0067 (13)0.0056 (13)
C190.0298 (15)0.0341 (15)0.0274 (14)0.0005 (12)0.0022 (11)0.0008 (12)
C200.0394 (17)0.0291 (15)0.0332 (16)0.0042 (13)0.0000 (13)0.0008 (12)
Geometric parameters (Å, º) top
S1—O21.491 (2)C10B—C111.5254 (17)
S1—C31.765 (3)C10B—H10C0.9900
S1—C201.789 (3)C10B—H10D0.9900
O1—C21.377 (3)C11—C121.521 (5)
O1—C11.377 (3)C11—H11A0.9900
F1—C161.345 (4)C11—H11B0.9900
C1—C71.380 (4)C11—H11C0.9900
C1—C81.390 (4)C11—H11D0.9900
C2—C31.364 (4)C12—C131.528 (4)
C2—C141.458 (4)C12—H12A0.9900
C3—C81.449 (4)C12—H12B0.9900
C4—C51.390 (4)C13—H13A0.9900
C4—C81.402 (4)C13—H13B0.9900
C4—H40.9500C14—C191.396 (4)
C5—C61.410 (4)C14—C151.401 (4)
C5—C91.526 (4)C15—C161.375 (4)
C6—C71.383 (4)C15—H150.9500
C6—H60.9500C16—C171.377 (5)
C7—H70.9500C17—C181.379 (5)
C9—C131.487 (4)C17—H170.9500
C9—C10A1.5249 (16)C18—C191.386 (4)
C9—C10B1.5250 (17)C18—H180.9500
C9—H9A1.0000C19—H190.9500
C9—H9B1.0000C20—H20A0.9800
C10A—C111.5254 (17)C20—H20B0.9800
C10A—H10A0.9900C20—H20C0.9800
C10A—H10B0.9900
O2—S1—C3106.38 (12)C12—C11—C10A106.4 (3)
O2—S1—C20106.37 (14)C12—C11—H11A110.5
C3—S1—C2098.18 (13)C10B—C11—H11A133.6
C2—O1—C1106.34 (19)C10A—C11—H11A110.5
O1—C1—C7125.4 (2)C12—C11—H11B110.5
O1—C1—C8111.0 (2)C10B—C11—H11B83.8
C7—C1—C8123.6 (2)C10A—C11—H11B110.5
C3—C2—O1110.9 (2)H11A—C11—H11B108.6
C3—C2—C14133.8 (3)C12—C11—H11C111.1
O1—C2—C14115.2 (2)C10B—C11—H11C112.7
C2—C3—C8107.0 (2)C10A—C11—H11C86.0
C2—C3—S1126.0 (2)H11B—C11—H11C128.0
C8—C3—S1126.7 (2)C12—C11—H11D111.1
C5—C4—C8119.0 (3)C10B—C11—H11D106.7
C5—C4—H4120.5C10A—C11—H11D130.0
C8—C4—H4120.5H11A—C11—H11D86.2
C4—C5—C6119.2 (3)H11C—C11—H11D109.2
C4—C5—C9121.4 (3)C11—C12—C13105.2 (2)
C6—C5—C9119.3 (3)C11—C12—H12A110.7
C7—C6—C5123.0 (3)C13—C12—H12A110.7
C7—C6—H6118.5C11—C12—H12B110.7
C5—C6—H6118.5C13—C12—H12B110.7
C1—C7—C6116.0 (3)H12A—C12—H12B108.8
C1—C7—H7122.0C9—C13—C12103.9 (2)
C6—C7—H7122.0C9—C13—H13A111.0
C1—C8—C4119.3 (2)C12—C13—H13A111.0
C1—C8—C3104.8 (2)C9—C13—H13B111.0
C4—C8—C3135.9 (2)C12—C13—H13B111.0
C13—C9—C5118.0 (3)H13A—C13—H13B109.0
C13—C9—C10A102.7 (3)C19—C14—C15119.4 (3)
C5—C9—C10A113.8 (3)C19—C14—C2120.9 (2)
C13—C9—C10B111.3 (3)C15—C14—C2119.6 (3)
C5—C9—C10B125.4 (5)C16—C15—C14118.3 (3)
C13—C9—H9A107.2C16—C15—H15120.9
C5—C9—H9A107.2C14—C15—H15120.9
C10A—C9—H9A107.2F1—C16—C15118.7 (3)
C10B—C9—H9A77.8F1—C16—C17118.1 (3)
C13—C9—H9B97.9C15—C16—C17123.2 (3)
C5—C9—H9B98.0C16—C17—C18118.1 (3)
C10A—C9—H9B126.7C16—C17—H17121.0
C10B—C9—H9B97.2C18—C17—H17121.0
C9—C10A—C11103.2 (3)C17—C18—C19120.9 (3)
C9—C10A—H10A111.1C17—C18—H18119.5
C11—C10A—H10A111.1C19—C18—H18119.5
C9—C10A—H10B111.1C18—C19—C14120.1 (3)
C11—C10A—H10B111.1C18—C19—H19119.9
H10A—C10A—H10B109.1C14—C19—H19119.9
C9—C10B—C11103.2 (3)S1—C20—H20A109.5
C9—C10B—H10C111.1S1—C20—H20B109.5
C11—C10B—H10C111.1H20A—C20—H20B109.5
C9—C10B—H10D111.1S1—C20—H20C109.5
C11—C10B—H10D111.1H20A—C20—H20C109.5
H10C—C10B—H10D109.1H20B—C20—H20C109.5
C12—C11—C10B105.9 (5)
C2—O1—C1—C7178.4 (3)C4—C5—C9—C10B169.7 (9)
C2—O1—C1—C80.9 (3)C6—C5—C9—C10B14.5 (10)
C1—O1—C2—C31.1 (3)C13—C9—C10A—C1140.4 (6)
C1—O1—C2—C14176.1 (2)C5—C9—C10A—C11169.1 (4)
O1—C2—C3—C80.9 (3)C10B—C9—C10A—C1170.6 (5)
C14—C2—C3—C8175.6 (3)C13—C9—C10B—C117.3 (14)
O1—C2—C3—S1172.60 (18)C5—C9—C10B—C11146.2 (7)
C14—C2—C3—S110.9 (4)C10A—C9—C10B—C1170.6 (5)
O2—S1—C3—C2137.4 (2)C9—C10B—C11—C1224.6 (13)
C20—S1—C3—C2112.8 (3)C9—C10B—C11—C10A70.6 (5)
O2—S1—C3—C834.9 (3)C9—C10A—C11—C1222.9 (7)
C20—S1—C3—C874.9 (3)C9—C10A—C11—C10B70.6 (5)
C8—C4—C5—C62.3 (4)C10B—C11—C12—C1333.3 (9)
C8—C4—C5—C9173.6 (3)C10A—C11—C12—C132.6 (6)
C4—C5—C6—C71.1 (5)C5—C9—C13—C12168.4 (3)
C9—C5—C6—C7174.9 (3)C10A—C9—C13—C1242.3 (4)
O1—C1—C7—C6177.9 (3)C10B—C9—C13—C1212.7 (9)
C8—C1—C7—C61.3 (4)C11—C12—C13—C927.9 (4)
C5—C6—C7—C10.7 (5)C3—C2—C14—C1928.7 (5)
O1—C1—C8—C4179.2 (2)O1—C2—C14—C19147.7 (3)
C7—C1—C8—C40.1 (4)C3—C2—C14—C15153.4 (3)
O1—C1—C8—C30.3 (3)O1—C2—C14—C1530.2 (3)
C7—C1—C8—C3179.0 (3)C19—C14—C15—C160.7 (4)
C5—C4—C8—C11.7 (4)C2—C14—C15—C16178.7 (3)
C5—C4—C8—C3176.7 (3)C14—C15—C16—F1178.7 (3)
C2—C3—C8—C10.4 (3)C14—C15—C16—C170.2 (4)
S1—C3—C8—C1173.1 (2)F1—C16—C17—C18178.4 (3)
C2—C3—C8—C4178.2 (3)C15—C16—C17—C180.5 (5)
S1—C3—C8—C48.3 (5)C16—C17—C18—C190.2 (5)
C4—C5—C9—C1317.8 (5)C17—C18—C19—C141.1 (5)
C6—C5—C9—C13166.4 (3)C15—C14—C19—C181.4 (4)
C4—C5—C9—C10A138.2 (5)C2—C14—C19—C18179.2 (3)
C6—C5—C9—C10A45.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3/C8/O1 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.952.523.326 (4)143
C20—H20B···O2i0.982.473.279 (4)140
C9—H9A···Cg1ii1.002.763.626 (4)145
C15—H15···Cg2iii0.952.943.461 (4)116
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H19FO2S
Mr342.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.1024 (3), 25.3030 (11), 10.6840 (5)
β (°) 90.231 (1)
V3)1649.69 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.919, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
13224, 2905, 2568
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.165, 1.02
No. of reflections2905
No. of parameters228
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.35, 0.55

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C3/C8/O1 furan ring and the C2–C7 benzene ring, respectively.
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.952.523.326 (4)142.6
C20—H20B···O2i0.982.473.279 (4)140.2
C9—H9A···Cg1ii1.002.763.626 (4)145.4
C15—H15···Cg2iii0.952.943.461 (4)116.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y, z; (iii) x+1, y, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2591.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds