organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,6-Bis[(2,2′:6′,2′′-terpyridin-4′-yl)­­oxy]hexa­ne

aUniversity of KwaZulu-Natal, School of Chemistry and Physics, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
*Correspondence e-mail: 207513620@stu.ukzn.ac.za

(Received 14 June 2012; accepted 26 June 2012; online 30 June 2012)

The mol­ecule of the title compound, C36H32N6O2, lies about an inversion center, located at the mid-point of the central C—C bond of the diether bridge. The terminal pyridine rings form dihedral angles of 4.67 (7) and 26.23 (7)° with the central ring. In the crystal, weak C—H⋯N and C—H⋯O inter­actions link the mol­ecules into a three-dimensional network.

Related literature

For the structure of the unsubstituted 2,2′:6′,2"-terpyridine, see: Bessel et al. (1992[Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.]). For the structure of the precursor to the title compound, 4′-chloro-2,2′:6′,2"-terpyridine, see: Beves et al. (2006[Beves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497-o2498.]). For the structure of the 1,4-bis­[(2,2′:6′,2"-terpyridin-4′-yl)­oxy]-butane, see: Akerman et al. (2011[Akerman, M. P., Grimmer, C. D., Nikolayenko, V. I. & Reddy, D. (2011). Acta Cryst. E67, o3478-o3479.]). For a full review of functionalized 2,2′:6′,2"-terpyridine complexes, see: Fallahpour (2003[Fallahpour, R. A. (2003). Synthesis, 2, 155-184.]); Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. 6, 947-961.]). For a comprehensive summary of platinum(II) terpyridine complexes, see: Newkome et al. (2008[Newkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834-1895.]). For the structure of bis­(2,2′:6′,2"-terpyrid­yl)ether, see: Constable et al. (1995[Constable, E. C., Thompson, A. M., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.]). For the structure of related bis­(terpyridine) compounds, linked by an alk­oxy spacer, see: Constable et al. (2006[Constable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831-1843.]). For the synthetic procedure, see: Constable et al. (2005[Constable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259-2267.]); Van der Schilden (2006[Van der Schilden, K. (2006). PhD thesis, Leiden University, The Netherlands.]).

[Scheme 1]

Experimental

Crystal data
  • C36H32N6O2

  • Mr = 580.7

  • Orthorhombic, P b c a

  • a = 15.139 (5) Å

  • b = 11.428 (5) Å

  • c = 16.760 (5) Å

  • V = 2899.6 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur 2 CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.967, Tmax = 0.983

  • 20354 measured reflections

  • 2859 independent reflections

  • 2098 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 0.94

  • 2859 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Short intermolecular contacts (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Oi 0.95 2.65 3.575 (2) 164
C1—H1⋯N3ii 0.95 2.71 3.654 (2) 174
C4—H4⋯N1iii 0.95 2.65 3.402 (2) 136
C2—H2⋯Oii 0.95 2.69 3.627 (2) 168
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is the second in a series of ligands developed in an effort to harness multifunctional activity. Coordination of these ligands to platinum(II) should enable covalent binding of DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the orthorhombic space group Pbca, with a half molecule in the asymmetric unit and Z = 4. Crystallographically imposed inversion symmetry relates two halves of the ligand. The inversion center is located at the mid-point of the diol linkage. The three pyridine rings adopt a trans, trans conformation. The same configuration is observed in the parent 4'-chloro-2,2': 6',2''- terpyridine (Beves et al., 2006) and is a common feature of uncoordinated terpyridine ligands in general (Akerman et al., 2011; Bessel et al., 1992).

The central pyridine ring of the terpyridine fragment lie in the same plane as the bridging chain. The terminal pyridine rings are, however, canted relative to the central ring. The C7–C6–C5–N1 torsion angle is -25.8 (2)°, while the C9–C10–C11–N3 torsion angle is 4.9 (2)° (Fig. 1). The large torsion angle formed by one of terminal pyridine groups with the central ring is seemingly to allow for interaction between the pyridine N1 atom and the hydrogen atom H4 of an adjacent molecule, with the distance of 2.65 Å. There are also other short contacts C—H···O and C—H···N, ranging from 2.65 to 2.71 Å. These contacts link the molecules into a herringbone pattern (Figure 2). There is no indication of meaningful π··· π or C–H··· π interactions in the lattice, which are often observed in terpyridine structures (Beves et al. 2006).

Related literature top

For the structure of the unsubstituted 2,2':6',2"-terpyridine, see: Bessel et al. (1992). For the structure of the precursor to the title compound, 4'-chloro-2,2':6',2"-terpyridine, see: Beves et al. (2006). For the structure of the 1,4-bis[(2,2':6',2"-terpyridin-4'-yl)oxy]-butane, see: Akerman et al. (2011). For a full review of functionalized 2,2':6',2"-terpyridine complexes, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive summary of platinum(II) terpyridine complexes, see: Newkome et al. (2008). For the structure of bis(2,2':6',2"-terpyridyl)ether, see: Constable et al. (1995). For the structure of related bis(terpyridine) compounds, linked by an alkoxy spacer, see: Constable et al. (2006). For the synthetic procedure, see: Constable et al. (2005); Van der Schilden (2006).

Experimental top

The title compound was prepared by an adaptation of a previously described method (Van der Schilden, 2006; Constable et al., 2005). Hexanediol (1.13 mmol) was added to a suspension of ground potassium hydroxide (6.69 mmol) in DMSO (30 ml). The solution was heated to reflux for 1 h after which 4'-chloro-2,2':6',2''-terpyridine (2.23 mmol) was added. The mixture was again brought to reflux for an additional 24 h. After cooling to room temperature, the brown mixture was added to cold water (100 ml). The resulting off-white precipitate was filtered, rinsed with cold ethanol and air dried. Single crystals were grown by slow liquid diffusion of n-hexane into a chloroform solution of the compound.

Refinement top

All non-hydrogen atoms were located in the difference Fourier map and refined anisotropically. The positions of all hydrogen atoms were calculated using the riding model with C—H(aromatic) and C—H(methylene) distances of 0.93 Å and Uiso = 1.2 Ueq.

Structure description top

The title compound is the second in a series of ligands developed in an effort to harness multifunctional activity. Coordination of these ligands to platinum(II) should enable covalent binding of DNA through both metal centres, thus increasing the number of adducts formed. Furthermore the presence of the flexible diol derived linkage will provide the complex with the potential to engage in long range interactions with DNA.

The ligand crystallized in the orthorhombic space group Pbca, with a half molecule in the asymmetric unit and Z = 4. Crystallographically imposed inversion symmetry relates two halves of the ligand. The inversion center is located at the mid-point of the diol linkage. The three pyridine rings adopt a trans, trans conformation. The same configuration is observed in the parent 4'-chloro-2,2': 6',2''- terpyridine (Beves et al., 2006) and is a common feature of uncoordinated terpyridine ligands in general (Akerman et al., 2011; Bessel et al., 1992).

The central pyridine ring of the terpyridine fragment lie in the same plane as the bridging chain. The terminal pyridine rings are, however, canted relative to the central ring. The C7–C6–C5–N1 torsion angle is -25.8 (2)°, while the C9–C10–C11–N3 torsion angle is 4.9 (2)° (Fig. 1). The large torsion angle formed by one of terminal pyridine groups with the central ring is seemingly to allow for interaction between the pyridine N1 atom and the hydrogen atom H4 of an adjacent molecule, with the distance of 2.65 Å. There are also other short contacts C—H···O and C—H···N, ranging from 2.65 to 2.71 Å. These contacts link the molecules into a herringbone pattern (Figure 2). There is no indication of meaningful π··· π or C–H··· π interactions in the lattice, which are often observed in terpyridine structures (Beves et al. 2006).

For the structure of the unsubstituted 2,2':6',2"-terpyridine, see: Bessel et al. (1992). For the structure of the precursor to the title compound, 4'-chloro-2,2':6',2"-terpyridine, see: Beves et al. (2006). For the structure of the 1,4-bis[(2,2':6',2"-terpyridin-4'-yl)oxy]-butane, see: Akerman et al. (2011). For a full review of functionalized 2,2':6',2"-terpyridine complexes, see: Fallahpour (2003); Heller & Schubert (2003). For a comprehensive summary of platinum(II) terpyridine complexes, see: Newkome et al. (2008). For the structure of bis(2,2':6',2"-terpyridyl)ether, see: Constable et al. (1995). For the structure of related bis(terpyridine) compounds, linked by an alkoxy spacer, see: Constable et al. (2006). For the synthetic procedure, see: Constable et al. (2005); Van der Schilden (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O and C—H···N contacts responsible for the three-dimensional network in crystals of the title compound, viewed down the b axis.
1,6-Bis[(2,2':6',2''-terpyridin-4'-yl)oxy]hexane top
Crystal data top
C36H32N6O2F(000) = 1224
Mr = 580.7Dx = 1.330 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2098 reflections
a = 15.139 (5) Åθ = 3.2–26.0°
b = 11.428 (5) ŵ = 0.09 mm1
c = 16.760 (5) ÅT = 100 K
V = 2899.6 (18) Å3Needle, colourless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2859 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scans at fixed θ anglesθmax = 26.1°, θmin = 3.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1818
Tmin = 0.967, Tmax = 0.983k = 1214
20354 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0644P)2 + 0.P]
where P = (Fo2 + 2Fc2)/3
2859 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C36H32N6O2V = 2899.6 (18) Å3
Mr = 580.7Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 15.139 (5) ŵ = 0.09 mm1
b = 11.428 (5) ÅT = 100 K
c = 16.760 (5) Å0.40 × 0.20 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur 2 CCD
diffractometer
2859 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2098 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.983Rint = 0.064
20354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.94Δρmax = 0.17 e Å3
2859 reflectionsΔρmin = 0.26 e Å3
199 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33229 (9)0.02089 (12)0.29739 (9)0.0207 (3)
H10.36000.04520.27380.025*
C20.34439 (10)0.13004 (12)0.26216 (9)0.0251 (4)
H20.37900.13790.21520.030*
C30.30541 (10)0.22649 (12)0.29648 (9)0.0242 (3)
H30.31240.30190.27340.029*
C40.25569 (9)0.21180 (12)0.36541 (8)0.0203 (3)
H40.22880.27700.39070.024*
C50.24615 (9)0.10061 (12)0.39646 (8)0.0168 (3)
C60.19174 (9)0.07961 (12)0.46867 (8)0.0165 (3)
C70.15172 (9)0.02860 (12)0.48099 (8)0.0176 (3)
H70.16080.09150.44480.021*
C80.09834 (9)0.04198 (12)0.54744 (8)0.0171 (3)
C90.08764 (9)0.05263 (12)0.59918 (8)0.0181 (3)
H90.05060.04620.64470.022*
C100.13161 (9)0.15523 (12)0.58311 (8)0.0169 (3)
C110.12409 (9)0.25867 (12)0.63712 (8)0.0183 (3)
C120.16340 (10)0.36471 (12)0.61690 (9)0.0210 (3)
H120.19640.37250.56900.025*
C130.15333 (10)0.45889 (13)0.66836 (9)0.0249 (4)
H130.17880.53270.65590.030*
C140.10571 (10)0.44385 (13)0.73784 (9)0.0251 (4)
H140.09720.50710.77380.030*
C150.07083 (10)0.33492 (13)0.75376 (9)0.0248 (4)
H150.03980.32450.80250.030*
C160.06992 (9)0.24153 (11)0.51510 (9)0.0194 (3)
H16A0.13300.26420.51750.023*
H16B0.05540.22120.45920.023*
C170.01309 (10)0.34175 (11)0.54245 (9)0.0197 (3)
H17A0.04990.31920.53960.024*
H17B0.02720.36120.59860.024*
C180.02948 (9)0.44830 (11)0.48956 (9)0.0194 (3)
H18A0.01920.42630.43320.023*
H18B0.09200.47220.49480.023*
N10.28336 (8)0.00494 (10)0.36295 (7)0.0196 (3)
N20.18298 (8)0.17077 (9)0.51806 (7)0.0176 (3)
N30.07781 (8)0.24306 (10)0.70493 (7)0.0205 (3)
O0.05447 (6)0.14203 (8)0.56613 (6)0.0204 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0226 (8)0.0216 (8)0.0178 (7)0.0008 (6)0.0034 (6)0.0049 (6)
C20.0274 (9)0.0297 (9)0.0183 (8)0.0054 (6)0.0059 (6)0.0001 (7)
C30.0310 (8)0.0187 (7)0.0230 (8)0.0061 (6)0.0010 (7)0.0019 (6)
C40.0230 (8)0.0180 (7)0.0198 (7)0.0019 (6)0.0002 (6)0.0025 (6)
C50.0176 (7)0.0190 (7)0.0137 (7)0.0016 (6)0.0026 (6)0.0010 (6)
C60.0175 (7)0.0164 (7)0.0155 (7)0.0008 (5)0.0018 (6)0.0011 (6)
C70.0202 (8)0.0157 (7)0.0168 (7)0.0005 (5)0.0006 (6)0.0014 (6)
C80.0175 (7)0.0149 (7)0.0189 (7)0.0013 (5)0.0029 (6)0.0024 (6)
C90.0203 (8)0.0199 (7)0.0141 (7)0.0011 (6)0.0001 (6)0.0000 (6)
C100.0173 (7)0.0184 (7)0.0150 (7)0.0019 (5)0.0017 (6)0.0000 (6)
C110.0185 (7)0.0194 (7)0.0172 (7)0.0015 (6)0.0016 (6)0.0023 (6)
C120.0228 (8)0.0210 (8)0.0191 (8)0.0016 (6)0.0006 (6)0.0015 (6)
C130.0268 (8)0.0179 (8)0.0299 (8)0.0012 (6)0.0026 (7)0.0035 (6)
C140.0265 (8)0.0243 (8)0.0246 (8)0.0020 (6)0.0016 (7)0.0090 (7)
C150.0251 (8)0.0284 (8)0.0209 (8)0.0028 (7)0.0015 (7)0.0047 (7)
C160.0237 (7)0.0146 (7)0.0198 (7)0.0008 (6)0.0020 (6)0.0018 (6)
C170.0228 (8)0.0164 (7)0.0199 (8)0.0006 (6)0.0014 (6)0.0002 (6)
C180.0212 (8)0.0163 (7)0.0208 (7)0.0008 (6)0.0023 (6)0.0004 (6)
N10.0215 (6)0.0190 (6)0.0184 (6)0.0003 (5)0.0008 (5)0.0016 (5)
N20.0205 (6)0.0165 (6)0.0159 (6)0.0007 (5)0.0010 (5)0.0004 (5)
N30.0226 (6)0.0214 (6)0.0175 (6)0.0001 (5)0.0023 (5)0.0025 (5)
O0.0262 (6)0.0146 (5)0.0203 (5)0.0041 (4)0.0044 (4)0.0012 (4)
Geometric parameters (Å, º) top
C1—N11.3374 (18)C10—N21.3508 (18)
C1—C21.392 (2)C10—C111.4934 (19)
C2—C31.377 (2)C11—N31.3467 (18)
C3—C41.389 (2)C11—C121.391 (2)
C4—C51.380 (2)C12—C131.388 (2)
C5—N11.3527 (18)C13—C141.380 (2)
C5—C61.4833 (19)C14—C151.378 (2)
C6—N21.3374 (18)C15—N31.3354 (18)
C6—C71.3917 (19)C16—O1.4422 (17)
C7—C81.3845 (19)C16—C171.5031 (19)
C8—O1.3581 (17)C17—C181.527 (2)
C8—C91.395 (2)C18—C18i1.521 (3)
C9—C101.374 (2)
N1—C1—C2122.88 (13)N2—C10—C11115.45 (12)
C3—C2—C1118.96 (14)C9—C10—C11121.29 (12)
C2—C3—C4118.91 (13)N3—C11—C12122.87 (13)
C5—C4—C3118.73 (13)N3—C11—C10116.54 (12)
N1—C5—C4122.98 (13)C12—C11—C10120.59 (13)
N1—C5—C6116.09 (12)C13—C12—C11118.48 (14)
C4—C5—C6120.91 (12)C14—C13—C12119.06 (14)
N2—C6—C7123.83 (13)C15—C14—C13118.38 (14)
N2—C6—C5115.77 (12)N3—C15—C14124.12 (14)
C7—C6—C5120.39 (12)O—C16—C17109.06 (11)
C8—C7—C6118.09 (13)C16—C17—C18109.71 (12)
O—C8—C7124.28 (12)C18i—C18—C17112.98 (15)
O—C8—C9116.87 (12)C1—N1—C5117.52 (12)
C7—C8—C9118.86 (13)C6—N2—C10117.06 (11)
C10—C9—C8118.87 (13)C15—N3—C11117.05 (12)
N2—C10—C9123.26 (13)C8—O—C16116.58 (11)
N1—C1—C2—C30.8 (2)N3—C11—C12—C131.0 (2)
C1—C2—C3—C40.4 (2)C10—C11—C12—C13178.92 (12)
C2—C3—C4—C50.9 (2)C11—C12—C13—C140.7 (2)
C3—C4—C5—N10.3 (2)C12—C13—C14—C150.7 (2)
C3—C4—C5—C6178.31 (13)C13—C14—C15—N32.1 (2)
N1—C5—C6—N2155.72 (12)O—C16—C17—C18179.36 (11)
C4—C5—C6—N225.62 (19)C16—C17—C18—C18i176.75 (15)
N1—C5—C6—C725.77 (19)C2—C1—N1—C51.4 (2)
C4—C5—C6—C7152.89 (13)C4—C5—N1—C10.9 (2)
N2—C6—C7—C81.3 (2)C6—C5—N1—C1179.51 (12)
C5—C6—C7—C8177.08 (12)C7—C6—N2—C100.4 (2)
C6—C7—C8—O179.13 (13)C5—C6—N2—C10178.08 (12)
C6—C7—C8—C90.5 (2)C9—C10—N2—C61.4 (2)
O—C8—C9—C10179.26 (12)C11—C10—N2—C6179.51 (12)
C7—C8—C9—C101.1 (2)C14—C15—N3—C111.8 (2)
C8—C9—C10—N22.1 (2)C12—C11—N3—C150.2 (2)
C8—C9—C10—C11178.83 (12)C10—C11—N3—C15179.86 (12)
N2—C10—C11—N3175.94 (12)C7—C8—O—C163.91 (19)
C9—C10—C11—N34.92 (19)C9—C8—O—C16176.42 (12)
N2—C10—C11—C124.17 (19)C17—C16—O—C8177.42 (11)
C9—C10—C11—C12174.98 (14)
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Oii0.952.653.575 (2)164
C1—H1···N3iii0.952.713.654 (2)174
C4—H4···N1iv0.952.653.402 (2)136
C2—H2···Oiii0.952.693.627 (2)168
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x+1/2, y, z1/2; (iv) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC36H32N6O2
Mr580.7
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)15.139 (5), 11.428 (5), 16.760 (5)
V3)2899.6 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur 2 CCD
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.967, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
20354, 2859, 2098
Rint0.064
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 0.94
No. of reflections2859
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.26

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Oi0.9502.6523.575 (2)164
C1—H1···N3ii0.9502.7083.654 (2)174
C4—H4···N1iii0.9492.6523.402 (2)136
C2—H2···Oii0.9502.6943.627 (2)168
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1/2, y, z1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

We wish to thank the Univeristy of Kwazulu-Natal for supporting this research by providing both funding and facilities.

References

First citationAkerman, M. P., Grimmer, C. D., Nikolayenko, V. I. & Reddy, D. (2011). Acta Cryst. E67, o3478–o3479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. & Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223–3228.  CSD CrossRef Web of Science Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Acta Cryst. E62, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationConstable, E. C., Chow, H. S., Housecroft, C. E., Neuburger, M. & Schaffner, S. (2006). Polyhedron, 25, 1831–1843.  Google Scholar
First citationConstable, E. C., Housecroft, C. E., Neuburger, M., Schaffner, S. & Smith, C. B. (2005). Dalton Trans. pp. 2259–2267.  Web of Science CSD CrossRef Google Scholar
First citationConstable, E. C., Thompson, A. M., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.  CrossRef CAS Web of Science Google Scholar
First citationFallahpour, R. A. (2003). Synthesis, 2, 155–184.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. 6, 947–961.  CrossRef Google Scholar
First citationNewkome, G. R., Eryazici, I. & Moorefield, C. N. (2008). Chem. Rev. 108, 1834–1895.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan der Schilden, K. (2006). PhD thesis, Leiden University, The Netherlands.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds