organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,9′-Bi(9H-fluorene)

aState Key Laboratory of Crystal Materials, Shandong University, Shanda Nanlu 27 Jinan 250100, People's Republic of China
*Correspondence e-mail: liujieicm@sdu.edu.cn

(Received 14 May 2012; accepted 31 May 2012; online 13 June 2012)

The title compound [systematic name: 9-(9H-fluoren-3-yl)-9H-fluorene], C26H18, was obtained unintentionally as the product of the synthesis of a compound based on fluorene–thio­phene units. The two fluorene rings are connected through C atoms in the 3- and 9′-positions, and the dihedral angle between the mean planes of the two fluorene units is 78.57 (6)°.

Related literature

For the crystal structures of related compounds, see: Dougherty et al. (1978[Dougherty, D. A., LIort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1285-1300.]); Sridevi et al. (2006[Sridevi, V. S., Leong, W. K. & Zhu, Y. H. (2006). Organometallics, 25, 283-288.]). For the synthesis of the compound, see: Stille et al. (1993[Stille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1993). Org. Synth. 71, 97.], 1998[Stille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1998). Org. Synth. Coll. 9, 553.]); Grasa & Nolan (2001[Grasa, G. A. & Nolan, S. P. (2001). Org. Lett. 3, 119-122.]). For the inter­molecular C—H⋯π inter­actions, see: Tsuzuki et al. (2000[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746-3753.]); Nishio (2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18

  • Mr = 330.40

  • Orthorhombic, P 21 21 21

  • a = 6.22600 (1) Å

  • b = 8.3968 (2) Å

  • c = 33.5357 (7) Å

  • V = 1753.20 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.45 × 0.22 × 0.16 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.989

  • 15454 measured reflections

  • 2352 independent reflections

  • 2014 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 2352 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The molecule of the title complound (I) (Fig. 1) as the isomer of 9,9'-bi-9H-fluorene (9,9'-BF) is noncentrosymmetric, and the space group is P212121. The two fluorene groups of the compound are like the letter 'T' in shape with a dihedral angle of 78.57 (6)°. Also, it is found that benzene rings of the fluorene units are not in the same plane, and the dihedral angles are 10.54 (6) and 5.84 (6)°, respectively. The crystal packing is stabilized by intermolecular C—-H···π interactions (Fig. 3).

Related literature top

For the crystal structures of related compounds, see: Dougherty et al. (1978); Sridevi et al. (2006). For the synthesis of the compound, see: Stille et al. (1993, 1998); Grasa & Nolan (2001). For the intermolecular C—H···π interactions, see: Tsuzuki et al. (2000); Nishio (2004).

Experimental top

The title compound, 3,9'-BF, was obtained unintentionally as the product of an attempted synthesis of 2,5-bis(9H-fluoren-9-yl)thiophene through Still reaction method. n-Butyllithium (20 ml, 2.5 M in hexane, 50 mmol) was added dropwise at -78 °C into a consistently stirred mixture of thiophene (22 mmol, 1.8 ml) and dry THF (80 ml), and the mixture would be with further stirring for 2 h at room temperature under an atmosphere of dry argon. After cooling the reaction mixture to -78 °C tri-n-butyltin chloride (15 ml) was added drop-wise to the mixture system. Then, the mixture was stirred continuously over one night before being poured into saturated NH4Cl water solution (100 ml). After extraction with diethyl ether, the organic layer was dried over anhydrous MgSO4 and the yellow fluid bis[tri-n-butyltin] thiophene (TBSB) was obtained. Furthermore, DMF (10 ml) was added to the mixture of TBSB (2.5 mmol, 1.654 g), 9-bromo-fluorene (6.25 mmol, 1.53 g) and potassium fluoride (2.5 mmol, 0.145 g) with stirring about 15 min. Appropriate amount of tetrakis (triphenylphosphine) palladium (0) was added to the stirring system and refluxed at 100 °C for 16 h under an atmosphere of dry argon. After extraction with dichloromethane (30 ml), the mixture was purified by silica-gel column chromatography to give 3,9'-BF, 9,9'-BF and 2,5-bis(9H-fluoren-9-yl)thiophene. Finally, single crystals of 3,9'-BF were obtained by recrystallizing from dichloromethane.

Refinement top

All the H atoms were positioned geometrically [C–H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with Uiso (H) = 1.2 Ueq (C). In the absence of significant anomalous scattering, Friedel pairs were merged; the absolute configuration was not determined.

Structure description top

The molecule of the title complound (I) (Fig. 1) as the isomer of 9,9'-bi-9H-fluorene (9,9'-BF) is noncentrosymmetric, and the space group is P212121. The two fluorene groups of the compound are like the letter 'T' in shape with a dihedral angle of 78.57 (6)°. Also, it is found that benzene rings of the fluorene units are not in the same plane, and the dihedral angles are 10.54 (6) and 5.84 (6)°, respectively. The crystal packing is stabilized by intermolecular C—-H···π interactions (Fig. 3).

For the crystal structures of related compounds, see: Dougherty et al. (1978); Sridevi et al. (2006). For the synthesis of the compound, see: Stille et al. (1993, 1998); Grasa & Nolan (2001). For the intermolecular C—H···π interactions, see: Tsuzuki et al. (2000); Nishio (2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the packing of the title compound, viewed down the a direction.
[Figure 3] Fig. 3. A view of the C—H ··· π interactions (dotted lines) in the crystal structure of the title compound.
[Figure 4] Fig. 4. Reaction scheme showing the formation of 3,9'-BF, 9,9'-BF and 2,5-bis(9H-fluoren-9-yl)thiophene (BFT).
3,9'-Bi(9H-fluorene) top
Crystal data top
C26H18F(000) = 696
Mr = 330.40Dx = 1.252 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac2abCell parameters from 5140 reflections
a = 6.22600 (1) Åθ = 2.4–24.1°
b = 8.3968 (2) ŵ = 0.07 mm1
c = 33.5357 (7) ÅT = 293 K
V = 1753.20 (6) Å3Prism, colourless
Z = 40.45 × 0.22 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2352 independent reflections
Radiation source: fine-focus sealed tube2014 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(APEX2; Bruker,2005)
h = 88
Tmin = 0.969, Tmax = 0.989k = 109
15454 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1328P]
where P = (Fo2 + 2Fc2)/3
2352 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C26H18V = 1753.20 (6) Å3
Mr = 330.40Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.22600 (1) ŵ = 0.07 mm1
b = 8.3968 (2) ÅT = 293 K
c = 33.5357 (7) Å0.45 × 0.22 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2352 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker,2005)
2014 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.989Rint = 0.032
15454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.11 e Å3
2352 reflectionsΔρmin = 0.14 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6920 (3)0.3409 (2)0.20770 (5)0.0533 (5)
H10.60630.27640.19170.064*
C20.8720 (4)0.4144 (2)0.19215 (5)0.0578 (5)
H20.90630.40020.16540.069*
C31.0021 (3)0.5087 (3)0.21587 (5)0.0581 (5)
H31.12340.55650.20500.070*
C40.9531 (3)0.5326 (2)0.25577 (5)0.0503 (4)
H41.04140.59500.27180.060*
C50.7212 (3)0.5705 (2)0.34358 (4)0.0424 (4)
H50.85010.62640.34410.051*
C60.5806 (3)0.5777 (2)0.37597 (5)0.0451 (4)
C70.3899 (3)0.4923 (3)0.37462 (5)0.0572 (5)
H70.29570.49800.39610.069*
C80.3361 (3)0.3984 (3)0.34195 (5)0.0599 (5)
H80.20810.34130.34160.072*
C90.4518 (3)0.3053 (2)0.27093 (5)0.0527 (5)
H9A0.45840.19080.27460.063*
H9B0.31750.33260.25790.063*
C100.6411 (3)0.36460 (19)0.24736 (5)0.0445 (4)
C110.7703 (3)0.46193 (19)0.27133 (4)0.0409 (4)
C120.6660 (3)0.47883 (19)0.31054 (4)0.0394 (4)
C130.4749 (3)0.3913 (2)0.31014 (5)0.0457 (4)
C1'0.6708 (4)0.9656 (3)0.38487 (6)0.0685 (6)
H1'0.54250.96130.37070.082*
C2'0.7935 (6)1.1033 (3)0.38502 (7)0.0870 (9)
H2'0.74611.19220.37100.104*
C3'0.9840 (6)1.1101 (3)0.40558 (7)0.0895 (9)
H3'1.06441.20350.40510.107*
C4'1.0581 (4)0.9809 (3)0.42685 (6)0.0748 (7)
H4'1.18760.98610.44060.090*
C5'1.1220 (4)0.6453 (3)0.47611 (6)0.0678 (6)
H5'1.23710.71170.48210.081*
C6'1.1042 (5)0.4983 (3)0.49389 (6)0.0810 (7)
H6'1.20750.46560.51220.097*
C7'0.9355 (5)0.3993 (3)0.48493 (6)0.0841 (8)
H7'0.92690.29980.49700.101*
C8'0.7779 (4)0.4454 (3)0.45821 (5)0.0665 (6)
H8'0.66430.37760.45220.080*
C9'0.6353 (3)0.6749 (2)0.41279 (5)0.0484 (4)
H9'0.50180.69340.42760.058*
C10'0.7422 (3)0.8349 (2)0.40610 (5)0.0514 (5)
C11'0.9357 (3)0.8430 (2)0.42730 (5)0.0539 (5)
C12'0.9652 (3)0.6932 (2)0.44908 (5)0.0512 (5)
C13'0.7921 (3)0.5934 (2)0.44068 (4)0.0486 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0685 (12)0.0461 (10)0.0453 (9)0.0044 (10)0.0133 (9)0.0061 (8)
C20.0726 (12)0.0581 (11)0.0425 (9)0.0099 (11)0.0001 (9)0.0040 (8)
C30.0576 (11)0.0652 (12)0.0515 (10)0.0027 (11)0.0064 (8)0.0017 (9)
C40.0454 (9)0.0568 (10)0.0487 (9)0.0012 (9)0.0007 (7)0.0064 (8)
C50.0395 (8)0.0459 (9)0.0418 (8)0.0055 (8)0.0037 (7)0.0027 (7)
C60.0460 (9)0.0486 (10)0.0406 (8)0.0027 (8)0.0032 (7)0.0011 (7)
C70.0518 (10)0.0723 (13)0.0474 (9)0.0129 (11)0.0049 (8)0.0008 (9)
C80.0533 (11)0.0703 (13)0.0560 (10)0.0224 (11)0.0015 (9)0.0000 (9)
C90.0563 (10)0.0489 (10)0.0527 (9)0.0080 (9)0.0127 (9)0.0048 (8)
C100.0519 (9)0.0358 (8)0.0457 (8)0.0059 (8)0.0106 (7)0.0003 (7)
C110.0444 (8)0.0365 (8)0.0417 (8)0.0053 (8)0.0071 (7)0.0017 (7)
C120.0402 (8)0.0372 (8)0.0409 (8)0.0011 (7)0.0052 (6)0.0010 (7)
C130.0477 (9)0.0439 (9)0.0456 (8)0.0082 (9)0.0078 (7)0.0014 (7)
C1'0.0966 (17)0.0588 (12)0.0499 (10)0.0056 (14)0.0028 (11)0.0061 (9)
C2'0.148 (3)0.0539 (13)0.0587 (13)0.0025 (18)0.0172 (16)0.0040 (11)
C3'0.141 (3)0.0634 (15)0.0643 (13)0.0384 (18)0.0314 (17)0.0150 (12)
C4'0.0866 (15)0.0826 (16)0.0553 (11)0.0337 (15)0.0164 (11)0.0219 (12)
C5'0.0586 (11)0.0961 (17)0.0488 (10)0.0035 (13)0.0035 (9)0.0247 (12)
C6'0.0970 (17)0.0944 (18)0.0515 (11)0.0283 (17)0.0225 (12)0.0155 (13)
C7'0.130 (2)0.0692 (14)0.0530 (11)0.0115 (17)0.0230 (14)0.0030 (11)
C8'0.0916 (16)0.0617 (12)0.0463 (9)0.0063 (13)0.0088 (11)0.0038 (9)
C9'0.0479 (9)0.0566 (11)0.0406 (8)0.0019 (9)0.0039 (7)0.0064 (8)
C10'0.0649 (12)0.0515 (10)0.0379 (8)0.0024 (10)0.0085 (8)0.0105 (8)
C11'0.0619 (11)0.0610 (11)0.0389 (8)0.0110 (10)0.0108 (8)0.0151 (8)
C12'0.0499 (10)0.0679 (12)0.0359 (7)0.0042 (10)0.0060 (7)0.0145 (8)
C13'0.0566 (10)0.0562 (10)0.0330 (7)0.0004 (9)0.0022 (7)0.0087 (7)
Geometric parameters (Å, º) top
C1—C21.382 (3)C1'—C10'1.382 (3)
C1—C101.382 (2)C1'—C2'1.385 (4)
C1—H10.9300C1'—H1'0.9300
C2—C31.384 (3)C2'—C3'1.374 (4)
C2—H20.9300C2'—H2'0.9300
C3—C41.387 (2)C3'—C4'1.378 (4)
C3—H30.9300C3'—H3'0.9300
C4—C111.386 (2)C4'—C11'1.387 (3)
C4—H40.9300C4'—H4'0.9300
C5—C121.392 (2)C5'—C6'1.375 (4)
C5—C61.396 (2)C5'—C12'1.392 (3)
C5—H50.9300C5'—H5'0.9300
C6—C71.388 (3)C6'—C7'1.373 (4)
C6—C9'1.519 (2)C6'—H6'0.9300
C7—C81.391 (3)C7'—C8'1.384 (3)
C7—H70.9300C7'—H7'0.9300
C8—C131.374 (3)C8'—C13'1.378 (3)
C8—H80.9300C8'—H8'0.9300
C9—C101.504 (2)C9'—C13'1.515 (2)
C9—C131.507 (2)C9'—C10'1.516 (3)
C9—H9A0.9700C9'—H9'0.9800
C9—H9B0.9700C10'—C11'1.401 (3)
C10—C111.400 (2)C11'—C12'1.466 (3)
C11—C121.473 (2)C12'—C13'1.394 (3)
C12—C131.399 (2)
C2—C1—C10119.00 (17)C10'—C1'—C2'118.9 (2)
C2—C1—H1120.5C10'—C1'—H1'120.5
C10—C1—H1120.5C2'—C1'—H1'120.5
C1—C2—C3120.87 (17)C3'—C2'—C1'120.9 (3)
C1—C2—H2119.6C3'—C2'—H2'119.6
C3—C2—H2119.6C1'—C2'—H2'119.6
C2—C3—C4120.59 (18)C2'—C3'—C4'121.1 (2)
C2—C3—H3119.7C2'—C3'—H3'119.5
C4—C3—H3119.7C4'—C3'—H3'119.5
C11—C4—C3118.81 (18)C3'—C4'—C11'118.6 (2)
C11—C4—H4120.6C3'—C4'—H4'120.7
C3—C4—H4120.6C11'—C4'—H4'120.7
C12—C5—C6119.22 (15)C6'—C5'—C12'119.1 (2)
C12—C5—H5120.4C6'—C5'—H5'120.5
C6—C5—H5120.4C12'—C5'—H5'120.5
C7—C6—C5119.27 (15)C7'—C6'—C5'120.7 (2)
C7—C6—C9'119.73 (16)C7'—C6'—H6'119.7
C5—C6—C9'120.99 (15)C5'—C6'—H6'119.7
C6—C7—C8121.63 (17)C6'—C7'—C8'121.0 (2)
C6—C7—H7119.2C6'—C7'—H7'119.5
C8—C7—H7119.2C8'—C7'—H7'119.5
C13—C8—C7119.00 (17)C13'—C8'—C7'118.9 (2)
C13—C8—H8120.5C13'—C8'—H8'120.6
C7—C8—H8120.5C7'—C8'—H8'120.6
C10—C9—C13103.00 (14)C13'—C9'—C10'102.05 (15)
C10—C9—H9A111.2C13'—C9'—C6113.82 (15)
C13—C9—H9A111.2C10'—C9'—C6117.03 (14)
C10—C9—H9B111.2C13'—C9'—H9'107.8
C13—C9—H9B111.2C10'—C9'—H9'107.8
H9A—C9—H9B109.1C6—C9'—H9'107.8
C1—C10—C11120.33 (17)C1'—C10'—C11'120.0 (2)
C1—C10—C9129.63 (17)C1'—C10'—C9'129.7 (2)
C11—C10—C9109.98 (14)C11'—C10'—C9'110.21 (17)
C4—C11—C10120.37 (15)C4'—C11'—C10'120.5 (2)
C4—C11—C12131.06 (15)C4'—C11'—C12'130.8 (2)
C10—C11—C12108.38 (15)C10'—C11'—C12'108.59 (17)
C5—C12—C13120.54 (15)C5'—C12'—C13'120.0 (2)
C5—C12—C11130.90 (15)C5'—C12'—C11'131.35 (19)
C13—C12—C11108.41 (14)C13'—C12'—C11'108.56 (16)
C8—C13—C12120.32 (16)C8'—C13'—C12'120.38 (19)
C8—C13—C9129.64 (16)C8'—C13'—C9'128.99 (19)
C12—C13—C9109.97 (15)C12'—C13'—C9'110.59 (16)
C10—C1—C2—C30.9 (3)C12'—C5'—C6'—C7'0.6 (3)
C1—C2—C3—C40.6 (3)C5'—C6'—C7'—C8'0.8 (4)
C2—C3—C4—C110.7 (3)C6'—C7'—C8'—C13'0.2 (3)
C12—C5—C6—C70.5 (3)C7—C6—C9'—C13'100.0 (2)
C12—C5—C6—C9'179.39 (16)C5—C6—C9'—C13'78.9 (2)
C5—C6—C7—C80.7 (3)C7—C6—C9'—C10'141.21 (18)
C9'—C6—C7—C8178.28 (19)C5—C6—C9'—C10'39.9 (2)
C6—C7—C8—C130.5 (3)C2'—C1'—C10'—C11'0.0 (3)
C2—C1—C10—C110.1 (3)C2'—C1'—C10'—C9'176.29 (18)
C2—C1—C10—C9177.08 (18)C13'—C9'—C10'—C1'176.25 (18)
C13—C9—C10—C1172.24 (18)C6—C9'—C10'—C1'58.8 (3)
C13—C9—C10—C114.98 (19)C13'—C9'—C10'—C11'0.32 (17)
C3—C4—C11—C101.7 (3)C6—C9'—C10'—C11'124.61 (17)
C3—C4—C11—C12172.68 (18)C3'—C4'—C11'—C10'0.8 (3)
C1—C10—C11—C41.4 (2)C3'—C4'—C11'—C12'175.29 (19)
C9—C10—C11—C4178.95 (15)C1'—C10'—C11'—C4'0.7 (3)
C1—C10—C11—C12174.13 (15)C9'—C10'—C11'—C4'177.67 (16)
C9—C10—C11—C123.39 (18)C1'—C10'—C11'—C12'176.20 (17)
C6—C5—C12—C131.7 (2)C9'—C10'—C11'—C12'0.76 (18)
C6—C5—C12—C11173.23 (16)C6'—C5'—C12'—C13'0.6 (3)
C4—C11—C12—C50.3 (3)C6'—C5'—C12'—C11'176.7 (2)
C10—C11—C12—C5175.22 (17)C4'—C11'—C12'—C5'1.0 (3)
C4—C11—C12—C13175.13 (17)C10'—C11'—C12'—C5'175.45 (17)
C10—C11—C12—C130.20 (18)C4'—C11'—C12'—C13'177.41 (18)
C7—C8—C13—C120.8 (3)C10'—C11'—C12'—C13'0.92 (18)
C7—C8—C13—C9177.28 (19)C7'—C8'—C13'—C12'1.5 (3)
C5—C12—C13—C81.9 (2)C7'—C8'—C13'—C9'175.90 (19)
C11—C12—C13—C8174.10 (17)C5'—C12'—C13'—C8'1.7 (3)
C5—C12—C13—C9179.04 (16)C11'—C12'—C13'—C8'178.54 (17)
C11—C12—C13—C93.06 (18)C5'—C12'—C13'—C9'176.14 (15)
C10—C9—C13—C8171.96 (19)C11'—C12'—C13'—C9'0.72 (18)
C10—C9—C13—C124.86 (19)C10'—C9'—C13'—C8'177.84 (18)
C10'—C1'—C2'—C3'0.6 (3)C6—C9'—C13'—C8'55.1 (2)
C1'—C2'—C3'—C4'0.4 (4)C10'—C9'—C13'—C12'0.26 (17)
C2'—C3'—C4'—C11'0.3 (3)C6—C9'—C13'—C12'127.29 (16)

Experimental details

Crystal data
Chemical formulaC26H18
Mr330.40
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.22600 (1), 8.3968 (2), 33.5357 (7)
V3)1753.20 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.45 × 0.22 × 0.16
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(APEX2; Bruker,2005)
Tmin, Tmax0.969, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15454, 2352, 2014
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections2352
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.14

Computer programs: APEX2 (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2006).

 

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (grant No. 51021062) and the 973 program of the People's Republic of China (grant No. 2010CB630702).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDougherty, D. A., LIort, F. M., Mislow, K. & Blount, J. F. (1978). Tetrahedron, 34, 1285–1300.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrasa, G. A. & Nolan, S. P. (2001). Org. Lett. 3, 119–122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridevi, V. S., Leong, W. K. & Zhu, Y. H. (2006). Organometallics, 25, 283–288.  Web of Science CSD CrossRef CAS Google Scholar
First citationStille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1993). Org. Synth. 71, 97.  Google Scholar
First citationStille, J. K., Echavarren, A. M., Williams, R. M. & Hendrix, J. A. (1998). Org. Synth. Coll. 9, 553.  Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds