organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Fluoro­phen­yl)-3-(4-nitro­phen­yl)urea

aSchool of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China, and bTianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: liyl@tjipr.com

(Received 12 April 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, C13H10FN3O3, the dihedral angle between the fluoro­phenyl and nitro­phenyl ring planes is 6.51 (9)°. The crystal structure features N—H⋯O hydrogen bonds.

Related literature

The title compound is an activated fragment of sorafenib derivatives. Sorafenib is a VEGFR-2 inhibitor (Ferrara et al., 2003[Ferrara, N., Gerber, H. P. & Le, C. J. (2003). Nat. Med, 9, 669-679.]; Peruzzi et al., 2006[Peruzzi, B. & Bottaro, D. P. (2006). Clin. Cancer Res. 12, 3657-3660.]) that has good therapeutic effect for renal carcinoma and liver cancer (Wan et al., 2004[Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D. & Marais, R. (2004). Cell, 116, 855-867.]; Wilhelm et al., 2004[Wilhelm, S. M., Carter, C., Tang, L. Y., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X. M., Vincent, P., McHugh, M., Cao, Y. C., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. & Trail, P. A. (2004). Cancer Res. 64, 7099-7109.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10FN3O3

  • Mr = 275.24

  • Monoclinic, P 21 /n

  • a = 8.351 (4) Å

  • b = 12.461 (6) Å

  • c = 11.912 (6) Å

  • β = 100.315 (9)°

  • V = 1219.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 113 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan CrystalClear Tmin = 0.972, Tmax = 0.977

  • 12466 measured reflections

  • 2900 independent reflections

  • 2459 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.131

  • S = 1.12

  • 2900 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.91 (1) 1.99 (1) 2.890 (2) 170 (2)
N3—H3A⋯O2i 0.90 (1) 2.28 (1) 3.157 (2) 168 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL/PC.

Supporting information


Comment top

Sorafenib is a VEGFR-2 inhibitor (Ferrara et al., 2003; Peruzzi et al., 2006) that has good therapeutic effect for renal carcinoma and liver cancer (Wan et al., 2004; Wilhelm et al., 2004). 1-(3-fluorophenyl)-3-(4-nitrophenyl) urea is an important activated fragment of sorafenib derivatives. We present here the structure characterization of the title compound.

In the molecule of the title compound (Fig.1) bond lengths and angles have normal values. The interplanar angle between the fluorobenzyl and nitrobenzyl ring planes is 6.51 (9)°. The crystal structure is stabilized by the intermolecular N—H···O hydrogen bonds. The crystal structure (Fig.2) is stabilized by intermolecular N—H···O hydrogen bonds (table 1).

Related literature top

The title compound is an activated fragment of sorafenib derivatives. Sorafenib is a VEGFR-2 inhibitor (Ferrara et al., 2003; Peruzzi et al., 2006) that has good therapeutic effect for renal carcinoma and liver cancer (Wan et al., 2004; Wilhelm et al., 2004).

Experimental top

A solution of 4-nitroaniline (1.38 g, 10 mmol) in DCM (100 ml) was added dropwise to a stirred solution of bis(trichloromethyl) carbonate (5.92 g, 20 mmol) in DCM (20 ml) at the atmosphere of ice-bath.The reaction mixture was stirred for 2 hrs at 0–5°C. Then the reaction mixture was added drpwise to a refluxed and stirred solution of 3-fluoroaniline (1.11 g, 10 mmol) in DCM (40 ml).The reaction was completed within 2 hrs at the reflux temperature.The solvent was removed under reduced pressure.Acetone (100 ml) and H2O (300 ml) was added to the mixture. The solid was collected and washed with H2O,then gave a yellow solid. The yield was 2.08 g (75.6%). Put about 0.3 g of the product in the ampoule bottle and add 10 ml absolute ethyl alcohol, yellow single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature after 3 weeks.

Refinement top

All H atoms were detected in a difference map, nevertheless, the H-atoms attached to the nitrogen atoms were refined freely, and the H-atoms attached to the carbon atoms were placed in calculated positions and refined using a riding motion approximation, with C—H=0.95 Å, with Uiso(H)=1.2Ueq(C).

Structure description top

Sorafenib is a VEGFR-2 inhibitor (Ferrara et al., 2003; Peruzzi et al., 2006) that has good therapeutic effect for renal carcinoma and liver cancer (Wan et al., 2004; Wilhelm et al., 2004). 1-(3-fluorophenyl)-3-(4-nitrophenyl) urea is an important activated fragment of sorafenib derivatives. We present here the structure characterization of the title compound.

In the molecule of the title compound (Fig.1) bond lengths and angles have normal values. The interplanar angle between the fluorobenzyl and nitrobenzyl ring planes is 6.51 (9)°. The crystal structure is stabilized by the intermolecular N—H···O hydrogen bonds. The crystal structure (Fig.2) is stabilized by intermolecular N—H···O hydrogen bonds (table 1).

The title compound is an activated fragment of sorafenib derivatives. Sorafenib is a VEGFR-2 inhibitor (Ferrara et al., 2003; Peruzzi et al., 2006) that has good therapeutic effect for renal carcinoma and liver cancer (Wan et al., 2004; Wilhelm et al., 2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis. Hydrogen bonds are shown as dashed lines.
1-(3-Fluorophenyl)-3-(4-nitrophenyl)urea top
Crystal data top
C13H10FN3O3F(000) = 568
Mr = 275.24Dx = 1.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4180 reflections
a = 8.351 (4) Åθ = 1.6–27.8°
b = 12.461 (6) ŵ = 0.12 mm1
c = 11.912 (6) ÅT = 113 K
β = 100.315 (9)°Prism, yellow
V = 1219.5 (11) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2900 independent reflections
Radiation source: rotating anode2459 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.045
Detector resolution: 14.63 pixels mm-1θmax = 27.8°, θmin = 2.4°
ω and φ scansh = 1010
Absorption correction: multi-scan
CrystalClear
k = 1616
Tmin = 0.972, Tmax = 0.977l = 1515
12466 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.063P)2 + 0.1263P]
where P = (Fo2 + 2Fc2)/3
2900 reflections(Δ/σ)max = 0.003
189 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H10FN3O3V = 1219.5 (11) Å3
Mr = 275.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.351 (4) ŵ = 0.12 mm1
b = 12.461 (6) ÅT = 113 K
c = 11.912 (6) Å0.24 × 0.22 × 0.20 mm
β = 100.315 (9)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2900 independent reflections
Absorption correction: multi-scan
CrystalClear
2459 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.977Rint = 0.045
12466 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0522 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.30 e Å3
2900 reflectionsΔρmin = 0.26 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.29184 (14)0.96861 (8)0.02312 (9)0.0449 (3)
O10.04969 (14)0.17411 (10)0.34582 (10)0.0322 (3)
O20.01132 (14)0.04318 (10)0.24132 (10)0.0340 (3)
O30.19105 (13)0.60131 (9)0.05581 (9)0.0277 (3)
N10.01105 (16)0.13960 (12)0.26533 (12)0.0265 (3)
N20.26220 (16)0.43681 (11)0.00884 (11)0.0255 (3)
N30.32644 (17)0.58967 (11)0.09569 (11)0.0258 (3)
C10.20093 (18)0.36633 (13)0.06336 (13)0.0236 (3)
C20.19815 (19)0.25683 (13)0.03495 (13)0.0252 (4)
H20.23800.23460.03120.030*
C30.13910 (19)0.18127 (13)0.10071 (14)0.0264 (4)
H30.13710.10740.08080.032*
C40.08209 (18)0.21605 (13)0.19783 (13)0.0232 (3)
C50.08776 (19)0.32275 (13)0.22924 (14)0.0258 (4)
H50.05050.34390.29670.031*
C60.14717 (19)0.39910 (13)0.16335 (13)0.0258 (4)
H60.15170.47250.18520.031*
C70.25437 (18)0.54780 (13)0.01016 (13)0.0234 (3)
C80.35025 (18)0.69898 (13)0.11978 (13)0.0246 (4)
C90.42473 (19)0.72135 (14)0.21284 (14)0.0268 (4)
H90.45540.66420.25730.032*
C100.4543 (2)0.82664 (14)0.24089 (14)0.0297 (4)
H100.50560.84060.30440.036*
C110.4106 (2)0.91169 (15)0.17805 (15)0.0327 (4)
H110.43050.98400.19690.039*
C120.3367 (2)0.88660 (13)0.08702 (15)0.0307 (4)
C130.30351 (19)0.78355 (14)0.05540 (14)0.0274 (4)
H130.25090.77050.00770.033*
H2A0.314 (2)0.4069 (14)0.0618 (13)0.037 (5)*
H3A0.372 (2)0.5429 (15)0.1377 (15)0.056 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0653 (8)0.0268 (6)0.0451 (7)0.0026 (5)0.0172 (6)0.0077 (5)
O10.0318 (6)0.0391 (7)0.0288 (7)0.0028 (5)0.0136 (5)0.0027 (5)
O20.0370 (7)0.0269 (6)0.0393 (7)0.0018 (5)0.0096 (5)0.0044 (5)
O30.0300 (6)0.0275 (6)0.0278 (6)0.0027 (5)0.0116 (5)0.0012 (5)
N10.0231 (7)0.0283 (7)0.0281 (7)0.0001 (6)0.0044 (5)0.0032 (6)
N20.0292 (7)0.0241 (7)0.0265 (7)0.0010 (6)0.0141 (6)0.0009 (6)
N30.0303 (7)0.0235 (7)0.0265 (7)0.0016 (6)0.0130 (6)0.0012 (6)
C10.0206 (7)0.0276 (8)0.0236 (8)0.0013 (6)0.0060 (6)0.0015 (6)
C20.0259 (8)0.0284 (8)0.0228 (8)0.0016 (6)0.0084 (6)0.0001 (6)
C30.0257 (8)0.0250 (8)0.0287 (9)0.0008 (6)0.0056 (7)0.0005 (6)
C40.0213 (7)0.0262 (8)0.0228 (8)0.0009 (6)0.0057 (6)0.0044 (6)
C50.0259 (8)0.0285 (9)0.0250 (8)0.0023 (6)0.0097 (6)0.0002 (6)
C60.0281 (8)0.0245 (8)0.0267 (8)0.0002 (6)0.0099 (7)0.0007 (6)
C70.0205 (7)0.0257 (8)0.0239 (8)0.0009 (6)0.0042 (6)0.0006 (6)
C80.0208 (7)0.0254 (8)0.0266 (8)0.0015 (6)0.0018 (6)0.0022 (6)
C90.0250 (8)0.0292 (9)0.0263 (8)0.0008 (6)0.0051 (6)0.0037 (7)
C100.0278 (8)0.0320 (9)0.0287 (9)0.0021 (7)0.0032 (7)0.0051 (7)
C110.0352 (9)0.0275 (9)0.0342 (9)0.0054 (7)0.0027 (7)0.0030 (7)
C120.0344 (9)0.0250 (8)0.0315 (9)0.0005 (7)0.0029 (7)0.0035 (7)
C130.0286 (8)0.0279 (8)0.0257 (8)0.0018 (7)0.0048 (7)0.0011 (7)
Geometric parameters (Å, º) top
F1—C121.366 (2)C3—H30.9500
O1—N11.2392 (18)C4—C51.380 (2)
O2—N11.235 (2)C5—C61.381 (2)
O3—C71.2209 (19)C5—H50.9500
N1—C41.441 (2)C6—H60.9500
N2—C71.384 (2)C8—C91.393 (2)
N2—C11.389 (2)C8—C131.399 (2)
N2—H2A0.907 (9)C9—C101.387 (2)
N3—C71.376 (2)C9—H90.9500
N3—C81.413 (2)C10—C111.384 (2)
N3—H3A0.897 (9)C10—H100.9500
C1—C21.405 (2)C11—C121.376 (3)
C1—C61.407 (2)C11—H110.9500
C2—C31.372 (2)C12—C131.380 (2)
C2—H20.9500C13—H130.9500
C3—C41.397 (2)
O2—N1—O1122.33 (14)C5—C6—C1118.87 (16)
O2—N1—C4119.72 (14)C5—C6—H6120.6
O1—N1—C4117.95 (14)C1—C6—H6120.6
C7—N2—C1128.07 (14)O3—C7—N3124.54 (16)
C7—N2—H2A115.5 (12)O3—C7—N2124.28 (15)
C1—N2—H2A116.4 (12)N3—C7—N2111.18 (14)
C7—N3—C8127.73 (14)C9—C8—C13119.58 (15)
C7—N3—H3A116.9 (14)C9—C8—N3116.97 (15)
C8—N3—H3A115.1 (14)C13—C8—N3123.46 (15)
N2—C1—C2117.18 (14)C10—C9—C8120.35 (16)
N2—C1—C6123.33 (15)C10—C9—H9119.8
C2—C1—C6119.47 (15)C8—C9—H9119.8
C3—C2—C1121.41 (15)C11—C10—C9121.22 (16)
C3—C2—H2119.3C11—C10—H10119.4
C1—C2—H2119.3C9—C10—H10119.4
C2—C3—C4118.09 (15)C12—C11—C10116.83 (16)
C2—C3—H3121.0C12—C11—H11121.6
C4—C3—H3121.0C10—C11—H11121.6
C5—C4—C3121.57 (15)F1—C12—C11118.40 (15)
C5—C4—N1118.89 (14)F1—C12—C13117.07 (15)
C3—C4—N1119.51 (15)C11—C12—C13124.52 (16)
C4—C5—C6120.54 (15)C12—C13—C8117.49 (16)
C4—C5—H5119.7C12—C13—H13121.3
C6—C5—H5119.7C8—C13—H13121.3
C7—N2—C1—C2168.79 (15)C8—N3—C7—O34.1 (3)
C7—N2—C1—C613.1 (2)C8—N3—C7—N2176.20 (14)
N2—C1—C2—C3179.65 (14)C1—N2—C7—O30.8 (3)
C6—C1—C2—C32.2 (2)C1—N2—C7—N3178.89 (14)
C1—C2—C3—C40.3 (2)C7—N3—C8—C9179.05 (15)
C2—C3—C4—C51.5 (2)C7—N3—C8—C131.1 (3)
C2—C3—C4—N1176.62 (13)C13—C8—C9—C100.8 (2)
O2—N1—C4—C5176.89 (14)N3—C8—C9—C10179.09 (14)
O1—N1—C4—C53.6 (2)C8—C9—C10—C110.2 (2)
O2—N1—C4—C34.9 (2)C9—C10—C11—C120.0 (2)
O1—N1—C4—C3174.56 (13)C10—C11—C12—F1179.98 (14)
C3—C4—C5—C61.5 (2)C10—C11—C12—C130.3 (3)
N1—C4—C5—C6176.63 (14)F1—C12—C13—C8179.49 (14)
C4—C5—C6—C10.4 (2)C11—C12—C13—C80.8 (3)
N2—C1—C6—C5179.79 (14)C9—C8—C13—C121.0 (2)
C2—C1—C6—C52.1 (2)N3—C8—C13—C12178.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.91 (1)1.99 (1)2.890 (2)170 (2)
N3—H3A···O2i0.90 (1)2.28 (1)3.157 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H10FN3O3
Mr275.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)8.351 (4), 12.461 (6), 11.912 (6)
β (°) 100.315 (9)
V3)1219.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
CrystalClear
Tmin, Tmax0.972, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12466, 2900, 2459
Rint0.045
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.131, 1.12
No. of reflections2900
No. of parameters189
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.907 (9)1.993 (10)2.890 (2)169.5 (17)
N3—H3A···O2i0.897 (9)2.275 (10)3.157 (2)168 (2)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Tianjin Natural Science Foundation (09JCZDJC21700).

References

First citationFerrara, N., Gerber, H. P. & Le, C. J. (2003). Nat. Med, 9, 669–679.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeruzzi, B. & Bottaro, D. P. (2006). Clin. Cancer Res. 12, 3657–3660.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D. & Marais, R. (2004). Cell, 116, 855–867.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilhelm, S. M., Carter, C., Tang, L. Y., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X. M., Vincent, P., McHugh, M., Cao, Y. C., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. & Trail, P. A. (2004). Cancer Res. 64, 7099-7109.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds