metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris[hexa­amminecobalt(III)] bis­­[tri­oxalato­cobaltate(II)] chloride dodeca­hydrate

aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Advanced Materials of Tropical Island Resources, Hainan University, Haikou 570228, People's Republic of China, and bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: panqinhe@163.com

(Received 18 May 2012; accepted 11 June 2012; online 16 June 2012)

The title compound, [CoIII(NH3)6]3[CoII(C2O4)3]2Cl·12H2O, was synthesized under hydro­thermal conditions. The asymmetric unit comprises two [Co(NH3)6]3+ cations, one located on a threefold axis and the other on a site of symmetry -3, a [Co(C2O4)3]4+ anion, located on a threefold axis, one sixth of a chloride anion [disordered over two sites, one threefold (site occupancy = 0.5) and the other -3 (site occupancy (0.25)] and two water molecules. Both CoIII centers are six-coordinated by NH3 mol­ecules, forming [Co(NH3)6]3+ octa­hedra, with Co—N distances in the range 1.958 (2)–1.977 (3) Å. The title structure gives the first example of the [Co(C2O4)3]4− anion, with the distorted octa­hedral environment of CoII center formed by six O atoms from three oxalate residues. The Co—O bond lengths are 2.0817 (18) to 2.0979 (18) Å. Multiple N—H⋯O, N—H⋯Cl and O—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into a three-dimensional network.

Related literature

For metal phosphates and germanates templated by metal complexes, see: Wang et al. (2003[Wang, Y., Yu, J. H. & Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089-4092.], 2006[Wang, Y., Yu, J. H. & Xu, R. R. (2006). Inorg. Chem. 45, 4764-4768.]); Pan et al. (2005[Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199-2202.], 2008[Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370-372.]). For our continued research inter­est, see: Pan et al. (2010a[Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453-457.],b[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.], 2011[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]). For a compound containing the [CoIII(NH3)6]3+ cation, see: Wu et al. (2012[Wu, Q., Du, C., Lv, Y., Chen, G. & Pan, Q. (2012). Acta Cryst. E68, i45-i46.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NH3)6][Co(C2O4)3]Cl·12H2O

  • Mr = 1381.02

  • Trigonal, [P \overline 3]

  • a = 12.2138 (4) Å

  • c = 9.9090 (8) Å

  • V = 1280.15 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.75 mm−1

  • T = 296 K

  • 0.30 × 0.15 × 0.15 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.737, Tmax = 0.769

  • 7736 measured reflections

  • 1923 independent reflections

  • 1514 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.108

  • S = 1.16

  • 1923 reflections

  • 115 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1′ 0.89 2.62 3.176 (15) 121
N1—H1A⋯O1i 0.89 2.27 3.055 (4) 147
N1—H1B⋯O2ii 0.89 2.40 2.950 (4) 120
N1—H1B⋯O2iii 0.89 2.52 3.151 (4) 128
N2—H2⋯O4iv 0.91 2.09 2.993 (3) 171
N2—H2A⋯O1W 0.91 2.18 3.047 (4) 160
N2—H2B⋯O2W 0.91 2.15 2.958 (3) 147
N3—H3⋯O3v 0.91 2.09 2.988 (3) 172
N3—H3A⋯O2W 0.91 2.19 3.051 (3) 157
N3—H3B⋯O1W 0.91 2.36 3.120 (4) 141
O1W—H1W⋯O1 0.87 2.13 2.971 (4) 162
O1W—H1WA⋯O1vi 0.87 2.32 2.973 (4) 132
O2W—H2W⋯O2vii 0.87 1.97 2.830 (3) 171
O2W—H2WA⋯O4viii 0.87 2.06 2.868 (3) 154
Symmetry codes: (i) -x+y, -x, z; (ii) y-1, -x+y, -z; (iii) x-1, y-1, z; (iv) -x+y+1, -x+1, z; (v) -y+1, x-y, z+1; (vi) x-y, x, -z+1; (vii) x, y, z+1; (viii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, more attention has been paid to employ transition metal complexes as templates for supramolecular structures, because they are versatile and can be made with a wide variety of shapes and charges. Up to now, transition metal cTris[hexaamminecobalt(III)] bis[trioxalatocobaltate(II)] chloride dodecahydrateomplexes have been introduced into the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003,2006), germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic structures by introducing transition metal complexes as templates (Pan et al., 2010a,b,2011). Unexpectedly, in the reaction of Co(OAc)2.4H2O, Co(NH3)6Cl3, and K2C2O4 the title compound, [CoIII(NH3)6]3[CoII(C2O4)3]2.Cl.12H2O, was obtained.

The title compound is composed of [Co(NH3)6]3+ cations, the counterions [Co(C2O4)3]4- and Cl- anions, and two water molecules, as shown in Figure 1. The crystal structure contains two CoIII centers, one is located on a threefold rotation axis, and the other is located at a 3 position. Each CoIII center is six-coordinated by NH3 molecules to form octahedral [Co(NH3)6]3+ cations, similar to that observed in [Co(NH3)6]2(NO3)Cl5 (Wu et al., 2012). The Co—N distances are in the range 1.958 (2)–1.977 (3) Å. The crystal structure also contains one CoII center, which is located on a threefold rotation axis. It is coordinted by six O atoms from three different oxalate residues to form [Co(C2O4)3]4- anion having a slightly distorted octahedral geometry, with the distances Co—O ranging from 2.0804 (17) to 2.0968 (17) Å. The Cl- anion is splitted into two positions, Cl1 and Cl1'. The [Co(III)(NH3)6]3+ cations, [Co(II)(C2O4)3]4- anions, Cl- anions, and water molecules form an extensive hydrogen-bonding network, with the distance of N—H···N hydrogen bonds of 2.751 (4) Å, the distance of N—H···Cl hydrogen bonds of 3.169 (9) Å, the distance of N—H···O hydrogen bonds in the range of 2.959 (3)–3.147 (3) Å, and the distance of O—H···O hydrogen bonds in the range of 2.829 (3)–2.973 (4) Å (Table 1).

Related literature top

For metal phosphates and germanates templated by metal complexes, see: Wang et al. (2003, 2006); Pan et al. (2005, 2008). For our continued research interest, see: Pan et al. (2010a,b, 2011). For a compound containing the [Co(III)(NH3)6]3+ cation, see: Wu et al. (2012).

Experimental top

In a typical synthesis, a mixture of Co(OAc)2.4H2O (0.250 g), Co(NH3)6Cl3 (0.1 g), K2C2O4 (0.276 g), and H2O (5 ml), was placed into a 20 ml Teflon-lined reactor and heated to 100 °C for 3 days under autogenous pressure. Orange rod-like crystals were obtained.

Refinement top

All H atoms were positioned geometrically (N—H = 0.91 Å, O—H = 0.87 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

Recently, more attention has been paid to employ transition metal complexes as templates for supramolecular structures, because they are versatile and can be made with a wide variety of shapes and charges. Up to now, transition metal cTris[hexaamminecobalt(III)] bis[trioxalatocobaltate(II)] chloride dodecahydrateomplexes have been introduced into the synthesis of various open-framework materials, including metal phosphates (Wang et al., 2003,2006), germanates (Pan et al., 2005,2008). Our continued interest has been focused on the synthesis of microporous open-framework metal-organic structures by introducing transition metal complexes as templates (Pan et al., 2010a,b,2011). Unexpectedly, in the reaction of Co(OAc)2.4H2O, Co(NH3)6Cl3, and K2C2O4 the title compound, [CoIII(NH3)6]3[CoII(C2O4)3]2.Cl.12H2O, was obtained.

The title compound is composed of [Co(NH3)6]3+ cations, the counterions [Co(C2O4)3]4- and Cl- anions, and two water molecules, as shown in Figure 1. The crystal structure contains two CoIII centers, one is located on a threefold rotation axis, and the other is located at a 3 position. Each CoIII center is six-coordinated by NH3 molecules to form octahedral [Co(NH3)6]3+ cations, similar to that observed in [Co(NH3)6]2(NO3)Cl5 (Wu et al., 2012). The Co—N distances are in the range 1.958 (2)–1.977 (3) Å. The crystal structure also contains one CoII center, which is located on a threefold rotation axis. It is coordinted by six O atoms from three different oxalate residues to form [Co(C2O4)3]4- anion having a slightly distorted octahedral geometry, with the distances Co—O ranging from 2.0804 (17) to 2.0968 (17) Å. The Cl- anion is splitted into two positions, Cl1 and Cl1'. The [Co(III)(NH3)6]3+ cations, [Co(II)(C2O4)3]4- anions, Cl- anions, and water molecules form an extensive hydrogen-bonding network, with the distance of N—H···N hydrogen bonds of 2.751 (4) Å, the distance of N—H···Cl hydrogen bonds of 3.169 (9) Å, the distance of N—H···O hydrogen bonds in the range of 2.959 (3)–3.147 (3) Å, and the distance of O—H···O hydrogen bonds in the range of 2.829 (3)–2.973 (4) Å (Table 1).

For metal phosphates and germanates templated by metal complexes, see: Wang et al. (2003, 2006); Pan et al. (2005, 2008). For our continued research interest, see: Pan et al. (2010a,b, 2011). For a compound containing the [Co(III)(NH3)6]3+ cation, see: Wu et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of title compound. Ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-y, x-y, z; (ii) 1-x+y, 1 - x, z; (iii) -x, -y, 1 - z; (iv) -x + y, -x, z; (v) -y, x-y, z; (vi) -x, -y, -z; (vii) y, -x + y, -z; (viii) x-y, x, -z.
Tris[hexaamminecobalt(III)] bis[trioxalatocobaltate(II)] chloride dodecahydrate top
Crystal data top
[Co(NH3)6][Co(C2O4)3]Cl·12H2ODx = 1.791 Mg m3
Mr = 1381.02Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 7736 reflections
Hall symbol: -P 3θ = 2.1–27.2°
a = 12.2138 (4) ŵ = 1.75 mm1
c = 9.9090 (8) ÅT = 296 K
V = 1280.15 (12) Å3Rod, orange
Z = 10.30 × 0.15 × 0.15 mm
F(000) = 716
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1923 independent reflections
Radiation source: fine-focus sealed tube1514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 5.00 pixels mm-1θmax = 27.2°, θmin = 2.1°
φ and ω scansh = 815
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1514
Tmin = 0.737, Tmax = 0.769l = 1212
7736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6892P]
where P = (Fo2 + 2Fc2)/3
1923 reflections(Δ/σ)max = 0.011
115 parametersΔρmax = 0.61 e Å3
1 restraintΔρmin = 1.09 e Å3
Crystal data top
[Co(NH3)6][Co(C2O4)3]Cl·12H2OZ = 1
Mr = 1381.02Mo Kα radiation
Trigonal, P3µ = 1.75 mm1
a = 12.2138 (4) ÅT = 296 K
c = 9.9090 (8) Å0.30 × 0.15 × 0.15 mm
V = 1280.15 (12) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1923 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1514 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 0.769Rint = 0.030
7736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.108H-atom parameters constrained
S = 1.16Δρmax = 0.61 e Å3
1923 reflectionsΔρmin = 1.09 e Å3
115 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.66670.33330.14192 (6)0.02287 (18)
Co20.66670.33330.64732 (5)0.02393 (18)
Co30.00000.00000.00000.0646 (5)
Cl10.00000.00000.50000.085 (5)0.498 (19)
Cl1'0.00000.00000.3949 (17)0.118 (4)0.251 (9)
O10.3041 (2)0.0971 (2)0.2657 (2)0.0530 (6)
O20.6796 (2)0.65788 (19)0.0164 (2)0.0454 (6)
O30.64285 (18)0.45991 (18)0.02214 (18)0.0311 (4)
O40.50524 (17)0.24996 (18)0.26488 (18)0.0291 (4)
N10.1492 (2)0.0618 (3)0.1172 (4)0.0725 (11)
H1A0.14360.10750.18400.087*
H1B0.21870.10960.06920.087*
H1C0.15280.00370.15140.087*
N20.6170 (2)0.4327 (2)0.5344 (2)0.0328 (5)
H2B0.62320.49990.58080.039*
H2A0.53330.38790.51320.039*
H20.66260.45990.45680.039*
N30.5188 (2)0.2924 (2)0.7604 (2)0.0307 (5)
H3B0.44360.24490.71750.037*
H3A0.52080.36590.78150.037*
H30.51850.25140.83720.037*
C10.4097 (3)0.1551 (3)0.2134 (3)0.0310 (6)
C20.6835 (2)0.5688 (2)0.0718 (3)0.0288 (6)
O1W0.3354 (2)0.2406 (3)0.5187 (3)0.0747 (9)
H1WA0.26440.21520.56120.090*
H1W0.32340.18530.45670.090*
O2W0.5721 (2)0.5645 (2)0.7595 (2)0.0523 (6)
H2WA0.54340.61130.72650.063*
H2W0.59700.59010.84160.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0244 (2)0.0244 (2)0.0198 (3)0.01220 (11)0.0000.000
Co20.0275 (2)0.0275 (2)0.0167 (3)0.01377 (12)0.0000.000
Co30.0176 (3)0.0176 (3)0.1585 (15)0.00881 (16)0.0000.000
Cl10.062 (2)0.062 (2)0.131 (13)0.0310 (12)0.0000.000
Cl1'0.148 (7)0.148 (7)0.060 (8)0.074 (4)0.0000.000
O10.0294 (11)0.0621 (15)0.0463 (13)0.0069 (10)0.0097 (10)0.0024 (11)
O20.0507 (13)0.0307 (11)0.0548 (14)0.0203 (10)0.0105 (11)0.0070 (9)
O30.0394 (11)0.0309 (10)0.0263 (10)0.0201 (9)0.0026 (8)0.0002 (8)
O40.0269 (9)0.0335 (10)0.0246 (9)0.0133 (8)0.0009 (7)0.0008 (7)
N10.0262 (14)0.0270 (14)0.164 (4)0.0127 (12)0.0017 (18)0.0026 (18)
N20.0411 (13)0.0394 (13)0.0220 (11)0.0232 (11)0.0011 (10)0.0031 (9)
N30.0322 (12)0.0354 (12)0.0251 (11)0.0172 (10)0.0016 (9)0.0010 (9)
C10.0286 (14)0.0331 (14)0.0308 (15)0.0150 (12)0.0000 (11)0.0026 (11)
C20.0260 (13)0.0287 (13)0.0307 (14)0.0129 (11)0.0032 (11)0.0031 (11)
O1W0.0478 (15)0.107 (2)0.0662 (18)0.0367 (16)0.0013 (13)0.0213 (17)
O2W0.0805 (18)0.0623 (15)0.0407 (13)0.0555 (15)0.0056 (12)0.0047 (11)
Geometric parameters (Å, º) top
Co1—O3i2.0817 (18)Cl1'—Cl1'viii2.08 (3)
Co1—O3ii2.0817 (18)O1—C11.233 (3)
Co1—O32.0817 (18)O2—C21.240 (3)
Co1—O4ii2.0979 (18)O3—C21.264 (3)
Co1—O4i2.0979 (18)O4—C11.270 (3)
Co1—O42.0979 (18)N1—H1A0.8900
Co2—N2i1.957 (2)N1—H1B0.8900
Co2—N2ii1.957 (2)N1—H1C0.8900
Co2—N21.957 (2)N2—H2B0.9101
Co2—N3ii1.966 (2)N2—H2A0.9100
Co2—N3i1.966 (2)N2—H20.9100
Co2—N31.966 (2)N3—H3B0.9100
Co3—N1iii1.965 (3)N3—H3A0.9099
Co3—N1iv1.965 (3)N3—H30.9100
Co3—N1v1.965 (3)C1—C2ii1.553 (4)
Co3—N11.965 (3)C2—C1i1.553 (4)
Co3—N1vi1.965 (3)O1W—H1WA0.8700
Co3—N1vii1.965 (3)O1W—H1W0.8700
Cl1—Cl1'viii1.041 (17)O2W—H2WA0.8699
Cl1—Cl1'1.041 (17)O2W—H2W0.8700
O3i—Co1—O3ii90.71 (7)N1iv—Co3—N1vi91.36 (15)
O3i—Co1—O390.71 (7)N1v—Co3—N1vi180.0 (2)
O3ii—Co1—O390.71 (7)N1—Co3—N1vi88.64 (15)
O3i—Co1—O4ii78.45 (7)N1iii—Co3—N1vii91.36 (15)
O3ii—Co1—O4ii104.20 (7)N1iv—Co3—N1vii88.64 (15)
O3—Co1—O4ii161.53 (7)N1v—Co3—N1vii88.64 (15)
O3i—Co1—O4i104.20 (7)N1—Co3—N1vii180.0 (2)
O3ii—Co1—O4i161.53 (7)N1vi—Co3—N1vii91.36 (15)
O3—Co1—O4i78.45 (7)Cl1'viii—Cl1—Cl1'180.000 (2)
O4ii—Co1—O4i89.66 (7)C2—O3—Co1115.64 (17)
O3i—Co1—O4161.53 (7)C1—O4—Co1114.93 (16)
O3ii—Co1—O478.45 (7)Co3—N1—H1A109.5
O3—Co1—O4104.20 (7)Co3—N1—H1B109.5
O4ii—Co1—O489.66 (7)H1A—N1—H1B109.5
O4i—Co1—O489.66 (7)Co3—N1—H1C109.5
N2i—Co2—N2ii90.56 (10)H1A—N1—H1C109.5
N2i—Co2—N290.56 (10)H1B—N1—H1C109.5
N2ii—Co2—N290.56 (10)Co2—N2—H2B111.0
N2i—Co2—N3ii91.47 (10)Co2—N2—H2A111.2
N2ii—Co2—N3ii87.31 (10)H2B—N2—H2A102.8
N2—Co2—N3ii177.07 (9)Co2—N2—H2112.7
N2i—Co2—N3i87.31 (10)H2B—N2—H2109.7
N2ii—Co2—N3i177.07 (9)H2A—N2—H2108.8
N2—Co2—N3i91.47 (10)Co2—N3—H3B113.7
N3ii—Co2—N3i90.74 (9)Co2—N3—H3A108.2
N2i—Co2—N3177.07 (9)H3B—N3—H3A104.8
N2ii—Co2—N391.47 (10)Co2—N3—H3111.6
N2—Co2—N387.31 (10)H3B—N3—H3108.4
N3ii—Co2—N390.74 (9)H3A—N3—H3109.9
N3i—Co2—N390.74 (9)O1—C1—O4125.1 (3)
N1iii—Co3—N1iv180.0 (2)O1—C1—C2ii119.5 (2)
N1iii—Co3—N1v91.36 (15)O4—C1—C2ii115.4 (2)
N1iv—Co3—N1v88.64 (15)O2—C2—O3125.7 (3)
N1iii—Co3—N188.64 (15)O2—C2—C1i118.7 (2)
N1iv—Co3—N191.36 (15)O3—C2—C1i115.5 (2)
N1v—Co3—N191.36 (15)H1WA—O1W—H1W108.3
N1iii—Co3—N1vi88.64 (15)H2WA—O2W—H2W107.4
Symmetry codes: (i) x+y+1, x+1, z; (ii) y+1, xy, z; (iii) x+y, x, z; (iv) xy, x, z; (v) y, x+y, z; (vi) y, xy, z; (vii) x, y, z; (viii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.892.623.176 (15)121
N1—H1A···O1iii0.892.273.055 (4)147
N1—H1B···O2ix0.892.402.950 (4)120
N1—H1B···O2x0.892.523.151 (4)128
N2—H2···O4i0.912.092.993 (3)171
N2—H2A···O1W0.912.183.047 (4)160
N2—H2B···O2W0.912.152.958 (3)147
N3—H3···O3xi0.912.092.988 (3)172
N3—H3A···O2W0.912.193.051 (3)157
N3—H3B···O1W0.912.363.120 (4)141
O1W—H1W···O10.872.132.971 (4)162
O1W—H1WA···O1xii0.872.322.973 (4)132
O2W—H2W···O2xiii0.871.972.830 (3)171
O2W—H2WA···O4xiv0.872.062.868 (3)154
Symmetry codes: (i) x+y+1, x+1, z; (iii) x+y, x, z; (ix) y1, x+y, z; (x) x1, y1, z; (xi) y+1, xy, z+1; (xii) xy, x, z+1; (xiii) x, y, z+1; (xiv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(NH3)6][Co(C2O4)3]Cl·12H2O
Mr1381.02
Crystal system, space groupTrigonal, P3
Temperature (K)296
a, c (Å)12.2138 (4), 9.9090 (8)
V3)1280.15 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.75
Crystal size (mm)0.30 × 0.15 × 0.15
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.737, 0.769
No. of measured, independent and
observed [I > 2σ(I)] reflections
7736, 1923, 1514
Rint0.030
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.108, 1.16
No. of reflections1923
No. of parameters115
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 1.09

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1'0.892.623.176 (15)121.4
N1—H1A···O1i0.892.273.055 (4)146.6
N1—H1B···O2ii0.892.402.950 (4)120.1
N1—H1B···O2iii0.892.523.151 (4)128.4
N2—H2···O4iv0.912.092.993 (3)170.7
N2—H2A···O1W0.912.183.047 (4)160.1
N2—H2B···O2W0.912.152.958 (3)146.8
N3—H3···O3v0.912.092.988 (3)171.6
N3—H3A···O2W0.912.193.051 (3)157.0
N3—H3B···O1W0.912.363.120 (4)141.3
O1W—H1W···O10.872.132.971 (4)162.3
O1W—H1WA···O1vi0.872.322.973 (4)132.2
O2W—H2W···O2vii0.871.972.830 (3)171.3
O2W—H2WA···O4viii0.872.062.868 (3)154.4
Symmetry codes: (i) x+y, x, z; (ii) y1, x+y, z; (iii) x1, y1, z; (iv) x+y+1, x+1, z; (v) y+1, xy, z+1; (vi) xy, x, z+1; (vii) x, y, z+1; (viii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Program for New Century Excellent Talents in Universities (NCET-11–0929), the National Natural Science Foundation of China (No. 21101047), the Natural Science Foundation of Hainan Province (No. 211010) and the Priming Scientific Research Foundation of Hainan University (No. kyqd1051).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Microporous Mesoporous Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.  CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2006). Inorg. Chem. 45, 4764–4768.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, Q., Du, C., Lv, Y., Chen, G. & Pan, Q. (2012). Acta Cryst. E68, i45–i46.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds