metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[N,N-bis­­(di­phenyl­phosphan­yl)cyclo­penta­namine-κ2P,P′]platinum(II) bis­­(tri­fluoro­methane­sulfonate)

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: EngelbrechtI@ufs.ac.za

(Received 25 October 2011; accepted 11 June 2012; online 16 June 2012)

The title compound, [Pt(C29H29NP2)2](CF3SO3)2, consists of a PtII atom, situated on an inversion centre, coordinated by two diphosphinoamine bidentate ligands and charge-balanced by two trifluoro­methane­sulfonate anions. The PtII atom has a distorted square-planar geometry defined by the four P atoms. The distortion is illustrated by the P—Pt—P bite angle of 70.31 (4)°. The geometry around the N atom deviates from a trigonal–planar geometry, evidenced by the P—N—P bite angle of 102.3 (2) °. The N atom is displaced by 0.114 (4) Å from the C/P/P plane. In order to coordinate, the orientation of the phenyl rings alters from a Cs conformation to a C2v conformation. The cyclo­pentane ring is slightly twisted: the puckering parameters are q2 = 0.420 (5) Å and φ = 26.5 (8) °. The trifluoro­methane­sulfonate anion displays a 0.511 (11):0.489 (11) positional disorder. Weak inter- and intra­molecular C—H⋯O hydrogen bonds influence the crystal packing.

Related literature

For related platinum(II) complexes, see: Farrar & Browning (1995[Farrar, D. G. & Browning, C. S. (1995). J. Chem. Soc. Dalton Trans. pp. 521-530.]); Dyson et al. (2004[Dyson, P. J., Fei, Z. & Scopelliti, R. (2004). Eur. J. Inorg. Chem. pp. 530-537.]); Cloete et al. (2010[Cloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51-m52.]); Engelbrecht et al. (2010a[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, m922-m923.],b[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, m994-m995.]). For diphosphinoamine (PNP) and other P-donor ligands, see: Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192-2198.]); Purcell et al. (1995[Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153-156.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.]); Otto & Roodt (2001[Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49-52.]); Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]); Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]); Engelbrecht et al. (2010c[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010c). Acta Cryst. E66, o2881.],d[Engelbrecht, I., Visser, H. G. & Roodt, A. (2010d). Acta Cryst. E66, o3322-o3323.], 2011[Engelbrecht, I., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, o2041-o2042.]). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004[Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679-1686.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.]); Booyens et al. (2007[Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508-5512.]); Ferreira et al. (2007[Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273-2275.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C29H29NP2)2](CF3SO3)2

  • Mr = 1400.18

  • Monoclinic, P 21 /c

  • a = 10.041 (5) Å

  • b = 13.662 (4) Å

  • c = 20.928 (5) Å

  • β = 93.916 (5)°

  • V = 2864.2 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.71 mm−1

  • T = 100 K

  • 0.19 × 0.18 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.627, Tmax = 0.671

  • 44370 measured reflections

  • 6894 independent reflections

  • 4869 reflections with I > 2σ(I)

  • Rint = 0.101

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.093

  • S = 1.02

  • 6894 reflections

  • 398 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 1.39 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯O3A 0.95 2.52 3.398 (9) 154
C26—H26⋯O1B 0.95 2.5 3.238 (6) 135
C34—H34⋯O3Ai 0.95 2.38 3.127 (10) 135
C45—H45⋯O3Aii 0.95 2.3 3.229 (9) 165
C15—H15⋯O3Aiii 0.95 2.47 3.420 (11) 178
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the title compound, [Pt(C29H29NP2)2](CF3SO3)2, all bond distances and angles fall within the range for similar complexes: Farrar et al., 1995; Dyson et al., 2004; Cloete et al., 2010; Engelbrecht et al., 2010a,b. Diphosphinoamine (PNP) and other P donor ligands (Keat et al., 1981; Purcell et al., 1995; Cotton et al., 1996; Otto & Roodt, 2001; Fei et al., 2003; Otto et al., 2005; Muller et al., 2008; Engelbrecht et al., 2010c,d;2011) with various substituents on both the P and N atoms form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al., 2007) and methoxycarbonylation (Ferreira et al., 2007).

The title compound (Figure 1) crystallizes with two trifluoromethanesulfonate anions with the PtII atom situated on an inversion centre. The square-planar geometry around the metal centre is severely distorted as illustrated by the P1–Pt–P2 angle of 70.33 (4) °. The coordinated P1—N1—P2 angle indicates a severe distortion from the ideal trigonal-planar angle expected at the sp2-hybridized nitrogen. The P1–N1–P2 angle of the un-coordinated ligand of 121.76 (9) ° decreases to 102.3 (2) ° to accommodate coordination to the platinum. The N atom is displaced by 0.114 (4) Å from the C1, P1, P2 plane, while the Pt atom is perfectly planar with the phosphorous atoms. The orientation of the phenyl rings changes from a Cs conformation when un-coordinated to a C2v conformation in the solid state in order to coordinated to the platinum.

For the coordinated ligand, the cyclopentane ring is twisted [q2 = 0.420 (5) Å, φ = 26.5 (8) °] (Cremer & Pople, 1975) with atom C2 deviating 0.645 (5) Å from the plane of the remaining four atoms. As for the un-coordinated ligand, (Engelbrecht et al., 2010d) the cyclopentane ring is in an envelope conformation [q2 = 0.398 (2) Å, φ = 78.5 (3) °] with C3A as flap, which lies 0.590 (2) Å from the plane of the remaining four atoms. The disordered component of the cyclopentane ring also has an envelope conformation [q2 = 0.379 (6) Å, φ = 319.7 (10) °] with C5B as flap, lying -0.528 (2) Å from the plane of the other four atoms.

The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.511 (11):0.489 (11). The crystal packing is influenced by inter- and intra-molecular hydrogen bonds (Figure 2, Table 1).

Related literature top

For related platinum(II) complexes, see: Farrar et al. (1995); Dyson et al. (2004); Cloete et al. (2010); Engelbrecht et al. (2010a,b). For diphosphinoamine (PNP) and other P-donor ligands, see: Keat et al. (1981); Purcell et al. (1995); Cotton et al. (1996); Otto & Roodt (2001); Fei et al. (2003); Otto et al. (2005); Muller et al. (2008); Engelbrecht et al. (2010c,d, 2011). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Ferreira et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

[Pt(cod)Cl2] (20 mg, 0.0535 mmol) (cod = 1,5-cyclooctadiene) dissolved in the minimum amount of dichloromethane was added in a rapid drop-wise manner to a solution of bis(diphenylphosphino)cyclopentylamine (50.87 mg, 0.112 mmol) and silvertriflate (27.5 mg, 0.107 mmol) dissolved in the minimum volume of dichloromethane-methanol (1:1). After stirring for 20 min, the solvent was removed completely under reduced pressure. Dichloromethane was added until no further dissolution of solid was evident. The resulting heterogeneous mixture was filtered through celite to remove the insoluble AgCl by-product. The colourless solid product was precipitated upon addition of methanol followed by a reduction in solvent volume under reduced pressure. The compound was isolated by filtration and washed with diethyl ether (10 cm3). Layering of a dichloromethane solution of the product with methanol gave colourless crystals, suitable for X-ray diffraction. (Yield: 60 mg, 74%)

Refinement top

The methine, methylene and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00, 0.99 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.00 Å from Pt1 and the deepest hole is situated 0.06 Å from P2. The residual electron-density features are probably a consequence of an imperfect absorption correction. The only way to secure a stable refinement with regards to the disordered anion was by adopting some atoms as isotropic. A series of EADP was used for neighbouring atoms and DFIX was applied in some cases to ensure stable refinement.

Structure description top

In the title compound, [Pt(C29H29NP2)2](CF3SO3)2, all bond distances and angles fall within the range for similar complexes: Farrar et al., 1995; Dyson et al., 2004; Cloete et al., 2010; Engelbrecht et al., 2010a,b. Diphosphinoamine (PNP) and other P donor ligands (Keat et al., 1981; Purcell et al., 1995; Cotton et al., 1996; Otto & Roodt, 2001; Fei et al., 2003; Otto et al., 2005; Muller et al., 2008; Engelbrecht et al., 2010c,d;2011) with various substituents on both the P and N atoms form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al., 2007) and methoxycarbonylation (Ferreira et al., 2007).

The title compound (Figure 1) crystallizes with two trifluoromethanesulfonate anions with the PtII atom situated on an inversion centre. The square-planar geometry around the metal centre is severely distorted as illustrated by the P1–Pt–P2 angle of 70.33 (4) °. The coordinated P1—N1—P2 angle indicates a severe distortion from the ideal trigonal-planar angle expected at the sp2-hybridized nitrogen. The P1–N1–P2 angle of the un-coordinated ligand of 121.76 (9) ° decreases to 102.3 (2) ° to accommodate coordination to the platinum. The N atom is displaced by 0.114 (4) Å from the C1, P1, P2 plane, while the Pt atom is perfectly planar with the phosphorous atoms. The orientation of the phenyl rings changes from a Cs conformation when un-coordinated to a C2v conformation in the solid state in order to coordinated to the platinum.

For the coordinated ligand, the cyclopentane ring is twisted [q2 = 0.420 (5) Å, φ = 26.5 (8) °] (Cremer & Pople, 1975) with atom C2 deviating 0.645 (5) Å from the plane of the remaining four atoms. As for the un-coordinated ligand, (Engelbrecht et al., 2010d) the cyclopentane ring is in an envelope conformation [q2 = 0.398 (2) Å, φ = 78.5 (3) °] with C3A as flap, which lies 0.590 (2) Å from the plane of the remaining four atoms. The disordered component of the cyclopentane ring also has an envelope conformation [q2 = 0.379 (6) Å, φ = 319.7 (10) °] with C5B as flap, lying -0.528 (2) Å from the plane of the other four atoms.

The trifluoromethanesulfonate anions are disordered over two positions with site occupancy factors of 0.511 (11):0.489 (11). The crystal packing is influenced by inter- and intra-molecular hydrogen bonds (Figure 2, Table 1).

For related platinum(II) complexes, see: Farrar et al. (1995); Dyson et al. (2004); Cloete et al. (2010); Engelbrecht et al. (2010a,b). For diphosphinoamine (PNP) and other P-donor ligands, see: Keat et al. (1981); Purcell et al. (1995); Cotton et al. (1996); Otto & Roodt (2001); Fei et al. (2003); Otto et al. (2005); Muller et al. (2008); Engelbrecht et al. (2010c,d, 2011). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Ferreira et al. (2007). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Atoms generated through the twofold rotation axis are represented by atoms ending with 'i'. Hydrogen atoms have been omitted for clarity. Dashed lines denote the minor disordered atoms. Symmetry transformations used to generate equivalent atoms: 2 - x, -y, 2 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed along the a axis showing the hydrogen bonds as dashed lines. Only applicable atoms with relevance to the hydrogen bonds are drawn at the 50% probability level.
Bis[N,N-bis(diphenylphosphanyl)cyclopentanamine- κ2P,P']platinum(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Pt(C29H29NP2)2](CF3SO3)2F(000) = 1408
Mr = 1400.18Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9870 reflections
a = 10.041 (5) Åθ = 2.8–28.1°
b = 13.662 (4) ŵ = 2.71 mm1
c = 20.928 (5) ÅT = 100 K
β = 93.916 (5)°Cuboid, colourless
V = 2864.2 (19) Å30.19 × 0.18 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.101
φ and ω scansθmax = 28°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1213
Tmin = 0.627, Tmax = 0.671k = 1818
44370 measured reflectionsl = 2727
6894 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.8274P]
where P = (Fo2 + 2Fc2)/3
6894 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 1.39 e Å3
7 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Pt(C29H29NP2)2](CF3SO3)2V = 2864.2 (19) Å3
Mr = 1400.18Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.041 (5) ŵ = 2.71 mm1
b = 13.662 (4) ÅT = 100 K
c = 20.928 (5) Å0.19 × 0.18 × 0.16 mm
β = 93.916 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
6894 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4869 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.671Rint = 0.101
44370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0407 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.02Δρmax = 1.39 e Å3
6894 reflectionsΔρmin = 1.42 e Å3
398 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1880 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.8% completeness accomplished.

Spectroscopy data: 1H NMR (600 MHz, CD2Cl2): δ = 1.0 (m, 4H), 1.1 (m, 4H), 1.2 (m, 4H), 1.4 (m, 4H), 3.5 (m, 2H), 7.4 – 7.8 (m, 40H). 31P NMR (243 MHz, CD2Cl2): δ = 39.7 (t, 1JPt—P = 1063.0 Hz).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.0762 (4)0.3164 (3)0.9779 (2)0.0230 (10)
H11.01690.34871.00810.028*
C21.2188 (5)0.3463 (3)0.9988 (2)0.0306 (11)
H2A1.28460.3090.97540.037*
H2B1.2380.33711.04550.037*
C31.2184 (6)0.4555 (4)0.9805 (2)0.0382 (12)
H3A1.17920.49571.01380.046*
H3B1.31020.47890.97480.046*
C41.1334 (6)0.4606 (4)0.9179 (3)0.0395 (13)
H4A1.19090.46540.88140.047*
H4B1.07480.51890.91740.047*
C51.0489 (5)0.3669 (3)0.9123 (2)0.0261 (10)
H5A1.07690.32470.87720.031*
H5B0.9530.38270.90440.031*
C111.2563 (4)0.1091 (3)0.91477 (19)0.0207 (9)
C121.3335 (5)0.0312 (3)0.9382 (2)0.0264 (10)
H121.29610.0170.96440.032*
C131.4666 (5)0.0238 (4)0.9232 (2)0.0330 (12)
H131.51860.03110.93740.04*
C141.5222 (5)0.0964 (4)0.8878 (2)0.0297 (11)
H141.61390.09250.87950.036*
C151.4480 (5)0.1736 (4)0.8645 (2)0.0316 (11)
H151.48760.22290.84010.038*
C161.3142 (5)0.1796 (3)0.8768 (2)0.0264 (10)
H161.26130.2320.85930.032*
C210.9925 (4)0.1201 (3)0.85355 (19)0.0201 (9)
C221.0380 (4)0.0582 (3)0.8056 (2)0.0236 (10)
H221.11940.02320.81270.028*
C230.9622 (5)0.0492 (4)0.7479 (2)0.0272 (10)
H230.99110.00730.71530.033*
C240.8444 (5)0.1013 (3)0.7378 (2)0.0265 (10)
H240.79260.09460.69830.032*
C250.8016 (5)0.1625 (3)0.7842 (2)0.0263 (10)
H250.72150.19890.77630.032*
C260.8746 (4)0.1713 (3)0.8424 (2)0.0222 (10)
H260.84360.21270.87470.027*
C311.1077 (4)0.1741 (3)1.11284 (19)0.0208 (9)
C321.2084 (5)0.1038 (3)1.1270 (2)0.0263 (10)
H321.20980.04521.10260.032*
C331.3044 (5)0.1194 (4)1.1758 (2)0.0317 (11)
H331.37130.07161.18570.038*
C341.3027 (5)0.2060 (4)1.2107 (2)0.0346 (12)
H341.370.21731.2440.042*
C351.2052 (5)0.2756 (4)1.1978 (2)0.0364 (12)
H351.20530.33441.22210.044*
C361.1069 (5)0.2591 (4)1.1491 (2)0.0302 (11)
H361.03860.30631.14050.036*
C410.8337 (4)0.2049 (3)1.0621 (2)0.0209 (9)
C420.7533 (5)0.2500 (3)1.0139 (2)0.0267 (10)
H420.78720.26250.97340.032*
C430.6244 (5)0.2764 (4)1.0250 (2)0.0324 (11)
H430.570.30770.99220.039*
C440.5735 (5)0.2576 (4)1.0840 (2)0.0326 (12)
H440.48370.27421.09090.039*
C450.6538 (5)0.2148 (4)1.1327 (2)0.0306 (11)
H450.61980.20391.17330.037*
C460.7842 (5)0.1876 (3)1.1222 (2)0.0262 (10)
H460.83920.15771.15540.031*
N11.0451 (3)0.2102 (3)0.97884 (16)0.0190 (8)
P11.08226 (11)0.11427 (8)0.93121 (5)0.01603 (7)
P20.99258 (11)0.15296 (8)1.04487 (5)0.01603 (7)
Pt11010.01603 (7)
O1A0.6874 (3)0.3547 (3)0.87585 (18)0.0410 (9)0.511 (11)
S1A0.6839 (7)0.4342 (5)0.8293 (4)0.0353 (13)0.511 (11)
O2A0.7720 (9)0.4555 (9)0.7931 (7)0.080 (5)0.511 (11)
O3A0.5823 (9)0.3523 (6)0.7743 (3)0.045 (3)0.511 (11)
C01A0.5385 (9)0.4916 (7)0.8440 (3)0.0353 (13)0.511 (11)
F3A0.5273 (8)0.5233 (6)0.9030 (4)0.048 (2)0.511 (11)
F2A0.4267 (8)0.4383 (6)0.8272 (6)0.070 (3)0.511 (11)
F1A0.5064 (7)0.5707 (5)0.8087 (4)0.042 (2)*0.511 (11)
O1B0.6874 (3)0.3547 (3)0.87585 (18)0.0410 (9)0.489 (11)
F3B0.6075 (16)0.5606 (9)0.8840 (7)0.129 (7)0.489 (11)
O2B0.7866 (7)0.5037 (6)0.8490 (5)0.047 (3)0.489 (11)
C01B0.5446 (10)0.5042 (8)0.8351 (5)0.0308 (12)0.489 (11)
O3B0.6795 (15)0.4142 (10)0.7618 (4)0.082 (5)0.489 (11)
S1B0.6660 (6)0.4067 (5)0.8193 (4)0.0308 (12)0.489 (11)
F2B0.4419 (11)0.4684 (10)0.8634 (6)0.100 (5)0.489 (11)
F1B0.5215 (9)0.5642 (6)0.7862 (5)0.058 (3)*0.489 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.019 (2)0.023 (2)0.0027 (19)0.0023 (19)0.0019 (19)
C20.034 (3)0.028 (3)0.029 (2)0.005 (2)0.002 (2)0.002 (2)
C30.047 (3)0.032 (3)0.036 (3)0.013 (3)0.000 (2)0.003 (2)
C40.050 (3)0.028 (3)0.039 (3)0.006 (3)0.001 (3)0.008 (2)
C50.031 (3)0.023 (3)0.024 (2)0.003 (2)0.000 (2)0.0031 (19)
C110.024 (2)0.021 (2)0.017 (2)0.0018 (18)0.0011 (18)0.0008 (18)
C120.024 (2)0.028 (3)0.028 (2)0.0023 (19)0.001 (2)0.000 (2)
C130.022 (2)0.038 (3)0.038 (3)0.008 (2)0.003 (2)0.002 (2)
C140.016 (2)0.039 (3)0.034 (3)0.002 (2)0.004 (2)0.003 (2)
C150.027 (3)0.038 (3)0.029 (3)0.000 (2)0.004 (2)0.002 (2)
C160.027 (3)0.026 (3)0.026 (2)0.006 (2)0.002 (2)0.001 (2)
C210.025 (2)0.019 (2)0.016 (2)0.0026 (18)0.0029 (18)0.0013 (17)
C220.024 (2)0.024 (3)0.023 (2)0.0024 (19)0.0018 (19)0.0010 (19)
C230.032 (3)0.028 (3)0.022 (2)0.002 (2)0.002 (2)0.003 (2)
C240.028 (3)0.030 (3)0.021 (2)0.002 (2)0.0043 (19)0.001 (2)
C250.023 (2)0.026 (3)0.030 (2)0.003 (2)0.001 (2)0.002 (2)
C260.024 (2)0.019 (2)0.023 (2)0.0034 (19)0.0017 (19)0.0007 (18)
C310.026 (2)0.019 (2)0.017 (2)0.0012 (18)0.0005 (18)0.0003 (18)
C320.029 (3)0.025 (3)0.024 (2)0.000 (2)0.000 (2)0.006 (2)
C330.027 (3)0.041 (3)0.026 (2)0.005 (2)0.003 (2)0.002 (2)
C340.036 (3)0.038 (3)0.029 (3)0.001 (2)0.007 (2)0.007 (2)
C350.047 (3)0.034 (3)0.027 (3)0.004 (3)0.003 (2)0.012 (2)
C360.038 (3)0.028 (3)0.025 (2)0.003 (2)0.001 (2)0.003 (2)
C410.023 (2)0.019 (2)0.021 (2)0.0018 (18)0.0023 (18)0.0035 (18)
C420.030 (3)0.026 (3)0.025 (2)0.004 (2)0.006 (2)0.000 (2)
C430.033 (3)0.032 (3)0.032 (3)0.009 (2)0.001 (2)0.004 (2)
C440.025 (3)0.034 (3)0.039 (3)0.007 (2)0.008 (2)0.005 (2)
C450.034 (3)0.029 (3)0.029 (2)0.001 (2)0.008 (2)0.004 (2)
C460.032 (3)0.022 (2)0.025 (2)0.007 (2)0.006 (2)0.001 (2)
N10.0225 (19)0.020 (2)0.0147 (16)0.0061 (15)0.0041 (15)0.0005 (15)
P10.01943 (12)0.01522 (12)0.01339 (11)0.00270 (10)0.00077 (7)0.00016 (10)
P20.01943 (12)0.01522 (12)0.01339 (11)0.00270 (10)0.00077 (7)0.00016 (10)
Pt10.01943 (12)0.01522 (12)0.01339 (11)0.00270 (10)0.00077 (7)0.00016 (10)
O1A0.037 (2)0.035 (2)0.051 (2)0.0101 (17)0.0047 (18)0.0085 (18)
S1A0.049 (3)0.025 (3)0.032 (2)0.023 (2)0.0062 (19)0.0012 (18)
O2A0.039 (5)0.096 (9)0.106 (12)0.009 (6)0.023 (6)0.052 (8)
O3A0.060 (6)0.042 (5)0.032 (4)0.011 (4)0.010 (4)0.024 (4)
C01A0.049 (3)0.025 (3)0.032 (2)0.023 (2)0.0062 (19)0.0012 (18)
F3A0.044 (5)0.051 (5)0.050 (4)0.015 (3)0.018 (4)0.008 (4)
F2A0.028 (4)0.051 (5)0.127 (9)0.004 (3)0.032 (5)0.003 (6)
O1B0.037 (2)0.035 (2)0.051 (2)0.0101 (17)0.0047 (18)0.0085 (18)
F3B0.169 (15)0.075 (9)0.129 (11)0.060 (9)0.091 (11)0.077 (8)
O2B0.020 (4)0.042 (5)0.080 (7)0.001 (4)0.011 (4)0.018 (5)
C01B0.0310 (18)0.029 (3)0.033 (3)0.0079 (18)0.0072 (15)0.0028 (19)
O3B0.115 (13)0.099 (10)0.031 (5)0.050 (10)0.002 (6)0.028 (6)
S1B0.0310 (18)0.029 (3)0.033 (3)0.0079 (18)0.0072 (15)0.0028 (19)
F2B0.077 (9)0.161 (14)0.064 (7)0.058 (9)0.026 (7)0.002 (7)
Geometric parameters (Å, º) top
C1—N11.484 (6)C32—C331.372 (6)
C1—C21.524 (6)C32—H320.95
C1—C51.543 (6)C33—C341.390 (7)
C1—H11C33—H330.95
C2—C31.540 (7)C34—C351.378 (7)
C2—H2A0.99C34—H340.95
C2—H2B0.99C35—C361.389 (6)
C3—C41.516 (7)C35—H350.95
C3—H3A0.99C36—H360.95
C3—H3B0.99C41—C421.391 (6)
C4—C51.535 (7)C41—C461.403 (6)
C4—H4A0.99C41—P21.805 (4)
C4—H4B0.99C42—C431.379 (6)
C5—H5A0.99C42—H420.95
C5—H5B0.99C43—C441.391 (7)
C11—C121.387 (6)C43—H430.95
C11—C161.400 (6)C44—C451.385 (7)
C11—P11.805 (4)C44—H440.95
C12—C131.397 (7)C45—C461.393 (6)
C12—H120.95C45—H450.95
C13—C141.379 (7)C46—H460.95
C13—H130.95N1—P21.703 (4)
C14—C151.362 (7)N1—P11.704 (4)
C14—H140.95P1—Pt12.3139 (12)
C15—C161.388 (6)P1—P22.6534 (15)
C15—H150.95P2—Pt12.2943 (13)
C16—H160.95Pt1—P2i2.2943 (13)
C21—C261.381 (6)Pt1—P1i2.3139 (12)
C21—C221.413 (6)O1A—S1A1.458 (9)
C21—P11.806 (4)S1A—O2A1.237 (12)
C22—C231.388 (6)S1A—C01A1.704 (2)
C22—H220.95S1A—O3A1.859 (11)
C23—C241.384 (6)C01A—F3A1.320 (2)
C23—H230.95C01A—F1A1.336 (5)
C24—C251.373 (6)C01A—F2A1.364 (13)
C24—H240.95F3B—C01B1.398 (15)
C25—C261.384 (6)O2B—S1B1.873 (12)
C25—H250.95C01B—F2B1.318 (2)
C26—H260.95C01B—F1B1.320 (5)
C31—C361.387 (6)C01B—S1B1.850 (12)
C31—C321.412 (6)O3B—S1B1.226 (12)
C31—P21.794 (4)
N1—C1—C2116.9 (4)C35—C34—C33121.2 (5)
N1—C1—C5115.1 (3)C35—C34—H34119.4
C2—C1—C5104.0 (4)C33—C34—H34119.4
N1—C1—H1106.7C34—C35—C36119.4 (5)
C2—C1—H1106.7C34—C35—H35120.3
C5—C1—H1106.7C36—C35—H35120.3
C1—C2—C3101.6 (4)C31—C36—C35120.5 (5)
C1—C2—H2A111.4C31—C36—H36119.8
C3—C2—H2A111.4C35—C36—H36119.8
C1—C2—H2B111.4C42—C41—C46120.0 (4)
C3—C2—H2B111.4C42—C41—P2120.4 (3)
H2A—C2—H2B109.3C46—C41—P2119.0 (3)
C4—C3—C2104.6 (4)C43—C42—C41119.9 (4)
C4—C3—H3A110.8C43—C42—H42120
C2—C3—H3A110.8C41—C42—H42120
C4—C3—H3B110.8C42—C43—C44120.5 (4)
C2—C3—H3B110.8C42—C43—H43119.8
H3A—C3—H3B108.9C44—C43—H43119.8
C3—C4—C5107.6 (4)C45—C44—C43120.0 (4)
C3—C4—H4A110.2C45—C44—H44120
C5—C4—H4A110.2C43—C44—H44120
C3—C4—H4B110.2C44—C45—C46120.2 (5)
C5—C4—H4B110.2C44—C45—H45119.9
H4A—C4—H4B108.5C46—C45—H45119.9
C4—C5—C1104.0 (4)C45—C46—C41119.4 (4)
C4—C5—H5A111C45—C46—H46120.3
C1—C5—H5A111C41—C46—H46120.3
C4—C5—H5B111C1—N1—P2122.5 (3)
C1—C5—H5B111C1—N1—P1133.6 (3)
H5A—C5—H5B109P2—N1—P1102.32 (19)
C12—C11—C16119.0 (4)N1—P1—C11113.27 (19)
C12—C11—P1119.2 (3)N1—P1—C21112.14 (19)
C16—C11—P1121.7 (3)C11—P1—C21105.09 (19)
C11—C12—C13119.7 (5)N1—P1—Pt193.07 (13)
C11—C12—H12120.1C11—P1—Pt1118.91 (14)
C13—C12—H12120.1C21—P1—Pt1114.36 (14)
C14—C13—C12119.9 (5)C11—P1—P2124.81 (14)
C14—C13—H13120.1C21—P1—P2128.24 (15)
C12—C13—H13120.1Pt1—P1—P254.50 (4)
C15—C14—C13121.1 (4)N1—P2—C31110.5 (2)
C15—C14—H14119.4N1—P2—C41107.96 (19)
C13—C14—H14119.4C31—P2—C41108.0 (2)
C14—C15—C16119.5 (5)N1—P2—Pt193.78 (13)
C14—C15—H15120.2C31—P2—Pt1115.73 (15)
C16—C15—H15120.2C41—P2—Pt1119.61 (15)
C15—C16—C11120.6 (4)C31—P2—P1120.20 (15)
C15—C16—H16119.7C41—P2—P1128.04 (14)
C11—C16—H16119.7Pt1—P2—P155.19 (3)
C26—C21—C22119.9 (4)P2i—Pt1—P2180.0000 (10)
C26—C21—P1123.0 (3)P2i—Pt1—P1i70.31 (4)
C22—C21—P1116.6 (3)P2—Pt1—P1i109.69 (4)
C23—C22—C21119.2 (4)P2i—Pt1—P1109.69 (4)
C23—C22—H22120.4P2—Pt1—P170.31 (4)
C21—C22—H22120.4P1i—Pt1—P1180.0000 (10)
C24—C23—C22119.9 (4)O2A—S1A—O1A126.8 (7)
C24—C23—H23120O2A—S1A—C01A131.2 (9)
C22—C23—H23120O1A—S1A—C01A101.7 (5)
C25—C24—C23120.7 (4)O2A—S1A—O3A98.5 (9)
C25—C24—H24119.6O1A—S1A—O3A87.3 (5)
C23—C24—H24119.6C01A—S1A—O3A87.0 (5)
C24—C25—C26120.2 (4)F3A—C01A—F1A102.7 (8)
C24—C25—H25119.9F3A—C01A—F2A107.2 (8)
C26—C25—H25119.9F1A—C01A—F2A97.2 (7)
C21—C26—C25120.1 (4)F3A—C01A—S1A116.7 (6)
C21—C26—H26120F1A—C01A—S1A116.7 (7)
C25—C26—H26120F2A—C01A—S1A114.1 (7)
C36—C31—C32119.1 (4)F2B—C01B—F1B118.6 (10)
C36—C31—P2122.7 (3)F2B—C01B—F3B101.7 (10)
C32—C31—P2118.1 (3)F1B—C01B—F3B105.8 (11)
C33—C32—C31120.5 (4)F2B—C01B—S1B111.0 (9)
C33—C32—H32119.8F1B—C01B—S1B113.1 (7)
C31—C32—H32119.8F3B—C01B—S1B104.9 (7)
C32—C33—C34119.4 (5)O3B—S1B—C01B103.5 (7)
C32—C33—H33120.3O3B—S1B—O2B98.8 (9)
C34—C33—H33120.3C01B—S1B—O2B81.4 (6)
N1—C1—C2—C3170.6 (4)C1—N1—P2—C3154.4 (4)
C5—C1—C2—C342.5 (4)P1—N1—P2—C31113.0 (2)
C1—C2—C3—C437.7 (5)C1—N1—P2—C4163.5 (4)
C2—C3—C4—C518.9 (6)P1—N1—P2—C41129.1 (2)
C3—C4—C5—C17.2 (6)C1—N1—P2—Pt1173.7 (3)
N1—C1—C5—C4160.2 (4)P1—N1—P2—Pt16.25 (16)
C2—C1—C5—C431.0 (5)C1—N1—P2—P1167.5 (4)
C16—C11—C12—C130.6 (7)C36—C31—P2—N181.5 (4)
P1—C11—C12—C13176.9 (4)C32—C31—P2—N194.2 (4)
C11—C12—C13—C143.1 (7)C36—C31—P2—C4136.4 (4)
C12—C13—C14—C153.0 (8)C32—C31—P2—C41147.9 (3)
C13—C14—C15—C160.2 (7)C36—C31—P2—Pt1173.6 (3)
C14—C15—C16—C112.4 (7)C32—C31—P2—Pt110.8 (4)
C12—C11—C16—C152.2 (7)C36—C31—P2—P1123.4 (4)
P1—C11—C16—C15179.6 (4)C32—C31—P2—P152.3 (4)
C26—C21—C22—C230.6 (6)C42—C41—P2—N123.8 (4)
P1—C21—C22—C23171.0 (3)C46—C41—P2—N1164.9 (4)
C21—C22—C23—C240.6 (7)C42—C41—P2—C31143.3 (4)
C22—C23—C24—C250.3 (7)C46—C41—P2—C3145.4 (4)
C23—C24—C25—C261.3 (7)C42—C41—P2—Pt181.5 (4)
C22—C21—C26—C250.4 (6)C46—C41—P2—Pt189.8 (4)
P1—C21—C26—C25171.4 (3)C42—C41—P2—P114.4 (5)
C24—C25—C26—C211.3 (7)C46—C41—P2—P1156.9 (3)
C36—C31—C32—C330.2 (7)C11—P1—P2—N184.5 (3)
P2—C31—C32—C33175.7 (4)C21—P1—P2—N177.7 (3)
C31—C32—C33—C341.0 (7)Pt1—P1—P2—N1172.4 (2)
C32—C33—C34—C351.1 (8)N1—P1—P2—C3185.7 (3)
C33—C34—C35—C360.0 (8)C11—P1—P2—C311.2 (2)
C32—C31—C36—C351.2 (7)C21—P1—P2—C31163.3 (2)
P2—C31—C36—C35174.4 (4)Pt1—P1—P2—C31101.95 (17)
C34—C35—C36—C311.1 (7)N1—P1—P2—C4169.7 (3)
C46—C41—C42—C430.8 (7)C11—P1—P2—C41154.1 (3)
P2—C41—C42—C43170.4 (4)C21—P1—P2—C418.0 (3)
C41—C42—C43—C440.6 (7)Pt1—P1—P2—C41102.71 (19)
C42—C43—C44—C452.0 (8)N1—P1—P2—Pt1172.4 (2)
C43—C44—C45—C462.0 (8)C11—P1—P2—Pt1103.14 (18)
C44—C45—C46—C410.6 (7)C21—P1—P2—Pt194.75 (18)
C42—C41—C46—C450.8 (7)N1—P2—Pt1—P1i175.23 (12)
P2—C41—C46—C45170.5 (4)C31—P2—Pt1—P1i69.81 (17)
C2—C1—N1—P288.8 (4)C41—P2—Pt1—P1i62.09 (17)
C5—C1—N1—P2148.7 (3)P1—P2—Pt1—P1i180
C2—C1—N1—P174.2 (5)N1—P2—Pt1—P14.77 (12)
C5—C1—N1—P148.3 (6)C31—P2—Pt1—P1110.19 (17)
C1—N1—P1—C1148.2 (4)C41—P2—Pt1—P1117.91 (17)
P2—N1—P1—C11117.2 (2)N1—P1—Pt1—P2i175.24 (12)
C1—N1—P1—C2170.6 (4)C11—P1—Pt1—P2i65.98 (16)
P2—N1—P1—C21124.1 (2)C21—P1—Pt1—P2i59.23 (16)
C1—N1—P1—Pt1171.5 (4)P2—P1—Pt1—P2i180
P2—N1—P1—Pt16.19 (16)N1—P1—Pt1—P24.76 (12)
C1—N1—P1—P2165.3 (5)C11—P1—Pt1—P2114.02 (16)
C12—C11—P1—N1114.3 (4)C21—P1—Pt1—P2120.77 (16)
C16—C11—P1—N168.3 (4)O2A—S1A—C01A—F3A117.3 (14)
C12—C11—P1—C21122.9 (4)O1A—S1A—C01A—F3A57.3 (10)
C16—C11—P1—C2154.5 (4)O3A—S1A—C01A—F3A143.9 (9)
C12—C11—P1—Pt16.6 (4)O2A—S1A—C01A—F1A4.5 (17)
C16—C11—P1—Pt1176.0 (3)O1A—S1A—C01A—F1A179.1 (8)
C12—C11—P1—P271.5 (4)O3A—S1A—C01A—F1A94.3 (10)
C16—C11—P1—P2111.1 (3)O2A—S1A—C01A—F2A116.7 (15)
C26—C21—P1—N123.0 (4)O1A—S1A—C01A—F2A68.6 (7)
C22—C21—P1—N1165.6 (3)O3A—S1A—C01A—F2A18.0 (9)
C26—C21—P1—C11146.5 (4)F2B—C01B—S1B—O3B126.0 (14)
C22—C21—P1—C1142.2 (4)F1B—C01B—S1B—O3B10.2 (14)
C26—C21—P1—Pt181.3 (4)F3B—C01B—S1B—O3B125.0 (13)
C22—C21—P1—Pt190.0 (3)F2B—C01B—S1B—O2B137.0 (12)
C26—C21—P1—P218.4 (5)F1B—C01B—S1B—O2B86.9 (9)
C22—C21—P1—P2153.0 (3)F3B—C01B—S1B—O2B27.9 (10)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O3A0.952.523.398 (9)154
C26—H26···O1B0.952.53.238 (6)135
C34—H34···O3Aii0.952.383.127 (10)135
C45—H45···O3Aiii0.952.33.229 (9)165
C15—H15···O3Aiv0.952.473.420 (11)178
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pt(C29H29NP2)2](CF3SO3)2
Mr1400.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.041 (5), 13.662 (4), 20.928 (5)
β (°) 93.916 (5)
V3)2864.2 (19)
Z2
Radiation typeMo Kα
µ (mm1)2.71
Crystal size (mm)0.19 × 0.18 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.627, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
44370, 6894, 4869
Rint0.101
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.02
No. of reflections6894
No. of parameters398
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.39, 1.42

Computer programs: APEX2 (Bruker, 2011), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···O3A0.952.523.398 (9)154.2
C26—H26···O1B0.952.53.238 (6)134.9
C34—H34···O3Ai0.952.383.127 (10)135.2
C45—H45···O3Aii0.952.33.229 (9)164.9
C15—H15···O3Aiii0.952.473.420 (11)177.9
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (NRF), the DST-NRF centre of excellence (c*change), the University of the Free State and INKABA funding project are gratefully acknowledged.

References

First citationBooyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCloete, N., Visser, H. G. & Roodt, A. (2010). Acta Cryst. E66, m51–m52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.  CSD CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116.  Web of Science CSD CrossRef PubMed Google Scholar
First citationDyson, P. J., Fei, Z. & Scopelliti, R. (2004). Eur. J. Inorg. Chem. pp. 530–537.  Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010a). Acta Cryst. E66, m922–m923.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010b). Acta Cryst. E66, m994–m995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010c). Acta Cryst. E66, o2881.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2010d). Acta Cryst. E66, o3322–o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEngelbrecht, I., Visser, H. G. & Roodt, A. (2011). Acta Cryst. E67, o2041–o2042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrar, D. G. & Browning, C. S. (1995). J. Chem. Soc. Dalton Trans. pp. 521–530.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationFerreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275.  Web of Science CrossRef CAS Google Scholar
First citationHaumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationOtto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationPurcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds